178 |
kaklik |
1 |
// |
|
|
2 |
// Generic image functions |
|
|
3 |
// |
|
|
4 |
// Bala Amavasai (bala@amavasai.org) |
|
|
5 |
// Mon Oct 1 15:41:44 BST 2001 |
|
|
6 |
// |
|
|
7 |
// $Header: /cvs/mimas2/include/image_funcs.h,v 1.1.1.1 2005/08/09 15:37:45 engmb Exp $ |
|
|
8 |
// |
|
|
9 |
|
|
|
10 |
#ifndef IMAGE_FUNCS_H |
|
|
11 |
#define IMAGE_FUNCS_H |
|
|
12 |
|
|
|
13 |
#include <cassert> |
|
|
14 |
#include <float.h> |
|
|
15 |
#include <iostream> |
|
|
16 |
#include <vector> |
|
|
17 |
#include <algorithm> |
|
|
18 |
#include <cstdlib> |
|
|
19 |
#include <values.h> |
|
|
20 |
#include <cmath> |
|
|
21 |
#include "image.h" |
|
|
22 |
#include "image_conv.h" |
|
|
23 |
#include "image_op.h" |
|
|
24 |
#include "rgba.h" |
|
|
25 |
|
|
|
26 |
namespace mimas { |
|
|
27 |
|
|
|
28 |
template< typename T, typename TPtr > |
|
|
29 |
T min_val( const const_image_ref< T, TPtr > &image ) |
|
|
30 |
{ |
|
|
31 |
T retVal; |
|
|
32 |
if ( image.initialised() ) { |
|
|
33 |
int size = image.getWidth() * image.getHeight(); |
|
|
34 |
retVal = *std::min_element( image.rawData(), |
|
|
35 |
image.rawData() + size ); |
|
|
36 |
} else |
|
|
37 |
retVal = T(); |
|
|
38 |
return retVal; |
|
|
39 |
} |
|
|
40 |
|
|
|
41 |
template< typename T, typename TPtr > |
|
|
42 |
T max_val( const const_image_ref< T, TPtr > &image ) |
|
|
43 |
{ |
|
|
44 |
T retVal; |
|
|
45 |
if ( image.initialised() ) { |
|
|
46 |
int size = image.getWidth() * image.getHeight(); |
|
|
47 |
retVal = *std::max_element( image.rawData(), |
|
|
48 |
image.rawData() + size ); |
|
|
49 |
} else |
|
|
50 |
retVal = T(); |
|
|
51 |
return retVal; |
|
|
52 |
} |
|
|
53 |
|
|
|
54 |
template< typename T > |
|
|
55 |
image_ref< T > &normaliseIt( image_ref< T > &im, |
|
|
56 |
const T &val1, const T &val2 ) |
|
|
57 |
{ |
|
|
58 |
_normalise< T > f( min_val( im ), max_val( im ), val1, val2 ); |
|
|
59 |
return image_apply( im, im, |
|
|
60 |
_multi_help1< T, T, _normalise< T > >( f ) ); |
|
|
61 |
} |
|
|
62 |
|
|
|
63 |
template< typename T, typename TPtr > |
|
|
64 |
image< T > normalise( const const_image_ref< T, TPtr > &im, |
|
|
65 |
const T &val1, const T &val2 ) |
|
|
66 |
{ |
|
|
67 |
if ( im.initialised() ) {// Image must not be empty. |
|
|
68 |
return image_func< T >( im, |
|
|
69 |
_normalise< T >( min_val( im ), |
|
|
70 |
max_val( im ), val1, val2 ) ); |
|
|
71 |
} else |
|
|
72 |
return image< T >(); |
|
|
73 |
} |
|
|
74 |
|
|
|
75 |
template<typename T> |
|
|
76 |
void equaliseIt( image_ref<T> &imagein ) |
|
|
77 |
{ |
|
|
78 |
|
|
|
79 |
int H[256], TR[256]; |
|
|
80 |
|
|
|
81 |
for (int count=0; count<256; count++) |
|
|
82 |
H[count]=0; |
|
|
83 |
|
|
|
84 |
int intensity; |
|
|
85 |
for (int j=0; j<imagein.getHeight(); j++) |
|
|
86 |
for (int i=0; i<imagein.getWidth(); i++) |
|
|
87 |
{ |
|
|
88 |
intensity=imagein.pixel(i,j); |
