Subversion Repositories svnkaklik

Rev

Rev 1123 | Rev 1125 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log

Rev Author Line No. Line
1091 fluktuacia 1
\chap Trial design
1073 kaklik 2
 
1105 kaklik 3
The whole design of radioastronomy receiver digitalization unit is constructed to be used in a wide range of applications and tasks related to digitalization of signal from radioastronomy receivers. A good illustrating problem for its use is a signal digitalisation from multiple antenna arrays. This design will eventually become a part of MLAB Advanced Radio Astronomy System. 
1083 kaklik 4
 
1073 kaklik 5
\sec Required parameters
6
 
1098 kaklik 7
Wide dynamical range and high IP3 are desired. The receiver must accept wide dynamic signals because a typical radioastronomical signal has a form of a weak signal covered by a strong man-made noise.    
1073 kaklik 8
 
1098 kaklik 9
Summary of main required parameters follows 
10
 
1083 kaklik 11
\begitems
12
  * Dynamical range better than 80 dB
13
  * Phase stability between channels 
14
  * Noise (all types)
15
  * Sampling jitter better than 100 metres
1098 kaklik 16
  * Support for any number of receivers in range 1 to 8
1083 kaklik 17
\enditems
18
 
1098 kaklik 19
\sec Sampling frequency
20
 
1116 kaklik 21
Sampling frequency is limited by the technical constrains in the trial design. This parameter is especially limited by the sampling frequencies of analog-to-digital conversion chips available on the market and interface bandwidth. Combination of the required parameters -- dynamic range requiring at least 16bit and a minimum sampling frequency of 1$\ $MSPS leads to need of high end ADC chips which does not support such low sampling frequencies at all. Their minimum sampling frequency is 5$\ $MSPS.
1083 kaklik 22
 
1116 kaklik 23
We calculate minimum data bandwidth data rate for eight receivers, 2 bytes per sample and 5$\ $MSPS as $8 \cdot 2 \cdot 5\cdot 10^6 = 80\ $MB/s. Such data rate is at the limit of real writing speed o classical HDD and it is almost double of real bandwidth of USB 2.0 interface. 
1083 kaklik 24
 
1073 kaklik 25
 
1075 kaklik 26
\sec System scalability
1073 kaklik 27
 
1098 kaklik 28
For analogue channels scalability, special parameters of ADC modules are required. Ideally, there should be a separate output for each analogue channel in ADC module. ADC module must also have separate outputs for frames and data output clocks. These parameters allow for conduction at relatively low digital data rates. As a result, the digital signal can be conducted even through long wires. 
1073 kaklik 29
 
1116 kaklik 30
Clock signal will be handled distinctively in our scalable design. Selected ADC chip are guaranteed to have defined clock skew between sampling and data output clock. This allows taking data and frame clocks from the first ADC module only. The rest of the data and frame clocks from other ADC modules can be measured for diagnostic purposes (failure detection, jitter measurement etc.). If more robustness is required from designs DCO and FR signal may be collected from other modules and routed through an voting logic which will correct possible signal defects.  
1075 kaklik 31
 
1093 fluktuacia 32
This system concept allows for scalability, that is technically limited by a number of differential signals on host side and its computational power.  There is another advantage of scalable data acquisition system -- an economic one. Observatories or end users can make a choice of how much money are they willing to spent on radioastronomy receiver system. This freedom of choice is especially useful for science sites without previous experience in radioastronomy observations.     
1075 kaklik 33
 
1105 kaklik 34
\secc Differential signaling 
1075 kaklik 35
 
1093 fluktuacia 36
The concept of scalable design requires relatively long circuit traces between ADC and digital unit which captures the data and performs the computations. The long distance between the digital processing unit and the analog-to-digital conversion unit has an advantage in noise retention typically produced by digital circuits. Those digital circuits, such as FPGA or other flip-flops block and circuit traces, usually work at high frequencies and emit wide-band noise with relatively low power. In such cases any increase in a distance between the noise source and analog signal source increase S/N significantly. However, at the same time a long distance brings problems with the digital signal transmission between ADC and computational unit. This obstacle should be resolved more easily in free-space than on board routing. The high-quality differential signalling shielded cables should be used. This technology has two advantages over PCB signal routing. First, it can use twisted pair of wires for leak inductance suppression in signal path and second, the twisted pair may additionally be shielded by uninterrupted metal foil.              
1075 kaklik 37
 
1076 kaklik 38
\secc Phase matching
39
 
1093 fluktuacia 40
For multiple antenna radioastronomy projects, system phase stability is a mandatory condition. It allows precise high resolution imaging of objects. 
1076 kaklik 41
 
1116 kaklik 42
High phase stability in our scalable design is achieved through centralized frequency generation  and distribution with multi-output LVPECL hubs, that have equiphased outputs for multiple devices. LVPECL logic is used on every system critical clock signal distribution hub. LVPECL logic has advantage over LVDS in signal integrity robustness. LVPECL uses higher logical levels and higher signalling currents. Consumption currents of LVPECL logic are near constant over operating frequency range due to use of bipolar transistor this minimises voltage glitches which are typical for CMOS logic. One drawbacks of that parameters is high power consumption of LVPECL logic. 
1076 kaklik 43
 
