Subversion Repositories svnkaklik

Rev

Rev 933 | Rev 942 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log

Rev Author Line No. Line
930 kaklik 1
\documentclass[12pt]{article}
2
\usepackage[czech]{babel}
3
\usepackage{array}
4
\usepackage[pdftex]{graphicx}
5
\usepackage[utf8]{inputenc} %vstupni soubory v kodovani UTF-8
6
\usepackage{color}
7
 
8
\textheight     230.0mm
9
\textwidth      155.0mm 
10
%\topmargin        0.0mm
11
\topmargin      -20.0mm
12
\oddsidemargin    0.0mm
13
\parindent        0.0mm
14
\renewcommand{\baselinestretch}{1.0}
15
 
16
\newcommand{\vsp}[1]{\vspace{#1mm}}
17
 
18
\begin{document}
19
\thispagestyle{empty}
20
 
21
\begin{center} 
22
  \extrarowheight 1.5ex
23
  \begin{tabular}{c} 
24
    \textbf{\Large České vysoké učení technické v Praze} \\
25
    \textbf{\Large Fakulta jaderná a fyzikálně inženýrská} \\
26
    \textbf{\Large Katedra fyzikální elektroniky}  
27
  \end{tabular}
28
\vsp{60}
29
 
30
\textbf{\Large Bakalářská práce}
31
\bigskip
32
 
33
\textbf{\LARGE Jakub Kákona}
34
\vfill
35
 
36
\textbf{\large Praha -- 2012} \\
37
\textcolor{red}{\small Vzor titulní strany na pevných deskách} \\
38
\textcolor{red}{\small Jméno autora a rok ukončení práce taky na
39
  hřbetní straně}
40
\end{center}
41
 
42
\pagebreak
43
\setcounter{page}{1}
44
\thispagestyle{empty}
45
 
46
\begin{center} 
47
  \extrarowheight 1.5ex
48
  \begin{tabular}{c} 
49
    \textbf{\Large České vysoké učení technické v Praze} \\
50
    \textbf{\Large Fakulta jaderná a fyzikálně inženýrská} \\
51
    \textbf{\Large Katedra fyzikální elektroniky}  
52
  \end{tabular}
53
\vsp{60}
54
 
55
\textbf{\Huge Vysílač pro laserový dálkoměr}
56
\bigskip
57
 
58
\textbf{\Large Bakalářská práce}
59
\end{center}
60
\vfill
61
 
62
\extrarowheight 0.75ex
63
\begin{tabular}{>{\large}l>{\large}l}
64
Autor práce: & \textbf{Jakub Kákona} \\
65
Školitel:    & \textbf{Jméno školitele} \\
66
(Konzultant(i):  & \textbf{Jména konzultantů}) \\
67
Školní rok:  & \textbf{2011/2012} 
68
\end{tabular}
69
\vsp{0}
70
 
71
\pagebreak
72
 
73
\mbox{}
74
\vfill
75
 
76
Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem
77
uvedl veškerou použitou literaturu.
78
\vsp{10}
79
 
80
\noindent
81
\quad \hfill \textcolor{red}{\small Podpis studenta} \qquad \\
82
Praha, xx.xx.2012 \hfill Jakub Kákona \qquad
83
\par
84
\vsp{5}
85
 
86
\pagebreak
931 kaklik 87
\tableofcontents
930 kaklik 88
 
931 kaklik 89
\section{Zadání práce}
930 kaklik 90
 
91
 
931 kaklik 92
 
93
\section{Laserový dálkoměr}
94
 
95
Laserový dálkoměr je zařízení, které je schopno měřit vzdálenost objektu odrážejícího záření optických vlnových délek. Tyto objekty mohou být velmi různorodého charakteru a dálkoměr je pak v principu schopen měřit pevné, kapalné nebo i plynné struktury, případně i jejich kombinace.   
96
 
