Line No. | Rev | Author | Line |
---|---|---|---|
1 | 6 | kaklik | /*! \file uart2.c \brief Dual UART driver with buffer support. */ |
2 | //***************************************************************************** |
||
3 | // |
||
4 | // File Name : 'uart2.c' |
||
5 | // Title : Dual UART driver with buffer support |
||
6 | // Author : Pascal Stang - Copyright (C) 2000-2004 |
||
7 | // Created : 11/20/2000 |
||
8 | // Revised : 07/04/2004 |
||
9 | // Version : 1.0 |
||
10 | // Target MCU : ATMEL AVR Series |
||
11 | // Editor Tabs : 4 |
||
12 | // |
||
13 | // Description : This is a UART driver for AVR-series processors with two |
||
14 | // hardware UARTs such as the mega161 and mega128 |
||
15 | // |
||
16 | // This code is distributed under the GNU Public License |
||
17 | // which can be found at http://www.gnu.org/licenses/gpl.txt |
||
18 | // |
||
19 | //***************************************************************************** |
||
20 | |||
21 | #include <avr/io.h> |
||
22 | #include <avr/interrupt.h> |
||
23 | |||
24 | #include "buffer.h" |
||
25 | #include "uart2.h" |
||
26 | |||
27 | // UART global variables |
||
28 | // flag variables |
||
29 | volatile u08 uartReadyTx[2]; |
||
30 | volatile u08 uartBufferedTx[2]; |
||
31 | // receive and transmit buffers |
||
32 | cBuffer uartRxBuffer[2]; |
||
33 | cBuffer uartTxBuffer[2]; |
||
34 | unsigned short uartRxOverflow[2]; |
||
35 | #ifndef UART_BUFFER_EXTERNAL_RAM |
||
36 | // using internal ram, |
||
37 | // automatically allocate space in ram for each buffer |
||
38 | static char uart0RxData[UART0_RX_BUFFER_SIZE]; |
||
39 | static char uart0TxData[UART0_TX_BUFFER_SIZE]; |
||
40 | static char uart1RxData[UART1_RX_BUFFER_SIZE]; |
||
41 | static char uart1TxData[UART1_TX_BUFFER_SIZE]; |
||
42 | #endif |
||
43 | |||
44 | typedef void (*voidFuncPtru08)(unsigned char); |
||
45 | volatile static voidFuncPtru08 UartRxFunc[2]; |
||
46 | |||
47 | void uartInit(void) |
||
48 | { |
||
49 | // initialize both uarts |
||
50 | uart0Init(); |
||
51 | uart1Init(); |
||
52 | } |
||
53 | |||
54 | void uart0Init(void) |
||
55 | { |
||
56 | // initialize the buffers |
||
57 | uart0InitBuffers(); |
||
58 | // initialize user receive handlers |
||
59 | UartRxFunc[0] = 0; |
||
60 | // enable RxD/TxD and interrupts |
||
61 | outb(UCSR0B, BV(RXCIE)|BV(TXCIE)|BV(RXEN)|BV(TXEN)); |
||
62 | // set default baud rate |
||
63 | uartSetBaudRate(0, UART0_DEFAULT_BAUD_RATE); |
||
64 | // initialize states |
||
65 | uartReadyTx[0] = TRUE; |
||
66 | uartBufferedTx[0] = FALSE; |
||
67 | // clear overflow count |
||
68 | uartRxOverflow[0] = 0; |
||
69 | // enable interrupts |
||
70 | sei(); |
||
71 | } |
||
72 | |||
73 | void uart1Init(void) |
||
74 | { |
||
75 | // initialize the buffers |
||
76 | uart1InitBuffers(); |
||
77 | // initialize user receive handlers |
||
78 | UartRxFunc[1] = 0; |
||
79 | // enable RxD/TxD and interrupts |
||
80 | outb(UCSR1B, BV(RXCIE)|BV(TXCIE)|BV(RXEN)|BV(TXEN)); |
||
81 | // set default baud rate |