1093 fluktuacia 44
This design ensures that all devices have access to the defined phase and known frequency.     
1076 kaklik 45
 
46
 
1073 kaklik 47
\sec System description
48
 
1075 kaklik 49
In this section testing system will be described.
1073 kaklik 50
 
1075 kaklik 51
\secc Frequency synthesis       
52
 
1111 kaklik 53
We have used a centralized topology as a basis for frequency synthesis. One precise high-frequency and low-jitter digital oscillator has been used \cite[MLAB-GPSDO], while other working frequencies have been derived from it by the division of its signal. This central oscillator has a software defined GPS disciplined control loop for frequency stabilization.\fnote{SDGPSDO design has been developed in parallel to this diploma thesis as a related project, but it is not explicitly required by the diploma thesis.}
1093 fluktuacia 54
We have used methods of frequency monitoring compensation in order to meet modern requirements on radioastronomy equipment which needs precise frequency and phase stability over a wide scale for effective radioastronomy imaging. 
1083 kaklik 55
 
1116 kaklik 56
GPSDO device consists the Si570 chip with LVPECL output. Phase jitter of GPSDO is determined mainly by Si570 phase noise. Parameters of used Si570 from source \cite[si570-chip] are summarized in table \ref[LO-noise].
1112 kaklik 57
 
58
 
1113 kaklik 59
\midinsert \clabel[LO-noise]{Available ADC types}
60
\ctable{lcc}{
1114 kaklik 61
	&	 \multispan2 \hfil Phase Noise [dBc/Hz] \hfil 		\cr
62
Offset Frequency	&	$F_{out}$ 156.25 MHz	& $F_{out}$ 622.08 MHz \cr
1113 kaklik 63
100 [Hz]	&	–105	&	–97 \cr
64
1 [kHz]	&	–122	&	–107 \cr
65
10 [kHz]	&	–128	&	–116 \cr
66
100 [kHz]	&	–135	&	–121 \cr
67
1 [MHz]	&	–144	&	–134 \cr
68
10 [MHz]	&	–147	&	–146 \cr
69
100 [MHz]	&	n/a	&	–148 \cr
70
}
71
\caption/t The summary of available ADC types and theirs characteristics. 
72
\endinsert
1112 kaklik 73
 
1113 kaklik 74
Every ADC module will be directly connected to CLKHUB02A module which takes sampling clock signal delivered by FPGA from main local oscillator.  This signal should use high quality differential signaling cable -- we should use SATA cable for this purpose. FPGA may slightly affect clock signal quality by additive noise, but has negligible effect in application where developed system will be used.
1112 kaklik 75
 
1098 kaklik 76
GPSDO design included in data acquisition system has special feature -- generates time marks for precise time-stamping of received signal. Timestamps are created by disabling of local oscillator for 100 us as result rectangle click in input signal is created which appears as horizontal line in spectrogram.   
77
Timestamps should be seen in image \ref[meteor-reflection] (above and below meteor reflection).
78
 
1114 kaklik 79
Time-marking should be improved in future by digitalization  of GPS signal received by antenna on observational station. GPS signal can be then directly sampled by dedicated receiver an separate ADC module. Datafile then consists samples from channels of radio-astronomy receivers along with GPS signal containing precise time information. 
1098 kaklik 80
 
1086 kaklik 81
\secc Signal cable connectors 
1073 kaklik 82
 
1093 fluktuacia 83
Several widely used and commercially easily accessible differential connectors were considered to be use in our design. 
1073 kaklik 84
 
85
\begitems
1077 kaklik 86
* HDMI % [[http://en.wikipedia.org/wiki/Hdmi|HDMI]]</del>
87
* SATA  		%{http://en.wikipedia.org/wiki/Serial_attached_SCSI#Connectors|SAS]]/[[http://en.wikipedia.org/wiki/Serial_ATA|SATA]]
88
* DisplayPort 		%[[http://en.wikipedia.org/wiki/Display_port|DisplayPort]]</del>
89
* SAS/miniSAS
1073 kaklik 90
\enditems
91
 
1093 fluktuacia 92
At the end, MiniSAS connector was chosen as the best option to be used in connecting together multiple ADC modules. It is compatible with existing SATA cabling systems and aggregates multiple SATA cables to a single connector. It can be seen on the following picture \ref[img-miniSAS-cable]. A transition between SATA and miniSAS is achieved by SAS to SATA adapter cable which is commonly used in servers to connect SAS controller to multiple SATA hard disc in RAID systems and thus is commercially easily available. 
93
The main drawback of miniSAS PCB connectors lies in the fact, that they are manufactured in SMT versions only. The outer metal housing of connector is designed to be mounted using a standard through-hole mounting scheme, a design that unfortunately decreases the durability of the connector. 
1073 kaklik 94
 