|
|
89 |
assert( intensity <= 255 ); |
|
|
90 |
H[intensity]+=1; |
|
|
91 |
} |
|
|
92 |
|
|
|
93 |
// convert to cumulative histogram |
|
|
94 |
int imagesize=imagein.getWidth()*imagein.getHeight(); |
|
|
95 |
for (int count=1; count<256; count++) |
|
|
96 |
{ |
|
|
97 |
H[count]=H[count]+H[count-1]; |
|
|
98 |
TR[count-1]=(255*H[count-1])/imagesize; |
|
|
99 |
} |
|
|
100 |
TR[255]=(255*H[255])/imagesize; |
|
|
101 |
|
|
|
102 |
for (int j=0; j<imagein.getHeight(); j++) |
|
|
103 |
for (int i=0; i<imagein.getWidth(); i++) |
|
|
104 |
imagein.pixel(i,j)=(T)TR[imagein.pixel(i,j)]; |
|
|
105 |
} |
|
|
106 |
|
|
|
107 |
template< typename T > |
|
|
108 |
image_ref< T > &bilevelIt( image_ref< T > &im, T threshval, |
|
|
109 |
T val1, T val2 ) |
|
|
110 |
{ |
|
|
111 |
std::binder2nd< _bilevel< T > > f( _bilevel< T >( val1, val2 ), |
|
|
112 |
threshval ); |
|
|
113 |
return image_apply |
|
|
114 |
( im, im, |
|
|
115 |
_multi_help1< T, T, std::binder2nd< _bilevel< T > > >( f ) ); |
|
|
116 |
} |
|
|
117 |
|
|
|
118 |
template< typename T, typename TPtr > |
|
|
119 |
image< T > bilevel( const const_image_ref< T, TPtr > &im, |
|
|
120 |
T threshval, T val1, T val2 ) |
|
|
121 |
{ |
|
|
122 |
return image_func< T >( im, |
|
|
123 |
std::bind2nd( _bilevel< T >( val1, val2 ), |
|
|
124 |
threshval ) ); |
|
|
125 |
} |
|
|
126 |
|
|
|
127 |
template< typename T > |
|
|
128 |
image_ref< T > &thresholdIt( image_ref< T > &im, T threshval ) |
|
|
129 |
{ |
|
|
130 |
std::binder2nd< _threshold< T > > f( _threshold< T >(), threshval ); |
|
|
131 |
return image_apply |
|
|
132 |
( im, im, |
|
|
133 |
_multi_help1< T, T, std::binder2nd< _threshold< T > > >( f ) ); |
|
|
134 |
} |
|
|
135 |
|
|
|
136 |
template< typename T, typename TPtr > |
|
|
137 |
image< T > threshold( const const_image_ref< T, TPtr > &im, T threshval ) |
|
|
138 |
{ |
|
|
139 |
return image_func< T >( im, std::bind2nd( _threshold< T >(), |
|
|
140 |
threshval ) ); |
|
|
141 |
} |
|
|
142 |
|
|
|
143 |
template< typename T > |
|
|
144 |
image_ref< T > &bilevel_doubleIt( image_ref< T > &im, |
|
|
145 |
T min, T max, T val1, T val2 ) |
|
|
146 |
{ |
|
|
147 |
_bilevel_double< T > f( val1, val2, min, max ); |
|
|
148 |
return image_apply( im, im, |
|
|
149 |
_multi_help1< T, T, _bilevel_double< T > >( f ) ); |
|
|
150 |
} |
|
|
151 |
|
|
|
152 |
template< typename T, typename TPtr > |
|
|
153 |
image< T > bilevel_double( const const_image_ref< T, TPtr > &im, |
|
|
154 |
T min, T max, T val1, T val2 ) |
|
|
155 |
{ |
|
|
156 |
return multi_func< T >( im.rawData(), |
|
|
157 |
_bilevel_double< T >( val1, val2, min, max ) ); |
|
|
158 |
} |
|
|
159 |
|
|
|
160 |
template<typename T, typename TPtr, typename U> |
|
|
161 |
void despeckleKuwahara( const const_image_ref< T, TPtr > &imagein, |
|
|
162 |
image< U > &imageout ) |
|
|
163 |
{ |
|
|
164 |