||
82 | uartSetBaudRate(1, UART1_DEFAULT_BAUD_RATE); |
||
83 | // initialize states |
||
84 | uartReadyTx[1] = TRUE; |
||
85 | uartBufferedTx[1] = FALSE; |
||
86 | // clear overflow count |
||
87 | uartRxOverflow[1] = 0; |
||
88 | // enable interrupts |
||
89 | sei(); |
||
90 | } |
||
91 | |||
92 | void uart0InitBuffers(void) |
||
93 | { |
||
94 | #ifndef UART_BUFFER_EXTERNAL_RAM |
||
95 | // initialize the UART0 buffers |
||
96 | bufferInit(&uartRxBuffer[0], uart0RxData, UART0_RX_BUFFER_SIZE); |
||
97 | bufferInit(&uartTxBuffer[0], uart0TxData, UART0_TX_BUFFER_SIZE); |
||
98 | #else |
||
99 | // initialize the UART0 buffers |
||
100 | bufferInit(&uartRxBuffer[0], (u08*) UART0_RX_BUFFER_ADDR, UART0_RX_BUFFER_SIZE); |
||
101 | bufferInit(&uartTxBuffer[0], (u08*) UART0_TX_BUFFER_ADDR, UART0_TX_BUFFER_SIZE); |
||
102 | #endif |
||
103 | } |
||
104 | |||
105 | void uart1InitBuffers(void) |
||
106 | { |
||
107 | #ifndef UART_BUFFER_EXTERNAL_RAM |
||
108 | // initialize the UART1 buffers |
||
109 | bufferInit(&uartRxBuffer[1], uart1RxData, UART1_RX_BUFFER_SIZE); |
||
110 | bufferInit(&uartTxBuffer[1], uart1TxData, UART1_TX_BUFFER_SIZE); |
||
111 | #else |
||
112 | // initialize the UART1 buffers |
||
113 | bufferInit(&uartRxBuffer[1], (u08*) UART1_RX_BUFFER_ADDR, UART1_RX_BUFFER_SIZE); |
||
114 | bufferInit(&uartTxBuffer[1], (u08*) UART1_TX_BUFFER_ADDR, UART1_TX_BUFFER_SIZE); |
||
115 | #endif |
||
116 | } |
||
117 | |||
118 | void uartSetRxHandler(u08 nUart, void (*rx_func)(unsigned char c)) |
||
119 | { |
||
120 | // make sure the uart number is within bounds |
||
121 | if(nUart < 2) |
||
122 | { |
||
123 | // set the receive interrupt to run the supplied user function |
||
124 | UartRxFunc[nUart] = rx_func; |
||
125 | } |
||
126 | } |
||
127 | |||
128 | void uartSetBaudRate(u08 nUart, u32 baudrate) |
||
129 | { |
||
130 | // calculate division factor for requested baud rate, and set it |
||
131 | u16 bauddiv = ((F_CPU+(baudrate*8L))/(baudrate*16L)-1); |
||
132 | if(nUart) |
||
133 | { |
||
134 | outb(UBRR1L, bauddiv); |
||
135 | #ifdef UBRR1H |
||
136 | outb(UBRR1H, bauddiv>>8); |
||
137 | #endif |
||
138 | } |
||
139 | else |
||
140 | { |
||
141 | outb(UBRR0L, bauddiv); |
||
142 | #ifdef UBRR0H |
||
143 | outb(UBRR0H, bauddiv>>8); |
||
144 | #endif |
||
145 | } |
||
146 | } |
||
147 | |||
148 | cBuffer* uartGetRxBuffer(u08 nUart) |
||
149 | { |
||
150 | // return rx buffer pointer |
||
151 | return &uartRxBuffer[nUart]; |
||
152 | } |
||
153 | |||
154 | cBuffer* uartGetTxBuffer(u08 nUart) |
||
155 | { |
||
156 | // return tx buffer pointer |
||
157 | return &uartTxBuffer[nUart]; |
||
158 | } |
||
159 | |||
160 | void uartSendByte(u08 nUart, u08 txData) |
||
161 | { |
||
162 | // wait for the transmitter to be ready |
||
163 | // while(!uartReadyTx[nUart]); |
||
164 | // send byte |
||
165 | if(nUart) |
||
166 | { |
||
167 | while(!(UCSR1A & (1<<UDRE))); |
||
168 | outb(UDR1, txData); |
||
169 | } |
||
170 | else |
||
171 | { |
||
172 | while(!(UCSR0A & (1<<UDRE))); |