932 kaklik 97
Možnosti jeho aplikace jsou proto velmi rozsáhlé od zaměřování a mapování topografie terénu přes vytváření přesných tvarových modelů malých předmětů až po jeho použití v meteorologii, nebo pro vojenské aplikace.  
931 kaklik 98
 
99
\subsection{Princip měření vzdálenosti}
100
 
932 kaklik 101
Základním principem LASERových dálkoměrů je změření nějaké modifikace signálu odraženého od předmětu a známého signálu vyzářeného vysílačem. Existuje několik používaných metod, které umožňují tento obecně slabý jev změřit.
931 kaklik 102
 
103
\begin{itemize}
104
\item Měření geometrického posunu stopy laseru na předmětu
105
\item Měření fázového posunu přijímaného a vysílaného signálu
932 kaklik 106
\item Měření časového zpoždění vyslaného a odraženého fotonu (TIME-OF-FLIGHT measurement). 
931 kaklik 107
\end{itemize}
108
 
109
\subsubsection{Geometrická metoda}
110
 
932 kaklik 111
Tato metoda měření je založena na geometrické vlastnosti světelného paprsku, že světlo se v homogenním prostředí šíří přímočaře. Toho lze využít tak, že použijeme li zdroj světla, který vydává málo rozbíhavý světelný paprsek (LASER) a pod určitým úhlem vůči ose pozorovatele jej budeme promítat na předmět, tak pozorovatel bude mít světelnou stopu v různých bodech zorného pole podle vzdálenosti předmětu. 
931 kaklik 112
 
932 kaklik 113
Tato metoda, je velice snadná a proto existuje mnoho realizací od amatérských konstrukcí až po profesionální výrobky. Obvykle jsou tímto způsobem řešeny 3D skenery malých předmětů, jako jsou vázy, nebo jiná umělecká díla, která je vhodné zdokumentovat. Skener pak pro urychlení procesu nepoužívá pouze světelný bod, který laser obvykle produkuje ale využívá se cylindrické čočky, která svazek rozšíří do roviny ve směru řezu předmětu. V tomto uspořádání totiž pak stačí s LASERem, nebo promítacím zrcátkem hýbat pouze v jedné ose, pro kompletní 3D scan. 
931 kaklik 114
 
115
 
116
Ke snímání obrazu je v tomto případě obvykle využíván maticový snímač, CCD, nebo CMOS. A metoda funguje pouze v rozsahu vzdáleností daných úhlem ve kterým je laser na předmět promítán a také velikostí zorného pole snímače. 
117
 
118
Z praktických důvodu je proto tato metoda využívána v rozsahu několika centimetrů až několika metrů.  
119
 
120
\subsubsection{Fázová metoda}
121
 
933 kaklik 122
U této metody je již vyžívána samotná vlastnost světla, že se prostorem šíří pouze omezenou rychlostí. A měření je prováděno tak, že vysílač vysílá určitým způsobem periodicky modulovaný signál, který se odráží od předmětu a dopadá na intenzitní detektor, který umožňuje jeho časovou korelaci s modulovaným odchozím signálem.  
931 kaklik 123
 
933 kaklik 124
Výsledkem měření tedy je fázové spoždění odpovídající určité vzdálenosti. Předpokládatelným problémem této metody ale je fakt, že způsob modulace přímo ovlivňuje měřený rozsah tj. měření vzdálenosti je možné pouze na rozsahu jedné periody modulace. A vzhledemk tomu, že měřená vzdálenost není dopředu známa, tak je potřeba aby vysílač umožňoval mnoho způsobů modulace vysílaného svazku. 
931 kaklik 125
 
933 kaklik 126
Další komplikací pak je požadavek na dobrou reflexivitu měřeného předmětu, protože fázový detektor potřebuje ke své správné funkci dostatečný odstup sígnálu od šumu.  
931 kaklik 127
 
933 kaklik 128
Metoda se proto obvykle využívá pro měření vzdáleností v malém rozsahu řádově desítky metrů a méně. Typyckým příkladem využití této měřící metody jsou kapesní stavební dálkoměry určené, jako náhrada svinovacích metrů. 
931 kaklik 129
 