1085 kaklik 95
 
96
\midinsert
1086 kaklik 97
\clabel[img-miniSAS-cable]{Used miniSAS cable}
1118 kaklik 98
\picw=5cm \cinspic ./img/miniSAS_SATA_cable.jpg
99
\caption/f An example of miniSAS cable similar to used.
1085 kaklik 100
\endinsert
101
 
1086 kaklik 102
\secc Signal integrity requirements
1105 kaklik 103
\label[diff-signaling]
1085 kaklik 104
 
1116 kaklik 105
We use ADC modules that have DATA clock frequency eight times higher than sampling frequency in single line output mode, implying a 40 MHz output bit rate. This imply $ 1/4 \cdot 10^7 = 25\ $ns time length of data bit, which is equivalent to 7.5m light path in free space. If we use copper PCB with FR4 substrate layer or coaxial/twinax cable, we could obtain velocity factor of 0.66 at worst condition. Then the light path for the same bit rate $t_s$ will be 4.95 m. Although we do not have any cables in system with comparable lengths, worst data bit skew described by data sheets of used components is $0.3 \cdot t_s$, which is 1.485 m. Therefore length matching is not critical in our current design operated on lowest sampling speed. Length matching becomes critical in future version with higher sampling rates, then cable length must be matched. However SATA cabling technology is prepared for that case and matched SATA cables are standard merchandise. 
1086 kaklik 106
 
1093 fluktuacia 107
\secc ADC modules design
1073 kaklik 108
 
1124 kaklik 109
\midinsert
110
\picw=10cm \cinspic ./img/ADCdual_Top.png
111
\picw=10cm \cinspic ./img/ADCdual_Bottom.png
112
\caption/f FPGA ML605 development board.
113
\endinsert
1083 kaklik 114
 
1124 kaklik 115
 
1083 kaklik 116
\secc ADC selection
117
 
1105 kaklik 118
There exist several ADC signaling formats currently used in communication with FPGA. 
1083 kaklik 119
 
120
\begitems
121
  * DDR LVDS
122
  * JEDEC 204B
123
  * JESD204A
124
  * Paralel LVDS
125
  * Serdes
126
  * serial LVDS
127
\enditems
128
 
1111 kaklik 129
Because it uses the smallest number of differential pairs, the choice fell on the serial LVDS format. Small number of differential pairs is an important parameter determining the construction complexity and reliability\cite[serial-lvds]. 
1083 kaklik 130
 
1093 fluktuacia 131
An ultrasound AFE chip seems to be ideal for this purpose -- the chip has integrated both front-end amplifiers and filters. It has a drawback though - it is incapable of handling differential input signal and has a relatively low dynamic range (as it consists only of 12bit ADC). Because this IO has many ADC channels the scaling is possible only by a factor of 4 receivers (making 8 analogue channels).
1083 kaklik 132
 
1105 kaklik 133
If we require a separate output for every analogue channel and a 16bit depth we find that there are only a few 2-Channel simultaneous sampling ADCs currently existing which meet these requirements.  We have summarized the ADCs in the following table \ref[ADC-type] 
1083 kaklik 134
 
1086 kaklik 135
\midinsert \clabel[ADC-types]{Available ADC types}
1116 kaklik 136
\ctable{lccccccc}{
1086 kaklik 137
\hfil ADC Type & LTC2271 & LTC2190 & LTC2191 & LTC2192 & LTC2193 & LTC2194 & LTC2195 \cr
138
SNR [dB] & 84.1 & 77 & 77 & 77 & 76.8 & 76.8 & 76.8 \cr
139
SFDR [dB] & 99 & 90 & 90 & 90 & 90 & 90 & 90 \cr
140
S/H Bandwidth [MHz] & 200 & \multispan6 550 \cr
141
Sampling rate [MSPS] & 20 & 25 & 40 & 65 & 80 &  105 & 125 \cr
142
Configuration & \multispan7 SPI \cr
1123 kaklik 143
Package & \multispan7 52-Lead (7mm $\times$ 8mm) QFN \cr
1086 kaklik 144
}
1093 fluktuacia 145
\caption/t The summary of available ADC types and theirs characteristics. 
1086 kaklik 146
\endinsert
1083 kaklik 147
 
1093 fluktuacia 148
All parts in this category are compatible with one board layout. Main differences lay in the sampling frequency and signal to noise ratio, with the slowest having a maximum sampling frequency of 20 MHz. However all of them have a minimal sampling frequency of 5 MSPS and all are configurable over a serial interface (SPI). SPI seems to be a standard interface used in high-end ADC chips made by the largest manufacturers (Analog Devices, Linear technology, Texas instruments, Maxim integrated..). 
1083 kaklik 149
 
1105 kaklik 150
 
151
 
152
The ADC modules have a standard MLAB construction scheme with four mounting holes in corners aligned in defined raster. 
153
 