if ( &imageout != &imagein ) |
|
|
165 |
imageout.init(imagein.getWidth(),imagein.getHeight()); |
|
|
166 |
|
|
|
167 |
U intensity; |
|
|
168 |
float m_ul, m_ur, m_ll, m_lr; |
|
|
169 |
float v_ul, v_ur, v_ll, v_lr; |
|
|
170 |
|
|
|
171 |
for (int y=0; y<imagein.getHeight(); y++) |
|
|
172 |
for (int x=0; x<imagein.getWidth(); x++) |
|
|
173 |
{ |
|
|
174 |
if (y<2 || y>imagein.getHeight()-3 || x<2 || x>imagein.getWidth()-3) |
|
|
175 |
{ |
|
|
176 |
imageout.pixel(x,y)=imagein.pixel(x,y); |
|
|
177 |
continue; |
|
|
178 |
|
|
|
179 |
} |
|
|
180 |
|
|
|
181 |
|
|
|
182 |
// mean |
|
|
183 |
m_ul=0.0; m_ur=0.0; m_ll=0.0; m_lr=0.0; |
|
|
184 |
|
|
|
185 |
for (int j=0; j<3; j++) |
|
|
186 |
for (int i=0; i<3; i++) |
|
|
187 |
{ |
|
|
188 |
m_ul+=(float)imagein.pixel(x-2+i,y-2+j); |
|
|
189 |
m_ur+=(float)imagein.pixel(x+i,y-2+j); |
|
|
190 |
m_ll+=(float)imagein.pixel(x-2+i,y+j); |
|
|
191 |
m_lr+=(float)imagein.pixel(x+i,y+j); |
|
|
192 |
} |
|
|
193 |
|
|
|
194 |
m_ul=m_ul/9.0; |
|
|
195 |
m_ur=m_ur/9.0; |
|
|
196 |
m_ll=m_ll/9.0; |
|
|
197 |
m_lr=m_lr/9.0; |
|
|
198 |
|
|
|
199 |
|
|
|
200 |
// estimated variance |
|
|
201 |
v_ul=0.0; v_ur=0.0; v_ll=0.0; v_lr=0.0; |
|
|
202 |
|
|
|
203 |
for (int j=0; j<3; j++) |
|
|
204 |
for (int i=0; i<3; i++) |
|
|
205 |
{ |
|
|
206 |
v_ul+=(((float)imagein.pixel(x-2+i,y-2+j)-m_ul)*((float)imagein.pixel(x-2+i,y-2+j)-m_ul)); |
|
|
207 |
v_ur+=(((float)imagein.pixel(x+i,y-2+j)-m_ur)*((float)imagein.pixel(x+i,y-2+j)-m_ur)); |
|
|
208 |
v_ll+=(((float)imagein.pixel(x-2+i,y+j)-m_ll)*((float)imagein.pixel(x-2+i,y+j)-m_ll)); |
|
|
209 |
v_lr+=(((float)imagein.pixel(x+i,y+j)-m_lr)*((float)imagein.pixel(x+i,y+j)-m_lr)); |
|
|
210 |
} |
|
|
211 |
|
|
|
212 |
intensity=(U)m_ul; |
|
|
213 |
intensity=v_ur<v_ul?(U)m_ur:intensity; |
|
|
214 |
intensity=v_ll<v_ur?(U)m_ll:intensity; |
|
|
215 |
intensity=v_lr<v_ll?(U)m_lr:intensity; |
|
|
216 |
|
|
|
217 |
imageout.pixel(x,y)=intensity; |
|
|
218 |
} |
|
|
219 |
} |
|
|
220 |
|
|
|
221 |
|
|
|
222 |
template<typename T> |
|
|
223 |
void despeckleKuwaharaIt( image_ref<T> &imagein ) |
|
|
224 |
{ |
|
|
225 |
image<T> tempimage; |
|
|
226 |
|
|
|
227 |
despeckleKuwahara(imagein, tempimage); |
|
|
228 |
|
|
|
229 |
imagein = tempimage; |
|
|
230 |
} |
|
|
231 |
|
|
|
232 |
template< typename T, typename TPtr > |
|
|
233 |
image< T > gradSobelX( const const_image_ref< T, TPtr > &im ) |
|
|
234 |
{ |
|
|
235 |
const T sobelx1[1][3]={ {-1, 0, 1} }; |
|
|
236 |
const T sobelx2[3][1]={ { 1 }, |
|
|
237 |
{ 2 }, |
|
|
238 |
{ 1 } }; |
|
|
239 |
const_image_ref< T > |
|
|
240 |
filter1( &sobelx1[0][0], 3, 1 ), |
|
|
241 |
filter2( &sobelx2[0][0], 1, 3 ); |
|
|
242 |
return correlate( correlate( im, filter1 ), filter2 ); |
|
|
243 |
} |
|
|
244 |
|
|
|
245 |
|
|
|
246 |
template< typename T, typename TPtr > |
|
|
247 |