933 kaklik 130
 
131
Tato fázová metoda má ještě další variaci a to tu, že jako modulaci signálu je možné v určitých podmínkách využít samotnou vlnovou strukturu světla, a vysílaný i od předmětu odražený svazek nechat interferovat na maticovém snímači. Výsledná interference je velmi citlivá na vzájemný fázový posun obou svazků ve zlomcíh vlnové délky. 
132
 
133
Tím lze dosáhnout velmi velkého prostorového rozlišení ve smyslu měření změn vzdálenosti až na atomární úroveň tedy desítky až jednotky nanometrů. Tento princip je pak využíván ve specializovaných aplikacích, jako jsou velmi přesné obráběcí automaty, AFM mikroskopy, detektory gravitačních vln, nebo špionážní zařízení měřící zvukem vybuzené vibrace okenních výplní. 
134
 
135
 
931 kaklik 136
\subsubsection{Měření doby letu (TOF)}
137
 
933 kaklik 138
Další metodou, kterou múžeme využít pro měření vzdálenosti na základě známé a konečné rychlosti šíření světla, je změření doby letu určitého balíku fotonů, který vygenerujeme vysílačem a následně po odrazu od měřeného objektu detekujeme v detektoru. Změřená doba letu pak odpovídá dvojnásobku vzdálenosti mezi vysílačem a měřeným předmětem. 
931 kaklik 139
 
933 kaklik 140
\begin{equation}
141
 d = \frac{ct}{2n}
142
\end{equation}
931 kaklik 143
 
933 kaklik 144
Kde $c$ je rychlost šíření elektromagnetického záření ve vakuu, $n$ je index lomu prostředí a $t$ je změřená doba letu. Veličina $d$ je pak vzdálenost předmětu, kterou potřebujeme změřit.
931 kaklik 145
 
933 kaklik 146
Při měření se tak předpokládá homogenní prostředí ve kterém se světlo šíří, nebo alespon prostředí o nějaké známé efektivní hodnotě indexu lomu. 
931 kaklik 147
 
933 kaklik 148
Tato metoda má vzhledem k předchozím podstatnou výhodou především v tom, že její princip umožnuje změřit vzdálenosti v obrovském rozsahu a přitom neklade vysoké nároky na odstup signálu od šumu. Běžně se proto využívá například pro měření a následné výpočty korekcí drah družic, nebo i měření podélných paramerů optických komunikačních vláken, kde je metoda známa, jako TDR (Time domain refractometry) 
149
Možnosti použití navíc nejsou omezeny pouze na klasické světelné vlnové délky, ale stejný princip lze uplatnit například i při použití rádiových vlnových délek, což by u předchozích metod nebylo možné vzhledem k problematické konstrukci elementů, jako jsou čočky, zrcadla, nebo maticové detektory pro rádiové vlny.
150
Možnosti aplikace metody měření doby letu jsou tak rozáhlé, že z ní vychází i další přistroje, jako radiolokátory nebo echolokátory. 
151
 
152
Tato práce je proto zaměřena právě na tento princip měření, protože jeho dosah a přesnost je zajímavá například i pro meteorologické aplikace a tedy využitelná i pro zatím nedořešené oblasti jako je měření parametrů oblačnosti například nad moderními robotickými astronomickými teleskopy. 
153
 
931 kaklik 154
\subsection{Požadavky na laserový vysílač}
155
 
933 kaklik 156
 
157
\subsubsection{Vlnová délka }
158
 
159
Vhodná vlnová délka výstupního záření laserového vysílače záleží na mnoha faktorech, jako je například absorpce v médiu vyplnujícím prostor mezi vysílačem a detekovaným předmětem, nebo i spektrální odrazivost měřeného objektu. Pro modelovou aplikaci měření výšky a mohutnosti oblačnosti jsou vhodné krátké vlnové délky z optického oboru elektromagnetického záření. Je to dáno jednak vlastnosmi atmosféry, která dobře propouští vlnové délky z oblasti viditelného spektra. A potom tím, že světlo z kračích vlnových délek (modrá oblast) se dobře odráží na oblačnosti a vodních krystalech. 
160
 
