| 178 | 
        kaklik | 
        1 | 
        namespace mimas { | 
      
      
         | 
         | 
        2 | 
          | 
      
      
         | 
         | 
        3 | 
        template< typename T > | 
      
      
         | 
         | 
        4 | 
        std::deque< T > gaussBlurFilter( T sigma, T maxError ) | 
      
      
         | 
         | 
        5 | 
        { | 
      
      
         | 
         | 
        6 | 
          assert( sigma > 0 ); | 
      
      
         | 
         | 
        7 | 
          | 
      
      
         | 
         | 
        8 | 
          std::deque< T > retval; | 
      
      
         | 
         | 
        9 | 
          | 
      
      
         | 
         | 
        10 | 
          // Integral of gauss-curve from -0.5 to +0.5. | 
      
      
         | 
         | 
        11 | 
          T integral = erf( 0.5 / ( sqrt( 2.0 ) * sigma ) ); | 
      
      
         | 
         | 
        12 | 
          retval.push_back( integral ); | 
      
      
         | 
         | 
        13 | 
          | 
      
      
         | 
         | 
        14 | 
          while ( 1.0 - integral > maxError ) { | 
      
      
         | 
         | 
        15 | 
            // Compute integral of gauss-curve from -newSize2 to +newSize2. | 
      
      
         | 
         | 
        16 | 
            const T | 
      
      
         | 
         | 
        17 | 
              newSize2 = 0.5 * ( retval.size() + 2 ), | 
      
      
         | 
         | 
        18 | 
              newIntegral = erf( newSize2 / ( sqrt( 2.0 ) * sigma ) ), | 
      
      
         | 
         | 
        19 | 
              value = 0.5 * ( newIntegral - integral ); | 
      
      
         | 
         | 
        20 | 
            retval.push_back( value ); | 
      
      
         | 
         | 
        21 | 
            retval.push_front( value ); | 
      
      
         | 
         | 
        22 | 
            integral = newIntegral; | 
      
      
         | 
         | 
        23 | 
          }; | 
      
      
         | 
         | 
        24 | 
          | 
      
      
         | 
         | 
        25 | 
          // Normalise to maintain power of image. | 
      
      
         | 
         | 
        26 | 
          const T factor = 1.0 / integral; | 
      
      
         | 
         | 
        27 | 
          for ( typename std::deque< T >::iterator i = retval.begin(); | 
      
      
         | 
         | 
        28 | 
                i != retval.end(); i++ ) | 
      
      
         | 
         | 
        29 | 
            *i *= factor; | 
      
      
         | 
         | 
        30 | 
          | 
      
      
         | 
         | 
        31 | 
          return retval; | 
      
      
         | 
         | 
        32 | 
        } | 
      
      
         | 
         | 
        33 | 
          | 
      
      
         | 
         | 
        34 | 
        template< typename T > | 
      
      
         | 
         | 
        35 | 
        boost::multi_array< T, 2 > gaussBlur | 
      
      
         | 
         | 
        36 | 
          ( const boost::const_multi_array_ref< T, 2 > &x, T sigma, T maxError ) | 
      
      
         | 
         | 
        37 | 
        { | 
      
      
         | 
         | 
        38 | 
          // Split error-budget up for two operations. | 
      
      
         | 
         | 
        39 | 
          std::deque< T > filter( gaussBlurFilter< T >( sigma, maxError / 2.0 ) ); | 
      
      
         | 
         | 
        40 | 
          boost::multi_array< T, 2 > | 
      
      
         | 
         | 
        41 | 
            filterx( boost::extents[ 1            ][ filter.size() ] ), | 
      
      
         | 
         | 
        42 | 
            filtery( boost::extents[ filter.size()][ 1             ] ); | 
      
      
         | 
         | 
        43 | 
          std::copy( filter.begin(), filter.end(), filterx.data() ); | 
      
      
         | 
         | 
        44 | 
          std::copy( filter.begin(), filter.end(), filtery.data() ); | 
      
      
         | 
         | 
        45 | 
          return correlate( correlate( x, filterx ), filtery ); | 
      
      
         | 
         | 
        46 | 
        } | 
      
      
         | 
         | 
        47 | 
          | 
      
      
         | 
         | 
        48 | 
        template< typename T > | 
      
      
         | 
         | 
        49 | 
        std::deque< T > gaussGradientFilter( T sigma, T maxError ) | 
      