||
173 | outb(UDR0, txData); |
||
174 | } |
||
175 | // set ready state to FALSE |
||
176 | uartReadyTx[nUart] = FALSE; |
||
177 | } |
||
178 | |||
179 | void uart0SendByte(u08 data) |
||
180 | { |
||
181 | // send byte on UART0 |
||
182 | uartSendByte(0, data); |
||
183 | } |
||
184 | |||
185 | void uart1SendByte(u08 data) |
||
186 | { |
||
187 | // send byte on UART1 |
||
188 | uartSendByte(1, data); |
||
189 | } |
||
190 | |||
191 | int uart0GetByte(void) |
||
192 | { |
||
193 | // get single byte from receive buffer (if available) |
||
194 | u08 c; |
||
195 | if(uartReceiveByte(0,&c)) |
||
196 | return c; |
||
197 | else |
||
198 | return -1; |
||
199 | } |
||
200 | |||
201 | int uart1GetByte(void) |
||
202 | { |
||
203 | // get single byte from receive buffer (if available) |
||
204 | u08 c; |
||
205 | if(uartReceiveByte(1,&c)) |
||
206 | return c; |
||
207 | else |
||
208 | return -1; |
||
209 | } |
||
210 | |||
211 | |||
212 | u08 uartReceiveByte(u08 nUart, u08* rxData) |
||
213 | { |
||
214 | // make sure we have a receive buffer |
||
215 | if(uartRxBuffer[nUart].size) |
||
216 | { |
||
217 | // make sure we have data |
||
218 | if(uartRxBuffer[nUart].datalength) |
||
219 | { |
||
220 | // get byte from beginning of buffer |
||
221 | *rxData = bufferGetFromFront(&uartRxBuffer[nUart]); |
||
222 | return TRUE; |
||
223 | } |
||
224 | else |
||
225 | return FALSE; // no data |
||
226 | } |
||
227 | else |
||
228 | return FALSE; // no buffer |
||
229 | } |
||
230 | |||
231 | void uartFlushReceiveBuffer(u08 nUart) |
||
232 | { |
||
233 | // flush all data from receive buffer |
||
234 | bufferFlush(&uartRxBuffer[nUart]); |
||
235 | } |
||
236 | |||
237 | u08 uartReceiveBufferIsEmpty(u08 nUart) |
||
238 | { |
||
239 | return (uartRxBuffer[nUart].datalength == 0); |
||
240 | } |
||
241 | |||
242 | void uartAddToTxBuffer(u08 nUart, u08 data) |
||
243 | { |
||
244 | // add data byte to the end of the tx buffer |
||
245 | bufferAddToEnd(&uartTxBuffer[nUart], data); |
||
246 | } |
||
247 | |||
248 | void uart0AddToTxBuffer(u08 data) |
||
249 | { |
||
250 | uartAddToTxBuffer(0,data); |
||
251 | } |
||
252 | |||
253 | void uart1AddToTxBuffer(u08 data) |
||
254 | { |
||
255 | uartAddToTxBuffer(1,data); |
||
256 | } |
||
257 | |||
258 | void uartSendTxBuffer(u08 nUart) |
||
259 | { |
||
260 | // turn on buffered transmit |
||
261 | uartBufferedTx[nUart] = TRUE; |
||
262 | // send the first byte to get things going by interrupts |
||
263 | uartSendByte(nUart, bufferGetFromFront(&uartTxBuffer[nUart])); |
||
264 | } |
||
265 | |||
266 | u08 uartSendBuffer(u08 nUart, char *buffer, u16 nBytes) |
||
267 | { |
||
268 | register u08 first; |
||
269 | register u16 i; |
||
270 | |||
271 | // check if there's space (and that we have any bytes to send at all) |
||
272 | if((uartTxBuffer[nUart].datalength + nBytes < uartTxBuffer[nUart].size) && nBytes) |
||
273 | { |
||
274 | // grab first character |
||
275 | first = *buffer++; |
||
276 | // copy user buffer to uart transmit buffer |