161
\begin{figure}[htbp]
162
\includegraphics[width=150mm]{./img/atmospheric_absorption.png}
163
\caption{Závislost transmisivity suché atmosféry na vlnové délce záření}
164
\end{figure} 
165
 
166
Ovšem vzhledem k tomu, že na krátkých vlnových délkách směrem k UV oblasti poměrně strmě stoupá vliv nežádoucího Rayleighova rozptylu, který omezuje použitelný dosah měření. Tak je vhodné použít střední vlnovou délku optického záření, ze zelené oblasti spektra.  
167
 
168
\subsubsection{Délka výstupního impulzu}
169
 
932 kaklik 170
V případě, že nás zajímá metoda založená na měření doby letu, tak od laserového vysílače budeme také požadovat, aby umožňoval generovat krátké časové impulzy. Což je důležité proto, protože krátký časový impulz umožňuje dosáhnout lepšího časového rozlišení při měření a tím pádem i lepší prostorové rozlišení při měření vzdálenosti. Je to dáno tím, že v impulzu je obvykle vysláno velké množství fotonů ale zpátky do detektoru se jich vrátí pouze několik. A v případě dlouhého impulzu pak nejsme schopni určit z které části impulzu nám foton přišel. 
931 kaklik 171
 
933 kaklik 172
Pro případ měření výšky základny oblačnosti, která sama o sobě nemá příliš strmý přechod je zbytečné měřit s přesností lepší, než řádově metry. Proto stačí od laserového vysílače požadovat délky pulzů kratší, než stovky nanosekund.
931 kaklik 173
 
933 kaklik 174
\subsubsection{Energie impulzu}
931 kaklik 175
 
933 kaklik 176
Energie výstupního impulzu je ideálně co největší, aby bylo dosaženo vysoké pravděpodobnosti zachycení některého zpětně odraženého fotonu. Ale vzhledem k tomu, že je třeba brát ohled i na bezpečnostní rizika takového systému, tak je potřeba se držet povolených norem pro intenzity elektromagnetického záření. 
177
 
178
\section{LASERy}
179
 
180
V dnešní době existuje mnoho typů LASERů. Avšak pouze malá část z nich je v hodná pro použití v LASERových dálkoměrech. Omezením často bývají rozměry aparatury, hmotnost, pořizovací cena, provozní podmínky a odolnost při manipulaci.
181
 
931 kaklik 182
\subsection{Pevnolátkový diodově čerpaný LASER}
183
 
933 kaklik 184
Jde o typ LASERu, který jako aktivního prostředí využívá pevnolátkový krystal 
931 kaklik 185
 
933 kaklik 186
\subsection{Koherentní čerpání}
931 kaklik 187
 
933 kaklik 188
 
931 kaklik 189
\subsection{Relaxační kmity LASERu}
190
 
933 kaklik 191
\subsection{Měření krátkých světelných impuzlů}
192
 
193
 
194
\section{Konstrukce vysílače}
195
 
196
 
941 kaklik 197
\begin{figure}[htbp]
198
\includegraphics[width=150mm]{./img/Green_laser_pointer.png}
199
\caption{Závislost transmisivity suché atmosféry na vlnové délce záření}
200
\end{figure} 
201
 
931 kaklik 202
\section{Řídící elektronika}
203
 
204
\subsection{Čerpací dioda}
205
 
206
 
207
\subsection{Buzení čerpací diody}
208
 
209
 
210
 
211
 
212
\pagebreak
213
\listoffigures
214
 
215
\pagebreak
216
 
933 kaklik 217
\begin{thebibliography}{99}
218
\bibitem{http://www.nohrsc.nws.gov/technology/avhrr3a/avhrr3a.htm} {Zdroj obrázku reflektivity oblačnosti}
219
\end{thebibliography}
930 kaklik 220
 
221
\end{document}