?lang_form? ?lang_select? ?lang_submit? ?lang_endform?
{HEADER END}
{BLAME START}

library

?curdirlinks? -

Blame information for rev 6

Line No. Rev Author Line
1 6 kaklik /*! \file timer.c \brief System Timer function library. */
2 //*****************************************************************************
3 //
4 // File Name : 'timer.c'
5 // Title : System Timer function library
6 // Author : Pascal Stang - Copyright (C) 2000-2002
7 // Created : 11/22/2000
8 // Revised : 07/09/2003
9 // Version : 1.1
10 // Target MCU : Atmel AVR Series
11 // Editor Tabs : 4
12 //
13 // This code is distributed under the GNU Public License
14 // which can be found at http://www.gnu.org/licenses/gpl.txt
15 //
16 //*****************************************************************************
17  
18 #include <avr/io.h>
19 #include <avr/interrupt.h>
20 #include <avr/pgmspace.h>
21 #include <avr/sleep.h>
22  
23 #include "global.h"
24 #include "timer.h"
25  
26 #include "rprintf.h"
27  
28 // Program ROM constants
29 // the prescale division values stored in order of timer control register index
30 // STOP, CLK, CLK/8, CLK/64, CLK/256, CLK/1024
31 unsigned short __attribute__ ((progmem)) TimerPrescaleFactor[] = {0,1,8,64,256,1024};
32 // the prescale division values stored in order of timer control register index
33 // STOP, CLK, CLK/8, CLK/32, CLK/64, CLK/128, CLK/256, CLK/1024
34 unsigned short __attribute__ ((progmem)) TimerRTCPrescaleFactor[] = {0,1,8,32,64,128,256,1024};
35  
36 // Global variables
37 // time registers
38 volatile unsigned long TimerPauseReg;
39 volatile unsigned long Timer0Reg0;
40 volatile unsigned long Timer2Reg0;
41  
42 typedef void (*voidFuncPtr)(void);
43 volatile static voidFuncPtr TimerIntFunc[TIMER_NUM_INTERRUPTS];
44  
45 // delay for a minimum of <us> microseconds
46 // the time resolution is dependent on the time the loop takes
47 // e.g. with 4Mhz and 5 cycles per loop, the resolution is 1.25 us
48 void delay_us(unsigned short time_us)
49 {
50 unsigned short delay_loops;
51 register unsigned short i;
52  
53 delay_loops = (time_us+3)/5*CYCLES_PER_US; // +3 for rounding up (dirty)
54  
55 // one loop takes 5 cpu cycles
56 for (i=0; i < delay_loops; i++) {};
57 }
58 /*
59 void delay_ms(unsigned char time_ms)
60 {
61 unsigned short delay_count = F_CPU / 4000;
62  
63 unsigned short cnt;
64 asm volatile ("\n"
65 "L_dl1%=:\n\t"
66 "mov %A0, %A2\n\t"
67 "mov %B0, %B2\n"
68 "L_dl2%=:\n\t"
69 "sbiw %A0, 1\n\t"
70 "brne L_dl2%=\n\t"
71 "dec %1\n\t" "brne L_dl1%=\n\t":"=&w" (cnt)
72 :"r"(time_ms), "r"((unsigned short) (delay_count))
73 );
74 }
75 */
76 void timerInit(void)
77 {
78 u08 intNum;
79 // detach all user functions from interrupts
80 for(intNum=0; intNum<TIMER_NUM_INTERRUPTS; intNum++)
81 timerDetach(intNum);
82  
83 // initialize all timers
84 timer0Init();
85 timer1Init();
86 #ifdef TCNT2 // support timer2 only if it exists
87 timer2Init();
88 #endif
89 // enable interrupts
90 sei();
91 }
92  
93 void timer0Init()
94 {
95 // initialize timer 0
96 timer0SetPrescaler( TIMER0PRESCALE ); // set prescaler
97 outb(TCNT0, 0); // reset TCNT0
98 sbi(TIMSK, TOIE0); // enable TCNT0 overflow interrupt
99  
100 timer0ClearOverflowCount(); // initialize time registers
101 }
102  
103 void timer1Init(void)
104 {
105 // initialize timer 1
106 timer1SetPrescaler( TIMER1PRESCALE ); // set prescaler
107 outb(TCNT1H, 0); // reset TCNT1
108 outb(TCNT1L, 0);
109 sbi(TIMSK, TOIE1); // enable TCNT1 overflow
