178 |
kaklik |
1 |
#ifndef IMAGE_CONV_H |
|
|
2 |
#define IMAGE_CONV_H |
|
|
3 |
|
|
|
4 |
#include "image.h" |
|
|
5 |
#include "multi_array_conv.h" |
|
|
6 |
|
|
|
7 |
namespace mimas { |
|
|
8 |
|
|
|
9 |
/** Correlation of two images. |
|
|
10 |
This method provides correlation of two images. The |
|
|
11 |
resulting image will have the same size as the input-image \c x. |
|
|
12 |
Elements outside of the image-boundaries are assumed to be zero. |
|
|
13 |
|
|
|
14 |
The algorithm is intented to be used for convoluting an image with |
|
|
15 |
a small filter. If the filter is very big, it may be more efficient, to |
|
|
16 |
perform the correlation in fourier-space. |
|
|
17 |
|
|
|
18 |
@param x First array. |
|
|
19 |
@param y Second array. |
|
|
20 |
@return Result of correlation. |
|
|
21 |
@see arrayOp |
|
|
22 |
@see fourierTransforms */ |
|
|
23 |
template< typename T, typename TPtr, typename UPtr > |
|
|
24 |
inline image< T > correlate( const const_image_ref< T, TPtr > &x, |
|
|
25 |
const const_image_ref< T, UPtr > &y ) |
|
|
26 |
{ |
|
|
27 |
image< T > retVal; retVal.init( x.getWidth(), x.getHeight() ); |
|
|
28 |
boost::multi_array_ref< T, 2 > |
|
|
29 |
dr( retVal.rawData(), |
|
|
30 |
boost::extents[ retVal.getHeight() ][ retVal.getWidth() ] ); |
|
|
31 |
boost::const_multi_array_ref< T, 2 > |
|
|
32 |
dx( x.rawData(), boost::extents[ x.getHeight() ][ x.getWidth() ] ), |
|
|
33 |
dy( y.rawData(), boost::extents[ y.getHeight() ][ y.getWidth() ] ); |
|
|
34 |
dr = correlate( dx, dy ); |
|
|
35 |
return retVal; |
|
|
36 |
} |
|
|
37 |
|
|
|
38 |
#ifdef HAVE_LIBLAPACK |
|
|
39 |
|
|
|
40 |
template< typename T, typename TPtr, typename UPtr > |
|
|
41 |
image< T > correlate_separable( const const_image_ref< T, TPtr > &x, |
|
|
42 |
const const_image_ref< T, UPtr > &f ) |
|
|
43 |
{ |
|
|
44 |
return image< T >( correlate_separable< T >( x.rawData(), f.rawData() ) ); |
|
|
45 |
} |
|
|
46 |
|
|
|
47 |
#endif |
|
|
48 |
|
|
|
49 |
} |
|
|
50 |
|
|
|
51 |
#endif |