154
Data serial data outputs of ADC modules should be connected directly to FPGAs for the basic primary signal processing. The ADC chip used in the modules has a selectable bit width of data output bus and thus the output SATA connectors have signals arranged to contain a single bit from every ADC channel.  This creates a signal concept enabling a selection of a proper bus bit-width according to the sampling rate (higher bus bit-width downgrades signalling speed and vice versa.)
155
 
156
In order to connect the above mentioned signalling layout, miniSAS to multiple SATA cable should be used.  
157
 
158
A KiCAD design suite had been chosen for PCB layout. However, the version is, despite having integrated CERN Push \& Shove routing capability, slightly unstable as it sometimes crushes due to an exception during routing. On the basis of these stability issues, the design had to be saved quite often. On the other hand, compared to commercially available solutions, such as MentorGraphics PADS or Cadence Orcad,  the Open-source KiCAD provides an acceptable option and it easily surpasses a widely used Eagle software.
159
 
160
As a part of work on the thesis, new PCB footprints for FMC, SATA a and miniSAS connectors have been designed and were committed to KiCAD github library repository. They are now publicly available on the official KiCAD repository at GitHub.  
161
 
162
 
1122 fluktuacia 163
ADCdual01A module has several digital data output formats. Difference between these modes lays in the number of differential pairs used
1105 kaklik 164
 
165
\begitems
166
    * 1-lane mode
1114 kaklik 167
    * 2-lane mode
168
    * 4-lane mode
1105 kaklik 169
\enditems
170
 
1122 fluktuacia 171
All of the above-mentioned modes are supported by the module design. For the discussed data acquisition system, the 1-lane mode was selected. 1-lane mode allows a minimal number of differential pairs between ADCdual01A and FPGA. Digital signalling scheme used in 1-lane mode is shown in the following image \ref[1-line-out]. 
1105 kaklik 172
 
173
\midinsert
174
\clabel[1-line-out]{Single line ADC output signals}
175
\picw=15cm \cinspic ./img/ADC_single_line_output.png
1122 fluktuacia 176
\caption/f Digital signalling schema for 1-line ADC digital output mode.
1105 kaklik 177
\endinsert
178
 
1122 fluktuacia 179
ADCdual01A parameters can be set either by jumper setup (referred to as a parallel programming  in the device's data sheet) or by SPI interface. SPI interface has been selected for our system, because of the parallel programming lack of options (test pattern output setup for example). 
1105 kaklik 180
 
181
Complete schematic diagram of ADCdual01A module board is included in the appendix. 
182
 
183
 
1073 kaklik 184
\secc ADC modules interface
185
 
1124 kaklik 186
\midinsert
187
\picw=10cm \cinspic ./img/FMC2DIFF_top.png
188
\picw=10cm \cinspic ./img/FMC2DIFF_Bottom.png
189
\caption/f FPGA ML605 development board.
190
\endinsert
191
 
1096 kaklik 192
Both of the ADCdual01A modules were connected to FPGA ML605 board trough FMC2DIFF01A adapter board. The design of this adapter module expects the presence of FMC LPC connector and the board is, at the same time, not compatible with MLAB. It is, on the other hand, designed to meet the VITA 57 standard specifications for boards which support region 1 and region 3. VITA 57 regions are explained in the picture \ref[VITA57-regions].
1105 kaklik 193
This industry standard guarantees the compatibility with other FPGA boards that have FMC LPC connectors for Mezzanine Card. Schematic diagram of designed adapter board is included in the appendix. 
1073 kaklik 194
 
1114 kaklik 195
The primary purpose of the PCB is to enable the connection of ADC modules located outside the PC case. (In PC box analog circuits cannot be realized without the use of massive RFI mitigation techniques). 
196
Differential signaling connectors should be used for conducting digital signal over relatively long cables. The signal integrity sensitive links (clocks) are equipped with output driver and translator to LVPECL logic for better signal transmission quality.  
1083 kaklik 197
 
1119 kaklik 198
LVPECL level signal connectors on FMC2DIFF01A board are dedicated for clock signals. We selected  the SY55855V and SY55857L dual translators. Dual configuration in useful due to fact that SATA cable contains two differential pairs. 
199
 
200
The SY55855V is a fully differential, CML/PECL/LVPECL-to-LVDS translator. It achieves LVDS signaling up to 1.5Gbps, depending on the distance and the characteristics of the media and noise coupling sources.
201
LVDS is intended to drive 50 $\Omega$ impedance transmission
202
line media such as PCB traces, backplanes, or cables. SY55855V inputs can be terminated with a single resistor between the true and the complement pins of a given input \cite[SY55855V-chip].
203
 
204
The SY55857L is a fully differential, high-speed dual translator optimized to accept any logic standard from single-ended TTL/CMOS to differential LVDS, HSTL, or CML and translate it to LVPECL. Translation is guaranteed for speeds up to 2.5Gbps (2.5GHz toggle frequency). The SY55857L does not internally terminate its inputs, as different interfacing standards have different termination requirements.
205
 