110 }
111  
112 #ifdef TCNT2 // support timer2 only if it exists
113 void timer2Init(void)
114 {
115 // initialize timer 2
116 timer2SetPrescaler( TIMER2PRESCALE ); // set prescaler
117 outb(TCNT2, 0); // reset TCNT2
118 sbi(TIMSK, TOIE2); // enable TCNT2 overflow
119  
120 timer2ClearOverflowCount(); // initialize time registers
121 }
122 #endif
123  
124 void timer0SetPrescaler(u08 prescale)
125 {
126 // set prescaler on timer 0
127 outb(TCCR0, (inb(TCCR0) & ~TIMER_PRESCALE_MASK) | prescale);
128 }
129  
130 void timer1SetPrescaler(u08 prescale)
131 {
132 // set prescaler on timer 1
133 outb(TCCR1B, (inb(TCCR1B) & ~TIMER_PRESCALE_MASK) | prescale);
134 }
135  
136 #ifdef TCNT2 // support timer2 only if it exists
137 void timer2SetPrescaler(u08 prescale)
138 {
139 // set prescaler on timer 2
140 outb(TCCR2, (inb(TCCR2) & ~TIMER_PRESCALE_MASK) | prescale);
141 }
142 #endif
143  
144 u16 timer0GetPrescaler(void)
145 {
146 // get the current prescaler setting
147 return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR0) & TIMER_PRESCALE_MASK)));
148 }
149  
150 u16 timer1GetPrescaler(void)
151 {
152 // get the current prescaler setting
153 return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR1B) & TIMER_PRESCALE_MASK)));
154 }
155  
156 #ifdef TCNT2 // support timer2 only if it exists
157 u16 timer2GetPrescaler(void)
158 {
159 //TODO: can we assume for all 3-timer AVR processors,
160 // that timer2 is the RTC timer?
161  
162 // get the current prescaler setting
163 return (pgm_read_word(TimerRTCPrescaleFactor+(inb(TCCR2) & TIMER_PRESCALE_MASK)));
164 }
165 #endif
166  
167 void timerAttach(u08 interruptNum, void (*userFunc)(void) )
168 {
169 // make sure the interrupt number is within bounds
170 if(interruptNum < TIMER_NUM_INTERRUPTS)
171 {
172 // set the interrupt function to run
173 // the supplied user's function
174 TimerIntFunc[interruptNum] = userFunc;
175 }
176 }
177  
178 void timerDetach(u08 interruptNum)
179 {
180 // make sure the interrupt number is within bounds
181 if(interruptNum < TIMER_NUM_INTERRUPTS)
182 {
183 // set the interrupt function to run nothing
184 TimerIntFunc[interruptNum] = 0;
185 }
186 }
187 /*
188 u32 timerMsToTics(u16 ms)
189 {
190 // calculate the prescaler division rate
191 u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
192 // calculate the number of timer tics in x milliseconds
193 return (ms*(F_CPU/(prescaleDiv*256)))/1000;
194 }
195  
196 u16 timerTicsToMs(u32 tics)
197 {
198 // calculate the prescaler division rate
199 u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
200 // calculate the number of milliseconds in x timer tics
201 return (tics*1000*(prescaleDiv*256))/F_CPU;
202 }
203 */
204 void timerPause(unsigned short pause_ms)
205 {
206 // pauses for exactly <pause_ms> number of milliseconds
207 u08 timerThres;
208 u32 ticRateHz;
209 u32 pause;
210  
211 // capture current pause timer value
212 timerThres = inb(TCNT0);
213 // reset pause timer overflow count
214 TimerPauseReg = 0;
215 // calculate delay for [pause_ms] milliseconds
216 // prescaler division = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)))
217 ticRateHz = F_CPU/timer0GetPrescaler();
218 // precision management
219 // prevent overflow and precision underflow
220 // -could add more conditions to improve accuracy
221 if( ((ticRateHz < 429497) && (pause_ms <= 10000)) )
222 pause = (pause_ms*ticRateHz)/1000;
223 else
224 pause = pause_ms*(ticRateHz/1000);
225  