image< T > gradSobelY( const const_image_ref< T, TPtr > &im ) |
|
|
248 |
{ |
|
|
249 |
const T sobely1[3][1]={ { -1 }, |
|
|
250 |
{ 0 }, |
|
|
251 |
{ 1 } }; |
|
|
252 |
const T sobely2[1][3]={ { 1, 2, 1} }; |
|
|
253 |
const_image_ref< T > |
|
|
254 |
filter1( &sobely1[0][0], 1, 3 ), |
|
|
255 |
filter2( &sobely2[0][0], 3, 1 ); |
|
|
256 |
return correlate( correlate( im, filter1 ), filter2 ); |
|
|
257 |
} |
|
|
258 |
|
|
|
259 |
template< typename T, typename TPtr > |
|
|
260 |
image< T > edgeSobelSqr( const const_image_ref< T, TPtr > &im ) |
|
|
261 |
{ |
|
|
262 |
image< T > |
|
|
263 |
gradX( gradSobelX( im ) ), |
|
|
264 |
gradY( gradSobelY( im ) ); |
|
|
265 |
return gradX * gradX + gradY * gradY; |
|
|
266 |
} |
|
|
267 |
|
|
|
268 |
template< typename T, typename TPtr > |
|
|
269 |
image< T > edgeSobelNorm( const const_image_ref< T, TPtr > &im ) |
|
|
270 |
{ |
|
|
271 |
return squareRoot( edgeSobelSqr( im ) ); |
|
|
272 |
} |
|
|
273 |
|
|
|
274 |
// template<typename T, typename U> |
|
|
275 |
// void edgeSobelOrientation(const image<T> &imagein, image<U> &imageout) |
|
|
276 |
// { |
|
|
277 |
// int x,y, sx,sy; |
|
|
278 |
// int height, width; |
|
|
279 |
// image<U> tempimage; |
|
|
280 |
// float sxIntensity, syIntensity; |
|
|
281 |
|
|
|
282 |
|
|
|
283 |
// static float sobelx[3][3]={ { -1.0, -2.0,-1.0}, |
|
|
284 |
// { 0.0, 0.0, 0.0}, |
|
|
285 |
// { 1.0, 2.0, 1.0}}; |
|
|
286 |
|
|
|
287 |
// static float sobely[3][3]={ {-1.0, 0.0, 1.0}, |
|
|
288 |
// {-2.0, 0.0, 2.0}, |
|
|
289 |
// {-1.0, 0.0, 1.0}}; |
|
|
290 |
|
|
|
291 |
// height=imagein.getHeight(); |
|
|
292 |
// width=imagein.getWidth(); |
|
|
293 |
// tempimage.init(width,height); |
|
|
294 |
|
|
|
295 |
// for(y=1;y<height-1;y++) |
|
|
296 |
// for (x=1;x<width-1;x++) |
|
|
297 |
// { |
|
|
298 |
// sxIntensity=0.0; syIntensity=0.0; |
|
|
299 |
// for(sx=0;sx<3;sx++) |
|
|
300 |
// for(sy=0;sy<3;sy++) |
|
|
301 |
// { |
|
|
302 |
// sxIntensity+=sobelx[sy][sx]*(float)imagein.pixel(x+sx-1,y+sy-1); |
|
|
303 |
// syIntensity+=sobely[sy][sx]*(float)imagein.pixel(x+sx-1,y+sy-1); |
|
|
304 |
// } |
|
|
305 |
// if (sxIntensity==0.0) |
|
|
306 |
// tempimage.pixel(x,y)=0.0; |
|
|
307 |
// else |
|
|
308 |
// tempimage.pixel(x,y)=atan(syIntensity/sxIntensity); |
|
|
309 |
|
|
|
310 |
|
|
|
311 |
// } |
|
|
312 |
|
|
|
313 |
// imageout = tempimage; |
|
|
314 |
// } |
|
|
315 |
|
|
|
316 |
template< typename T, typename TPtr > |
|
|
317 |
image< T > edgeLaplacian( const const_image_ref< T, TPtr > &im ) |
|
|
318 |
{ |
|
|
319 |
const T laplacian[3][3]={ { 0, -1, 0 }, |
|
|
320 |
{ -1, 4, -1 }, |
|
|
321 |
{ 0, -1, 0 } }; |
|
|
322 |
const_image_ref< T > f( &laplacian[0][0], 3, 3 ); |
|
|
323 |
return correlate( im, f ); |
|
|
324 |
} |
|
|
325 |
|
|
|
326 |
/** Laplacian of Gaussian filter. |
|
|
327 |
@todo Determine zero-crossings to have a complete edge-detector. */ |