206
 
207
 
1073 kaklik 208
\midinsert
209
\picw=10cm \cinspic ./img/ML605-board.jpg
1094 fluktuacia 210
\caption/f FPGA ML605 development board.
1073 kaklik 211
\endinsert
212
 
1096 kaklik 213
\midinsert
214
\clabel[VITA57-regions]{VITA57 board geometry}
215
\picw=10cm \cinspic ./img/VITA57_regions.png
216
\caption/f Definition of VITA57 regions.
217
\endinsert
218
 
1116 kaklik 219
 
1094 fluktuacia 220
Several SATA connectors and two miniSAS connectors are populated on this board.  This set of connectors allows a connection of any number of ADC modules within the range of 1 to 8. ADC data outputs should be connected to the miniSAS connectors, while other supporting signals should be routed directly to SATA connectors on adapter. 
1076 kaklik 221
 
1122 fluktuacia 222
Lengths of differential pairs routed on PCB of the module are not matched between the pairs. Length variation of differential pairs is not critical in our design according to facts discussed in paragraph \ref[diff-signaling]. Nevertheless, signals within differential pairs themselves are matched for length. Internal signal tracing of the length matchting of differential pairs is mandatory in order to avoid a dynamic logic hazard conditions on digital signals. Thus clocks' signals are routed in the most precise way on all designed boards.
1104 kaklik 223
 
224
 
1094 fluktuacia 225
Signal configuration used in our trial design is described in the following tables. 
1076 kaklik 226
 
1116 kaklik 227
%% zapojeni SPI, FPGA zpatky necte konfiguraci, ale je tam na slepo nahravana.
1073 kaklik 228
 
1116 kaklik 229
 
1121 kaklik 230
 
231
\midinsert \clabel[minisas-interface]{Grabber binary output format}
232
\ctable {cccc}
233
{
234
miniSAS	&	SATA pair	&	FMC signal	&	Used as	\cr
235
P0	&	1	&	LA03	&	 not used 	\cr
236
P0	&	2	&	LA04	&	 not used 	\cr
237
P1	&	1	&	LA08	&	 not used 	\cr
238
P1	&	2	&	LA07	&	 not used 	\cr
239
P2	&	1	&	LA16	&	ADC1  CH1 (LTC2190)	\cr
240
P2	&	2	&	LA11	&	ADC1  CH2 (LTC2190) 	\cr
241
P3	&	1	&	LA17	&	ADC2 CH1 (LTC2271)	\cr
242
P3	&	2	&	LA15	&	ADC2 CH2 (LTC2271)	\cr
243
}
244
\caption/t miniSAS (FMC2DIFF01A J7) signal connections between modules. 
245
\endinsert
246
 
1122 fluktuacia 247
SPI interface is used in an unusual way in this design. SPI Data outputs from ADCs are not connected anywhere and read back is not possible, thus the configuration written to registers in ADC module cannot be validated. We have not observed any problems with this system, but it may be a possible source of failures. 
1116 kaklik 248
 
1121 kaklik 249
\midinsert \clabel[SPI-system]{Grabber binary output format}
250
\ctable {ccc}
251
{
252
SPI connection J7	&	FMC signal	&	Connected to	\cr
253
SAS-AUX1	 &	LA14\_N	&	SPI DOUT	\cr
254
SAS-AUX2	 &	LA14\_P	&	SPI CLK	\cr
255
SAS-AUX3	 &	LA12\_N	&	CE ADC1	\cr
256
SAS-AUX4	 &	LA12\_P	&	CE ADC2	\cr
257
SAS-AUX5	 &	LA13\_N	&	soldered to GND	\cr
258
SAS-AUX6	 &	LA13\_P	&	not used	\cr
259
SAS-AUX7	 &	LA09\_N	&	not used	\cr
260
SAS-AUX8	 &	LA09\_P	&	soldered to GND	\cr
261
}
262
\caption/t SPI system interconnections 
263
\endinsert
264
 
265
 
266
\midinsert \clabel[clock-interconnections]{Grabber binary output format}
267
\ctable {lccc}
268
{
269
Signal	&	FMC signal	&	FMC2DIFF01A	&	ADCdual01A	\cr
270
DCO	&	CLK1\_M2C	&	J5-1	&	J13-1	\cr
271
FR	&	LA18\_CC	&	J10-1	&	J12-1	\cr
272
ENC	&	LA01\_CC	&	J2-1(PECL OUT)	&	J3-1	\cr
273
SDGPSDO01A LO	&	CLK0\_M2C	&	J3-1 (PECL IN)	&	N/A	\cr
274
}
275
\caption/t Clock system interconnections 
276
\endinsert
277
 
278
 
279
 
1116 kaklik 280
\secc FPGA function 
281
 
1122 fluktuacia 282
Several tasks in our design are performed by FPGA. Firstly, FPGA prepares a sampling clock for ADCdual01A modules this task is separate block in FPGA and runs asynchronously compared to other logical circuits. The second block is a SPI configuration module, which sends the content of configuration registers to the ADC modules after opening of Xillybus interface file. The third block represents the main module which resolves ADC - PC communication itself. The last block is activated after ADC configuration. 
1116 kaklik 283
 