226 // loop until time expires
227 while( ((TimerPauseReg<<8) | inb(TCNT0)) < (pause+timerThres) )
228 {
229 if( TimerPauseReg < (pause>>8));
230 {
231 // save power by idling the processor
232 set_sleep_mode(SLEEP_MODE_IDLE);
233 sleep_mode();
234 }
235 }
236  
237 /* old inaccurate code, for reference
238  
239 // calculate delay for [pause_ms] milliseconds
240 u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
241 u32 pause = (pause_ms*(F_CPU/(prescaleDiv*256)))/1000;
242  
243 TimerPauseReg = 0;
244 while(TimerPauseReg < pause);
245  
246 */
247 }
248  
249 void timer0ClearOverflowCount(void)
250 {
251 // clear the timer overflow counter registers
252 Timer0Reg0 = 0; // initialize time registers
253 }
254  
255 long timer0GetOverflowCount(void)
256 {
257 // return the current timer overflow count
258 // (this is since the last timer0ClearOverflowCount() command was called)
259 return Timer0Reg0;
260 }
261  
262 #ifdef TCNT2 // support timer2 only if it exists
263 void timer2ClearOverflowCount(void)
264 {
265 // clear the timer overflow counter registers
266 Timer2Reg0 = 0; // initialize time registers
267 }
268  
269 long timer2GetOverflowCount(void)
270 {
271 // return the current timer overflow count
272 // (this is since the last timer2ClearOverflowCount() command was called)
273 return Timer2Reg0;
274 }
275 #endif
276  
277 void timer1PWMInit(u08 bitRes)
278 {
279 // configures timer1 for use with PWM output
280 // on OC1A and OC1B pins
281  
282 // enable timer1 as 8,9,10bit PWM
283 if(bitRes == 9)
284 { // 9bit mode
285 sbi(TCCR1A,PWM11);
286 cbi(TCCR1A,PWM10);
287 }
288 else if( bitRes == 10 )
289 { // 10bit mode
290 sbi(TCCR1A,PWM11);
291 sbi(TCCR1A,PWM10);
292 }
293 else
294 { // default 8bit mode
295 cbi(TCCR1A,PWM11);
296 sbi(TCCR1A,PWM10);
297 }
298  
299 // clear output compare value A
300 outb(OCR1AH, 0);
301 outb(OCR1AL, 0);
302 // clear output compare value B
303 outb(OCR1BH, 0);
304 outb(OCR1BL, 0);
305 }
306  
307 #ifdef WGM10
308 // include support for arbitrary top-count PWM
309 // on new AVR processors that support it
310 void timer1PWMInitICR(u16 topcount)
311 {
312 // set PWM mode with ICR top-count
313 cbi(TCCR1A,WGM10);
314 sbi(TCCR1A,WGM11);
315 sbi(TCCR1B,WGM12);
316 sbi(TCCR1B,WGM13);
317  
318 // set top count value
319 ICR1 = topcount;
320  
321 // clear output compare value A
322 OCR1A = 0;
323 // clear output compare value B
324 OCR1B = 0;
325  
326 }
327 #endif
328  
329 void timer1PWMOff(void)
330 {
331 // turn off timer1 PWM mode
332 cbi(TCCR1A,PWM11);
333 cbi(TCCR1A,PWM10);
334 // set PWM1A/B (OutputCompare action) to none
335 timer1PWMAOff();
336 timer1PWMBOff();
337 }
338  
339 void timer1PWMAOn(void)
340 {
341 // turn on channel A (OC1A) PWM output
342 // set OC1A as non-inverted PWM
343 sbi(TCCR1A,COM1A1);
344 cbi(TCCR1A,COM1A0);
345 }
346  
347 void timer1PWMBOn(void)
348 {
349 // turn on channel B (OC1B) PWM output
350 // set OC1B as non-inverted PWM
351 sbi(TCCR1A,COM1B1);
352 cbi(TCCR1A,COM1B0);
353 }
354  
355 void timer1PWMAOff(void)
356 {
357 // turn off channel A (OC1A) PWM output
358 // set OC1A (OutputCompare action) to none
359 cbi(TCCR1A,COM1A1);
360 cbi(TCCR1A,COM1A0);
361 }
362  
363 void timer1PWMBOff(void)
364 {
365 // turn off channel B (OC1B) PWM output
366 // set OC1B (OutputCompare action) to none
367 cbi(TCCR1A,COM1B1);
368 cbi(TCCR1A,COM1B0);
369 }
370  
371 void timer1PWMASet(u16 pwmDuty)
372 {
373 // set PWM (output compare) duty for channel A
