178 |
kaklik |
1 |
#ifndef FUNCTIONS_H |
|
|
2 |
#define FUNCTIONS_H |
|
|
3 |
|
|
|
4 |
#include <boost/array.hpp> |
|
|
5 |
#include <cmath> |
|
|
6 |
#include <complex> |
|
|
7 |
#include <functional> |
|
|
8 |
#include "mimasexception.h" |
|
|
9 |
|
|
|
10 |
namespace mimas { |
|
|
11 |
|
|
|
12 |
#ifndef sgn |
|
|
13 |
#define sgn(x) ((x<0)?-1:((x>0)?1:0)) |
|
|
14 |
#endif |
|
|
15 |
|
|
|
16 |
/// Absolute value. |
|
|
17 |
template< typename T > |
|
|
18 |
struct _abs: public std::unary_function< T, T > |
|
|
19 |
{ |
|
|
20 |
/** Compute absolute value. |
|
|
21 |
@param x A number. |
|
|
22 |
@return Absolute value of \c x. */ |
|
|
23 |
T operator()( const T &x ) const { return std::abs( x ); } |
|
|
24 |
}; |
|
|
25 |
|
|
|
26 |
/** Fast square. |
|
|
27 |
Compute square of values between -511 and +511 using a precomputed |
|
|
28 |
table. */ |
|
|
29 |
template< typename T > |
|
|
30 |
struct _fastsqr: public std::unary_function< T, int > |
|
|
31 |
{ |
|
|
32 |
/// Constructor. |
|
|
33 |
_fastsqr(void) { |
|
|
34 |
for ( int i=0; i<(signed)table.size(); i++ ) |
|
|
35 |
table[i] = i * i; |
|
|
36 |
} |
|
|
37 |
/// Function. |
|
|
38 |
int operator()( const T &x ) const { |
|
|
39 |
assert( x > -(signed)table.size() && x < (signed)table.size() ); |
|
|
40 |
return table[ x < 0 ? -x : x ]; |
|
|
41 |
} |
|
|
42 |
/// Table with precomputed values. |
|
|
43 |
boost::array< int, 512 > table; |
|
|
44 |
}; |
|
|
45 |
|
|
|
46 |
/// Square. |
|
|
47 |
template< typename T > |
|
|
48 |
struct _sqr: public std::unary_function< T, T > |
|
|
49 |
{ |
|
|
50 |
T operator()( const T &x ) const { return x * x; } |
|
|
51 |
}; |
|
|
52 |
|
|
|
53 |
/// Square root. |
|
|
54 |
template<typename T> |
|
|
55 |
struct _sqrt: public std::unary_function< T, T > |
|
|
56 |
{ |
|
|
57 |
/** Compute square root. |
|
|
58 |
@param x A number. |
|
|
59 |
@return Square root of \c x. */ |
|
|
60 |
T operator()( const T &x ) const { return (T)std::sqrt( (float)x ); } |
|
|
61 |
}; |
|
|
62 |
|
|
|
63 |
/// Thresholding function. |
|
|
64 |
template< typename T > |
|
|
65 |
struct _threshold: public std::binary_function< T, T, T > |
|
|
66 |
{ |
|
|
67 |
/** Compare value with threshold. |
|
|
68 |
@param x The value to be considered. |
|
|
69 |
@param y The threshold to compare with. |
|
|
70 |
@return Default-value, if \c x is lower than \c y. Value of \c x |
|
|
71 |
otherwise. */ |
|
|
72 |
T operator()( const T &x, const T &y ) const { return x < y ? T() : x; } |
|
|
73 |
}; |
|
|
74 |
|
|
|
75 |
/// Thresholding function. |
|
|
76 |
template< typename T > |
|
|
77 |
struct _tobinary: public std::binary_function< T, T, bool > |
|
|
78 |
{ |
|
|
79 |
/** Compare value with threshold. |
|
|
80 |
@param x The value to be considered. |
|
|
81 |
@param y The threshold to compare with. |
|
|
82 |
@return A boolean, which is indicating, wether \c x is greater or equal |
|
|
83 |
to \c y. */ |
|
|
84 |
bool operator()( const T &x, const T &y ) const { return x >= y; } |
|
|
85 |
}; |
|
|
86 |
|
|
|
87 |
|
|
|
88 |
/// Convert boolean-pixel to bilevel-pixel. |
|
|
89 |
template< typename T > |
|
|
90 |
struct _bilevel: public std::binary_function< T, T, T > { |
|
|
91 |
_bilevel( T _val1, T _val2 ): val1(_val1), val2(_val2) {} |
|
|
92 |
/** Compare value with threshold and map to {val1,val2}. |
|
|
93 |
@param x The value to be considered. |
|
|
94 |
@param y The threshold to compare with. |
|
|
95 |
@return Bilevel-pixel, which is either \c val1 or \c val2. */ |
|
|
96 |
T operator()( const T &x, const T &y ) const { return x >= y ? val2 : val1; } |
|
|
97 |
T val1; |