||
277 | for(i = 0; i < nBytes-1; i++) |
||
278 | { |
||
279 | // put data bytes at end of buffer |
||
280 | bufferAddToEnd(&uartTxBuffer[nUart], *buffer++); |
||
281 | } |
||
282 | |||
283 | // send the first byte to get things going by interrupts |
||
284 | uartBufferedTx[nUart] = TRUE; |
||
285 | uartSendByte(nUart, first); |
||
286 | // return success |
||
287 | return TRUE; |
||
288 | } |
||
289 | else |
||
290 | { |
||
291 | // return failure |
||
292 | return FALSE; |
||
293 | } |
||
294 | } |
||
295 | |||
296 | // UART Transmit Complete Interrupt Function |
||
297 | void uartTransmitService(u08 nUart) |
||
298 | { |
||
299 | // check if buffered tx is enabled |
||
300 | if(uartBufferedTx[nUart]) |
||
301 | { |
||
302 | // check if there's data left in the buffer |
||
303 | if(uartTxBuffer[nUart].datalength) |
||
304 | { |
||
305 | // send byte from top of buffer |
||
306 | if(nUart) |
||
307 | outb(UDR1, bufferGetFromFront(&uartTxBuffer[1]) ); |
||
308 | else |
||
309 | outb(UDR0, bufferGetFromFront(&uartTxBuffer[0]) ); |
||
310 | } |
||
311 | else |
||
312 | { |
||
313 | // no data left |
||
314 | uartBufferedTx[nUart] = FALSE; |
||
315 | // return to ready state |
||
316 | uartReadyTx[nUart] = TRUE; |
||
317 | } |
||
318 | } |
||
319 | else |
||
320 | { |
||
321 | // we're using single-byte tx mode |
||
322 | // indicate transmit complete, back to ready |
||
323 | uartReadyTx[nUart] = TRUE; |
||
324 | } |
||
325 | } |
||
326 | |||
327 | // UART Receive Complete Interrupt Function |
||
328 | void uartReceiveService(u08 nUart) |
||
329 | { |
||
330 | u08 c; |
||
331 | // get received char |
||
332 | if(nUart) |
||
333 | c = inb(UDR1); |
||
334 | else |
||
335 | c = inb(UDR0); |
||
336 | |||
337 | // if there's a user function to handle this receive event |
||
338 | if(UartRxFunc[nUart]) |
||
339 | { |
||
340 | // call it and pass the received data |
||
341 | UartRxFunc[nUart](c); |
||
342 | } |
||
343 | else |
||
344 | { |
||
345 | // otherwise do default processing |
||
346 | // put received char in buffer |
||
347 | // check if there's space |
||
348 | if( !bufferAddToEnd(&uartRxBuffer[nUart], c) ) |
||
349 | { |
||
350 | // no space in buffer |
||
351 | // count overflow |
||
352 | uartRxOverflow[nUart]++; |
||
353 | } |
||
354 | } |
||
355 | } |
||
356 | |||
357 | UART_INTERRUPT_HANDLER(SIG_UART0_TRANS) |
||
358 | { |
||
359 | // service UART0 transmit interrupt |
||
360 | uartTransmitService(0); |
||
361 | } |
||
362 | |||
363 | UART_INTERRUPT_HANDLER(SIG_UART1_TRANS) |
||
364 | { |
||
365 | // service UART1 transmit interrupt |
||
366 | uartTransmitService(1); |
||
367 | } |
||
368 | |||
369 | UART_INTERRUPT_HANDLER(SIG_UART0_RECV) |
||
370 | { |
||
371 | // service UART0 receive interrupt |
||
372 | uartReceiveService(0); |
||
373 | } |
||
374 | |||
375 | UART_INTERRUPT_HANDLER(SIG_UART1_RECV) |
||
376 | { |
||
377 | // service UART1 receive interrupt |
||
378 | uartReceiveService(1); |
||
379 | } |
Powered by WebSVN v2.8.3