1122 fluktuacia 284
Communication over PCIe is managed by proprietary IP Core and Xillybus driver, which transfers data from FPGA registers to host PC. Data appear in system device file named  "/dev/xillybus_data2_r" on the host computer. Binary data which appear in this file after its opening are described in the table below \ref[xillybus-interface].
1116 kaklik 285
 
286
\midinsert \clabel[xillybus-interface]{Grabber binary output format}
1086 kaklik 287
\ctable {clllllllll}{
1124 kaklik 288
\hfil & \multispan9 \hfil 160bit packet \hfil \crl \tskip4pt
1073 kaklik 289
Data name &  FRAME  & \multispan2 \hfil ADC1 CH1 \hfil & \multispan2 \hfil ADC1 CH2 \hfil & \multispan2  \hfil ADC2 CH1 \hfil & \multispan2 \hfil ADC2 CH2 \hfil  \cr
290
Data type & uint32 & int16 & int16 & int16 & int16 & int16 & int16 & int16 & int16 \cr
291
Content & saw signal & $t1$ &  $t_{1+1}$ &  $t1$ &  $t_{1+1}$ &  $t1$ &  $t_{1+1}$ &  $t1$ &  $t_{1+1}$ \cr
292
}
293
\caption/t System device "/dev/xillybus_data2_r" data format
294
\endinsert
295
 
1116 kaklik 296
Detailed description of FPGA function can be found in \cite[fpga-middleware]
1073 kaklik 297
 
1116 kaklik 298
 
1073 kaklik 299
\secc Data reading and recording 
300
 
1122 fluktuacia 301
In order to read the data stream from the ADC drive, we use Gnuradio software. Gnuradio suite consists of gnuradio-companion which is a graphical tool for creating signal-flow graphs and generating flow-graph source code. This tool was used to create a basic RAW data grabber to record and interactively view the data stream output from ADC modules. 
1073 kaklik 302
 
303
\midinsert
304
\picw=15cm \cinspic ./img/screenshots/Grabber.grc.png
1094 fluktuacia 305
\caption/f An ADC recorder flow graph created in gnuradio-companion.
1073 kaklik 306
\endinsert
307
 
308
\midinsert
309
\picw=15cm \cinspic ./img/screenshots/Grabber_running.png
1094 fluktuacia 310
\caption/f User interface window of a running ADC grabber.
1073 kaklik 311
\endinsert
312
 
1122 fluktuacia 313
The interactive grabber-viewer user interface shows live oscilloscope-like time-value display for all data channels and live time-frequency scrolling display (a waterfall view) for displaying the frequency components of the grabbed signal. 
1073 kaklik 314
 
1116 kaklik 315
 
316
\sec Achieved parameters
317
 
1078 kaklik 318
\secc ADC module parameters
1073 kaklik 319
 
1122 fluktuacia 320
Two prototypes of ADC modules were assembled and tested. The first prototype, labeled ADC1, has LTC2190 ADC chip populated with LT6600-5 front-end operational amplifier. It also has a 1kOhm resistors populated on inputs which give it an ability of an internal attenuation of the input signal. The value of this attenuation $A$ is described by the following formula \ref[ADC1-gain]
1078 kaklik 321
 
1116 kaklik 322
 
1105 kaklik 323
\label[ADC1-gain]
1103 kaklik 324
$$
1116 kaklik 325
A = {806 \cdot R_1 \over R_1 + R_2}
1103 kaklik 326
$$
327
 
1122 fluktuacia 328
Where the letters stand for: 
1103 kaklik 329
\begitems
1122 fluktuacia 330
  * $A$ -  Gain of an input amplifier.
1103 kaklik 331
  * $R_1$ - Output impedance of signal source (usually 50 Ohm).
1105 kaklik 332
  * $R_2$ - Value of serial resistors at operational amplifier inputs.
1103 kaklik 333
\enditems
334
 
1122 fluktuacia 335
We have $R_2 = 1000 \Omega$ and $R_1 = 50 \Omega$ which imply that $A = 0.815$. That value of A is further confirmed by the measurement. 
336
In our measurement setup we have H1012 Ethernet transformer connected to inputs of ADC. The transformer has a 10\% tolerance in impedance and amplification. We measured ADC saturation voltage of 705.7 mV (generator output) in this setup due to impedance mismatch and uncalibrated transformer gain. 
1103 kaklik 337
 
1105 kaklik 338
 
1080 kaklik 339
\midinsert
1105 kaklik 340
\clabel[ADC1-FFT]{ADC1 sine test FFT}
341
\picw=15cm \cinspic ./img/screenshots/ADC1_CH2_FFT.png
342
\caption/f Sine signal sampled by ADC1 module with LTC2190 and LT6600-5 devices.
1080 kaklik 343
\endinsert
344
 