374 // this PWM output is generated on OC1A pin
375 // NOTE: pwmDuty should be in the range 0-255 for 8bit PWM
376 // pwmDuty should be in the range 0-511 for 9bit PWM
377 // pwmDuty should be in the range 0-1023 for 10bit PWM
378 //outp( (pwmDuty>>8), OCR1AH); // set the high 8bits of OCR1A
379 //outp( (pwmDuty&0x00FF), OCR1AL); // set the low 8bits of OCR1A
380 OCR1A = pwmDuty;
381 }
382  
383 void timer1PWMBSet(u16 pwmDuty)
384 {
385 // set PWM (output compare) duty for channel B
386 // this PWM output is generated on OC1B pin
387 // NOTE: pwmDuty should be in the range 0-255 for 8bit PWM
388 // pwmDuty should be in the range 0-511 for 9bit PWM
389 // pwmDuty should be in the range 0-1023 for 10bit PWM
390 //outp( (pwmDuty>>8), OCR1BH); // set the high 8bits of OCR1B
391 //outp( (pwmDuty&0x00FF), OCR1BL); // set the low 8bits of OCR1B
392 OCR1B = pwmDuty;
393 }
394  
395 //! Interrupt handler for tcnt0 overflow interrupt
396 TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW0)
397 {
398 Timer0Reg0++; // increment low-order counter
399  
400 // increment pause counter
401 TimerPauseReg++;
402  
403 // if a user function is defined, execute it too
404 if(TimerIntFunc[TIMER0OVERFLOW_INT])
405 TimerIntFunc[TIMER0OVERFLOW_INT]();
406 }
407  
408 //! Interrupt handler for tcnt1 overflow interrupt
409 TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW1)
410 {
411 // if a user function is defined, execute it
412 if(TimerIntFunc[TIMER1OVERFLOW_INT])
413 TimerIntFunc[TIMER1OVERFLOW_INT]();
414 }
415  
416 #ifdef TCNT2 // support timer2 only if it exists
417 //! Interrupt handler for tcnt2 overflow interrupt
418 TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW2)
419 {
420 Timer2Reg0++; // increment low-order counter
421  
422 // if a user function is defined, execute it
423 if(TimerIntFunc[TIMER2OVERFLOW_INT])
424 TimerIntFunc[TIMER2OVERFLOW_INT]();
425 }
426 #endif
427  
428 #ifdef OCR0
429 // include support for Output Compare 0 for new AVR processors that support it
430 //! Interrupt handler for OutputCompare0 match (OC0) interrupt
431 TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE0)
432 {
433 // if a user function is defined, execute it
434 if(TimerIntFunc[TIMER0OUTCOMPARE_INT])
435 TimerIntFunc[TIMER0OUTCOMPARE_INT]();
436 }
437 #endif
438  
439 //! Interrupt handler for CutputCompare1A match (OC1A) interrupt
440 TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1A)
441 {
442 // if a user function is defined, execute it
443 if(TimerIntFunc[TIMER1OUTCOMPAREA_INT])
444 TimerIntFunc[TIMER1OUTCOMPAREA_INT]();
445 }
446  
447 //! Interrupt handler for OutputCompare1B match (OC1B) interrupt
448 TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1B)
449 {
450 // if a user function is defined, execute it
451 if(TimerIntFunc[TIMER1OUTCOMPAREB_INT])
452 TimerIntFunc[TIMER1OUTCOMPAREB_INT]();
453 }
454  
455 //! Interrupt handler for InputCapture1 (IC1) interrupt
456 TIMER_INTERRUPT_HANDLER(SIG_INPUT_CAPTURE1)
457 {
458 // if a user function is defined, execute it
459 if(TimerIntFunc[TIMER1INPUTCAPTURE_INT])
460 TimerIntFunc[TIMER1INPUTCAPTURE_INT]();
461 }
462  
463 //! Interrupt handler for OutputCompare2 match (OC2) interrupt
464 TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE2)
465 {
466 // if a user function is defined, execute it
467 if(TimerIntFunc[TIMER2OUTCOMPARE_INT])
468 TimerIntFunc[TIMER2OUTCOMPARE_INT]();
469 }
{BLAME END}
{FOOTER START}

Powered by WebSVN v2.8.3