      
         | 
         | 
        50 | 
        { | 
      
      
         | 
         | 
        51 | 
          assert( sigma > 0 ); | 
      
      
         | 
         | 
        52 | 
          | 
      
      
         | 
         | 
        53 | 
          std::deque< T > retval; | 
      
      
         | 
         | 
        54 | 
          | 
      
      
         | 
         | 
        55 | 
          // Integral of gauss-gradient from -0.5 to +0.5 is zero. | 
      
      
         | 
         | 
        56 | 
          retval.push_back( 0.0 ); | 
      
      
         | 
         | 
        57 | 
          | 
      
      
         | 
         | 
        58 | 
          // Set to absolute value of integral of gauss-gradient from 0.5 to infinity | 
      
      
         | 
         | 
        59 | 
          T integral = | 
      
      
         | 
         | 
        60 | 
            1.0 / ( sqrt( 2.0 * M_PI ) * sigma ) * exp( -0.125 / ( sigma * sigma ) ), | 
      
      
         | 
         | 
        61 | 
            squareIntegral = 0.0; | 
      
      
         | 
         | 
        62 | 
          | 
      
      
         | 
         | 
        63 | 
          while ( 2.0 * integral > maxError ) { | 
      
      
         | 
         | 
        64 | 
            // Compute integral of gauss-curve from -newSize2 to +newSize2. | 
      
      
         | 
         | 
        65 | 
            const T | 
      
      
         | 
         | 
        66 | 
              newSize2 = 0.5 * ( retval.size() + 2 ), | 
      
      
         | 
         | 
        67 | 
              newIntegral = 1.0 / ( sqrt( 2.0 * M_PI ) * sigma ) * exp( -newSize2 * newSize2 / ( 2.0 * sigma * sigma ) ), | 
      
      
         | 
         | 
        68 | 
              value = integral - newIntegral; | 
      
      
         | 
         | 
        69 | 
            retval.push_back( value ); | 
      
      
         | 
         | 
        70 | 
            retval.push_front( -value ); | 
      
      
         | 
         | 
        71 | 
            integral = newIntegral; | 
      
      
         | 
         | 
        72 | 
            squareIntegral += value * value; | 
      
      
         | 
         | 
        73 | 
          }; | 
      
      
         | 
         | 
        74 | 
          | 
      
      
         | 
         | 
        75 | 
          // Normalise to maintain power of image. | 
      
      
         | 
         | 
        76 | 
          const T factor = 1.0 / squareIntegral; | 
      
      
         | 
         | 
        77 | 
          for ( typename std::deque< T >::iterator i = retval.begin(); | 
      
      
         | 
         | 
        78 | 
                i != retval.end(); i++ ) | 
      
      
         | 
         | 
        79 | 
            *i *= factor; | 
      
      
         | 
         | 
        80 | 
          | 
      
      
         | 
         | 
        81 | 
          return retval; | 
      
      
         | 
         | 
        82 | 
        } | 
      
      
         | 
         | 
        83 | 
          | 
      
      
         | 
         | 
        84 | 
        template< typename T > | 
      
      
         | 
         | 
        85 | 
        boost::multi_array< T, 2 > gaussGradientX | 
      
      
         | 
         | 
        86 | 
          ( const boost::const_multi_array_ref< T, 2 > &x, T sigma, T maxError ) | 
      
      
         | 
         | 
        87 | 
        { | 
      
      
         | 
         | 
        88 | 
          // Split error-budget up for two operations. | 
      
      
         | 
         | 
        89 | 
          std::deque< T > | 
      
      
         | 
         | 
        90 | 
            filter1( gaussGradientFilter< T >( sigma, maxError / 2.0 ) ), | 
      
      
         | 
         | 
        91 | 
            filter2( gaussBlurFilter< T >( sigma, maxError / 2.0 ) ); | 
      
      
         | 
         | 
        92 | 
          boost::multi_array< T, 2 > | 
      
      
         | 
         | 
        93 | 
            filterx( boost::extents[ 1             ][ filter1.size() ] ), | 
      
      
         | 
         | 
        94 | 
            filtery( boost::extents[ filter2.size()][ 1              ] ); | 
      
      
         | 
         | 
        95 | 
          std::copy( filter1.begin(), filter1.end(), filterx.data() ); | 
      
      
         | 
         | 
        96 | 
          std::copy( filter2.begin(), filter2.end(), filtery.data() ); | 
      
      
         | 
         | 
        97 | 
          return correlate( correlate( x, filterx ), filtery ); | 
      
      
         | 
         | 
        98 | 
        } | 
      
      
         | 
         | 
        99 | 
          | 
      
      
         | 
         | 
        100 | 
        template< typename T > | 
      
      
         | 
         | 
        101 | 
        image< T > gaussGradientX( const image< T > &x, T sigma, | 
      