1103 kaklik 345
 
1122 fluktuacia 346
For ADC2 we have to use formula with a different constant \ref[ADC1-gain]. The ADC2 module has LT6600-2.5 amplifiers populated on it with gain equal to $A = 2.457$ and uses the same $R_2$ resistors. We measured saturation voltage of 380 mV (generator output) at channel 1 on this ADC. It is well in parameter tolerances  of used setup.   
1078 kaklik 347
 
1105 kaklik 348
\label[ADC2-gain]
1098 kaklik 349
$$
1116 kaklik 350
A = {1580 \cdot R_1 \over R_1 + R_2}
1098 kaklik 351
$$
1073 kaklik 352
 
1122 fluktuacia 353
Where the letters stand for:
1098 kaklik 354
\begitems
1122 fluktuacia 355
  * $A$ -  Gain of an input amplifier.
1103 kaklik 356
  * $R_1$ - Output impedance of signal source (usually 50 Ohm).
1105 kaklik 357
  * $R_2$ - Value of serial resistors at operational amplifier inputs.
1098 kaklik 358
\enditems
359
 
1105 kaklik 360
\midinsert
361
\clabel[ADC2-FFT]{ADC2 sine test FFT}
362
\picw=15cm \cinspic ./img/screenshots/ADC2_CH1_FFT.png
363
\caption/f Sine signal sampled by ADC2 module with LTC2271 and LT6600-2.5 devices.
364
\endinsert
1098 kaklik 365
 
1122 fluktuacia 366
Computed FFT spectra for measured signal are shown in the images \ref[ADC2-FFT] and \ref[ADC1-FFT].  Both images confirm that ADCdual01A modules have input dynamical range of 80 dB at least. 
1098 kaklik 367
 
368
\chap Example of usage
369
 
1122 fluktuacia 370
For additional validation of system characteristics a receiver setup has been constructed. 
1073 kaklik 371
 
1118 kaklik 372
\sec Basic interferometric station
1073 kaklik 373
 
1122 fluktuacia 374
Interferometry station was chosen to serve as the most basic experimental setup. We connected the new data acquisition system to two SDRX01B receivers. Block schematics of the setup used is shown in image \ref[block-schematic]. Two ground-plane antennae were used and mounted outside the balcony at CTU building at location 50$^\circ$ 4\' 36.102\" N,  14$^\circ$ 25\' 4.170\" E. 
375
Antennae were equipped  by LNA01A amplifiers. All coaxial cables have the same length of 5 meters. Antennae were isolated by common mode ferrite bead mounted on cable to minimise the signal coupling between antennas. Evaluation system consists of SDGPSDO local oscillator subsystem used to tune the local oscillator frequency. 
1098 kaklik 376
 
377
\midinsert
1105 kaklik 378
\clabel[block-schematic]{Receiver block schematic}
379
\picw=10cm \cinspic ./img/Coherent_UHF_SDR_receiver.png
380
\caption/f Complete receiver block schematic of dual antenna interferometric station.
381
\endinsert
382
 
1116 kaklik 383
% doplnit schema skutecne pouziteho systemu
1105 kaklik 384
 
1116 kaklik 385
Despite of schematic diagram proposed on beginning of system description.... 
386
We used two separate oscillators -- one oscillator drives encode signal to ADCs still through FPGA based divider and other one drives SDRX01B mixer. 
387
Reason for this modification is simplification of frequency tuning during experiment. It is because single oscillator may be used only with proper setting of FPGA divider, this divider may be modified only by recompilation of FPGA code and loading/flashing new FPGA schema. Due to fact that FPGA was connected to PCI express and kernel drivers and hardware must be reinitialized, reboot of PC is required.  Instead of this procedure, we set the FPGA divider to constant division of factor 30 and used another district oscillator for ADCdual01 sampling modules and for SDRX01B receiver. 
1105 kaklik 388
 
1116 kaklik 389
 
1105 kaklik 390
\midinsert
1098 kaklik 391
\clabel[meteor-reflection]{Meteor reflection}
392
\picw=10cm \cinspic ./img/screenshots/observed_meteor.png
393
\caption/f Meteor reflection received by evaluation setup.
394
\endinsert
395
 
396
\midinsert
1124 kaklik 397
\clabel[phase-difference]{Phase difference}
1098 kaklik 398
\picw=10cm \cinspic ./img/screenshots/phase_difference.png
399
\caption/f Demonstration of phase difference between antennas.
400
\endinsert
401
 
1124 kaklik 402
For simplest demonstration of phase difference between antennas, we analyse part of signal by complex conjugate multiplication between channels. Result of this analysis can be seen on picture \ref[phase-difference]. Points of selected part of signal creates clear vector, which illustrates the presence of phase difference. 
403
 
1116 kaklik 404
We use ACOUNT02A device for frequency checking on both local oscillators. 
1098 kaklik 405
 