|
|
98 |
T val2; |
|
|
99 |
}; |
|
|
100 |
|
|
|
101 |
/// Thresholding function with 2 levels |
|
|
102 |
template< typename T > |
|
|
103 |
struct _bilevel_double: public std::unary_function< T, T> { |
|
|
104 |
T val1, val2, min, max; |
|
|
105 |
_bilevel_double( T _val1, T _val2, T _min, T _max ): val1(_val1), val2(_val2), min(_min), max(_max){} |
|
|
106 |
/** Compare value with threshold levels . If value is between min |
|
|
107 |
and max, the output is val2, else it's val1. |
|
|
108 |
@param x The value to be considered. |
|
|
109 |
@return Bilevel-pixel, which is either \c val1 or \c val2. */ |
|
|
110 |
T operator()( const T &x ) const { return (x >= min && x <= max) ? val2 : val1; |
|
|
111 |
} |
|
|
112 |
}; |
|
|
113 |
|
|
|
114 |
/// Linear companding function. |
|
|
115 |
template< typename T > |
|
|
116 |
struct _normalise: public std::unary_function< T, T > |
|
|
117 |
{ |
|
|
118 |
/// |
|
|
119 |
_normalise( T _minval, T _maxval, T _val1, T _val2 ) { |
|
|
120 |
if ( _maxval > _minval ) { |
|
|
121 |
factor = (double)( _val2 - _val1 ) / ( _maxval - _minval ); |
|
|
122 |
offset = _val1 - _minval * factor; |
|
|
123 |
} else { |
|
|
124 |
factor = 0.0; |
|
|
125 |
offset = _val1; |
|
|
126 |
}; |
|
|
127 |
} |
|
|
128 |
T operator()( const T &x ) const { |
|
|
129 |
// Scale each pixel-value: ( pixel - minval ) * factor + val1. |
|
|
130 |
// pixel * factor - minval * factor + val1 |
|
|
131 |
return (T)( x * factor + offset ); |
|
|
132 |
} |
|
|
133 |
double factor; |
|
|
134 |
double offset; |
|
|
135 |
}; |
|
|
136 |
|
|
|
137 |
/// Take norm of a real or complex value. |
|
|
138 |
template< typename T1, typename T2 > |
|
|
139 |
struct _norm: public std::unary_function< T2, T1 > |
|
|
140 |
{ |
|
|
141 |
T1 operator()( const T2 &x ) const { return std::norm( x ); } |
|
|
142 |
}; |
|
|
143 |
|
|
|
144 |
/// The argument of a complex value. |
|
|
145 |
template< typename T1, typename T2 > |
|
|
146 |
struct _arg: public std::unary_function< T2, T1 > |
|
|
147 |
{ |
|
|
148 |
T1 operator()( const T2 &x ) const { return std::arg( x ); } |
|
|
149 |
}; |
|
|
150 |
|
|
|
151 |
/// Complex conjugate. |
|
|
152 |
template< typename T > |
|
|
153 |
struct _conj: public std::unary_function< T, T > |
|
|
154 |
{ |
|
|
155 |
T operator()( const T &x ) const { return std::conj( x ); } |
|
|
156 |
}; |
|
|
157 |
|
|
|
158 |
/// Compute logarithm. |
|
|
159 |
template< typename T > |
|
|
160 |
struct _log: public std::unary_function< T, T > |
|
|
161 |
{ |
|
|
162 |
T operator()( const T &x ) const { return log( x ); } |
|
|
163 |
}; |
|
|
164 |
|
|
|
165 |
/** Compute sum of squares. |
|
|
166 |
The sum of squares can be computed with the multiplication- and |
|
|
167 |
plus-operator as well, but it would require allocation of one temporary |
|
|
168 |
array. */ |
|
|
169 |
template< typename T > |
|
|
170 |
struct _sumsquares: public std::binary_function< T, T, T > { |
|
|
171 |
/** Compute sum of squares. |
|
|
172 |
@param x First value. |
|
|
173 |
@param y Second value. |
|
|
174 |
@return x^2+y^2 */ |
|
|
175 |
T operator()( const T &x, const T &y ) const { return x * x + y * y; } |
|
|
176 |
}; |
|
|
177 |
|
|
|
178 |
/// Compute angle. |
|
|
179 |
template< typename T > |
|
|
180 |
struct _orientation: public std::binary_function< T, T, T > { |
|
|
181 |
/** Compute sum of squares. |
|
|
182 |
@param y y-component |
|
|
183 |
@param x x-component |
|
|
184 |
@return atan2( y, x ) */ |
|
|
185 |
T operator()( const T &y, const T &x ) const { return atan2( y, x ); } |
|
|
186 |
}; |
|
|
187 |
|
|
|
188 |
}; |
|
|
189 |
|
|
|
190 |
#endif |