      
         | 
         | 
        102 | 
                                   T maxError ) | 
      
      
         | 
         | 
        103 | 
        { | 
      
      
         | 
         | 
        104 | 
          // Split error-budget up for two operations. | 
      
      
         | 
         | 
        105 | 
          std::deque< T > | 
      
      
         | 
         | 
        106 | 
            filter1( gaussGradientFilter< T >( sigma, maxError / 2.0 ) ), | 
      
      
         | 
         | 
        107 | 
            filter2( gaussBlurFilter< T >( sigma, maxError / 2.0 ) ); | 
      
      
         | 
         | 
        108 | 
          image< T > filterx, filtery; | 
      
      
         | 
         | 
        109 | 
          filterx.init( filter1.size(), 1 ); | 
      
      
         | 
         | 
        110 | 
          filtery.init( 1, filter2.size() ); | 
      
      
         | 
         | 
        111 | 
          std::copy( filter1.begin(), filter1.end(), filterx.rawData() ); | 
      
      
         | 
         | 
        112 | 
          std::copy( filter2.begin(), filter2.end(), filtery.rawData() ); | 
      
      
         | 
         | 
        113 | 
          return correlate( correlate( x, filterx ), filtery ); | 
      
      
         | 
         | 
        114 | 
        } | 
      
      
         | 
         | 
        115 | 
          | 
      
      
         | 
         | 
        116 | 
          | 
      
      
         | 
         | 
        117 | 
        template< typename T > | 
      
      
         | 
         | 
        118 | 
        boost::multi_array< T, 2 > gaussGradientY | 
      
      
         | 
         | 
        119 | 
          ( const boost::const_multi_array_ref< T, 2 > &x, T sigma, T maxError ) | 
      
      
         | 
         | 
        120 | 
        { | 
      
      
         | 
         | 
        121 | 
          // Split error-budget up for two operations. | 
      
      
         | 
         | 
        122 | 
          std::deque< T > | 
      
      
         | 
         | 
        123 | 
            filter1( gaussBlurFilter< T >( sigma, maxError / 2.0 ) ), | 
      
      
         | 
         | 
        124 | 
            filter2( gaussGradientFilter< T >( sigma, maxError / 2.0 ) ); | 
      
      
         | 
         | 
        125 | 
          boost::multi_array< T, 2 > | 
      
      
         | 
         | 
        126 | 
            filterx( boost::extents[ 1             ][ filter1.size() ] ), | 
      
      
         | 
         | 
        127 | 
            filtery( boost::extents[ filter2.size()][ 1              ] ); | 
      
      
         | 
         | 
        128 | 
          std::copy( filter1.begin(), filter1.end(), filterx.data() ); | 
      
      
         | 
         | 
        129 | 
          std::copy( filter2.begin(), filter2.end(), filtery.data() ); | 
      
      
         | 
         | 
        130 | 
          return correlate( correlate( x, filterx ), filtery ); | 
      
      
         | 
         | 
        131 | 
        } | 
      
      
         | 
         | 
        132 | 
          | 
      
      
         | 
         | 
        133 | 
        template< typename T > | 
      
      
         | 
         | 
        134 | 
        image< T > gaussGradientY( const image< T > &x, T sigma, | 
      
      
         | 
         | 
        135 | 
                                   T maxError ) | 
      
      
         | 
         | 
        136 | 
        { | 
      
      
         | 
         | 
        137 | 
          // Split error-budget up for two operations. | 
      
      
         | 
         | 
        138 | 
          std::deque< T > | 
      
      
         | 
         | 
        139 | 
            filter1( gaussBlurFilter< T >( sigma, maxError / 2.0 ) ), | 
      
      
         | 
         | 
        140 | 
            filter2( gaussGradientFilter< T >( sigma, maxError / 2.0 ) ); | 
      
      
         | 
         | 
        141 | 
          image< T > filterx, filtery; | 
      
      
         | 
         | 
        142 | 
          filterx.init( filter1.size(), 1 ); | 
      
      
         | 
         | 
        143 | 
          filtery.init( 1, filter2.size() ); | 
      
      
         | 
         | 
        144 | 
          std::copy( filter1.begin(), filter1.end(), filterx.rawData() ); | 
      
      
         | 
         | 
        145 | 
          std::copy( filter2.begin(), filter2.end(), filtery.rawData() ); | 
      
      
         | 
         | 
        146 | 
          return correlate( correlate( x, filterx ), filtery ); | 
      
      
         | 
         | 
        147 | 
        } | 
      
      
         | 
         | 
        148 | 
          | 
      
      
         | 
         | 
        149 | 
        }; |