406
 
1073 kaklik 407
%\sec Simple passive Doppler radar
408
 
1105 kaklik 409
%\sec Simple polarimeter station
410
 
1075 kaklik 411
\chap Proposed final system
1073 kaklik 412
 
1105 kaklik 413
Construction of a final system which is supposed to be employed for real radioastronomy observations will be described. This chapter is mainly a theoretical analysis of data handling systems. Realization of these ideas might be possible as a part of our future development after we fully evaluate and test the current trial design. 
1073 kaklik 414
 
1107 kaklik 415
The system requires proper handling of huge amounts of data and either huge and fast storage capacity is needed for store captured signal data, or enormous computational power is required for online data processing and filtering. Several hardware approach currently exist and are in use for data processing problem handling. Either powerful multi gigahertz CPUs, GPUs, FPGAs, or specially  constructed ASICs are used for this task.
416
 
1075 kaklik 417
\sec Custom design of FPGA board
1073 kaklik 418
 
1116 kaklik 419
In the beginning of the project, a custom design of FPGA interface board had been considered. This FPGA board should include PCI express interface and should sell at lower price than trial design. It should be compatible with MLAB which is further backward compatible with the existing or improved design of ADC modules. For a connection of FPGA board to another adapter board with PCIe we expect a use of a PCIe host interface. 
420
Thunderbolt technology standard was expected to be used in this PC to PCIe module which further communicate with MLAB compatible FPGA module. Thunderbolt chips are currently available on the market for reasonable prices \cite[thunderbolt-chips]. However, a problem lies in the accessibility to their specifications, as specification is only available for licensed users and Intel has a mass market oriented licensing policy, that makes this technology inaccessible for low quantity production. As a consequence, an external PCI Express cabling and expansion slots should be considered as a better solution, if we need preserve standard PC as main computational platform.
1085 kaklik 421
 
1116 kaklik 422
However, these PCI express external systems and cables are still very expensive. Take Opal Kelly XEM6110 \cite[fpga-pcie] as an example, with its price tag reaching 995 USD at time of writing of thesis.
1094 fluktuacia 423
Therefore, a better solution probably needs to be found.
1085 kaklik 424
 
1116 kaklik 425
An interfacing problem will by  probably resolved by other than Intel ix86 architecture. Many ARM computers have risen on market due to increased demand of embedded technologies, which requires high computation capacity, low power consumption and small size -- especially smart phones. Many of those ARM based systems has interesting parameters for signal processing. This facts makes Intel's ix86 architecture unattractive for future project. 
426
 
1075 kaklik 427
\sec Parralella board computer
428
 
1116 kaklik 429
Parallella is new product from Adapteva, Inc. \cite[parallella-board], this small supercomputer have been in development almost two years and only testing series of boards have been produced until now (first single-board computers with 16-core Epiphany chip were shipped December 2013) \cite[parallella-board]. This board have near ideal parameters for signal processing (provides around 50 GFLOPS of computational power). The board is equipped by Epiphany coprocessor which has 16 High Performance RISC CPU Cores,  Zynq-7020 FPGA with Dual ARM® Cortex™-A9 MPCore™ and 866 MHz operating frequency, 1GB RAM,  85K Logic Cells, 10/100/1000 Ethernet and OpenCL support \cite[parallella16-board]. Completely  this board provides  In addition of that this board consume only 3 Watts of power if both Zynq and Epiphany cores are running.     
1075 kaklik 430
 
1117 kaklik 431
Main disadvantage of Parralella board is is unknown lead time and absence of SATA interface or other interface for data storage connection. Fast data storage interface would be useful and allows bulk processing of captured data. Then a result from data processing will be sent over the Ethernet interface to data storage server.
432
 
1116 kaklik 433
\midinsert
434
\clabel[img-parallella-board]{Parallella board overview}
435
\picw=15cm \cinspic ./img/ParallellaTopView31.png
436
\caption/f Top view on Parallella-16 board \cite[parallella16-board].
437
\endinsert
438
 
1117 kaklik 439
If Parallella board will be used as radioastronomy data interface a new ADC interface module should be designed. Interfacing module will use four PEC connectors mounted on bottom of Parallella board. This doughter module should have MLAB compatible design and preferably constructed as separable modules for every Parallella's PEC connectors. 
1116 kaklik 440
 
1075 kaklik 441
\sec GPU based computational system 
442
 
1094 fluktuacia 443
A new GPU development board NVIDIA K1, shown in the following picture \ref[img-NVIDIA-K1], has recently been released. These boards are intended to be used in fields including computer vision, robotics, medicine, security or automotive industry. They have ideal parameters for signal processing for a relatively low price of 192 USD.  Unfortunately, they are currently only in pre-order release stage (in April 2014). 
1075 kaklik 444
 
1086 kaklik 445
\midinsert
446
\clabel[img-NVIDIA-K1]{NVIDIA Jetson TK1 Development Kit}
447
\picw=15cm \cinspic ./img/Jetson_TK1_575px.jpg
448
\caption/f The NVIDIA Jetson TK1 Development Kit \url{https://developer.nvidia.com/jetson-tk1}.
449
\endinsert
450