|
|
328 |
template< typename T, typename TPtr > |
|
|
329 |
image< T > edgeLoG( const const_image_ref< T, TPtr > &imagein ) |
|
|
330 |
{ |
|
|
331 |
const T LoG[9][9]= { { 0, 0, 3, 2, 2, 2, 3, 0, 0}, |
|
|
332 |
{ 0, 2, 3, 5, 5, 5, 3, 2, 0}, |
|
|
333 |
{ 3, 3, 5, 3, 0, 3, 5, 3, 3}, |
|
|
334 |
{ 2, 5, 3,-12,-23,-12, 3, 5, 2}, |
|
|
335 |
{ 2, 5, 0,-23,-40,-23, 0, 5, 2}, |
|
|
336 |
{ 2, 5, 3,-12,-23,-12, 3, 5, 2}, |
|
|
337 |
{ 3, 3, 5, 3, 0, 3, 5, 3, 3}, |
|
|
338 |
{ 0, 2, 3, 5, 5, 5, 3, 2, 0}, |
|
|
339 |
{ 0, 0, 3, 2, 2, 2, 3, 0, 0} }; |
|
|
340 |
|
|
|
341 |
const_image_ref< T > filter( &LoG[0][0], 9, 9 ); |
|
|
342 |
image< T > tempimage( correlate( imagein, filter ) ); |
|
|
343 |
|
|
|
344 |
/*static float LoG[5][5]={{ 0.0, 0.0,-1.0, 0.0, 0.0}, |
|
|
345 |
{ 0.0,-1.0,-2.0,-1.0, 0.0}, |
|
|
346 |
{ -1.0,-2.0,16.0,-2.0,-1.0}, |
|
|
347 |
{ 0.0,-1.0,-2.0,-1.0, 0.0}, |
|
|
348 |
{ 0.0, 0.0,-1.0, 0.0, 0.0}}; |
|
|
349 |
*/ |
|
|
350 |
|
|
|
351 |
bilevelIt( tempimage, (T)0, (T)255, (T)0 ); |
|
|
352 |
|
|
|
353 |
image< T > imageout; |
|
|
354 |
imageout.init( imagein.getWidth(), imagein.getHeight() ); |
|
|
355 |
|
|
|
356 |
// Shouldn't actually threshold - must check zero crossings |
|
|
357 |
for ( int y=4; y<imagein.getHeight()-4; y++ ) |
|
|
358 |
for ( int x=4; x<imagein.getWidth()-4; x++ ) { |
|
|
359 |
if (tempimage.pixel(x,y)<=127) continue; |
|
|
360 |
if ( ( tempimage.pixel( x-1, y-1 ) > 127 ) || |
|
|
361 |
( tempimage.pixel( x-1, y ) > 127 ) || |
|
|
362 |
( tempimage.pixel( x-1, y+1 ) > 127 ) || |
|
|
363 |
( tempimage.pixel( x , y-1 ) > 127 ) || |
|
|
364 |
( tempimage.pixel( x , y+1 ) > 127 ) || |
|
|
365 |
( tempimage.pixel( x+1, y-1 ) > 127 ) || |
|
|
366 |
( tempimage.pixel( x+1, y ) > 127 ) || |
|
|
367 |
( tempimage.pixel( x+1, y+1 ) > 127 ) ) |
|
|
368 |
imageout.pixel( x , y ) = 255; |
|
|
369 |
} |
|
|
370 |
return imageout; |
|
|
371 |
} |
|
|
372 |
|
|
|
373 |
// IMPORTANT NOTE |
|
|
374 |
// imagein1 is image at time t-1 |
|
|
375 |
// imagein2 is image at time t |
|
|
376 |
template< typename T, typename T1Ptr, typename T2Ptr > |
|
|
377 |
image< T > edgeHaynesJain( const const_image_ref< T, T1Ptr > &imagein1, |
|
|
378 |
const const_image_ref< T, T2Ptr > &imagein2 ) |
|
|
379 |
{ |
|
|
380 |
MMERROR( imagein2.getWidth () == imagein1.getWidth () && |
|
|
381 |
imagein2.getHeight() == imagein1.getHeight(), |
|
|
382 |
mimasexception, , "image_funcs::edgeHaynesJain - " |
|
|
383 |
"size of input images do not match" ); |
|
|
384 |
|
|
|
385 |
return absolute<T>( edgeSobelNorm<T>( imagein2 ) * ( imagein2 - |
|
|
386 |
imagein1 ) ); |
|
|
387 |
} |
|
|
388 |
|
|
|
389 |
|
|
|
390 |
template<typename T, typename TPtr, typename U> |
|
|
391 |
void halfResolution( const const_image_ref< T, TPtr > &imagein, |
|
|
392 |
image_ref<U> &imageout) |
|
|
393 |
{ |
|
|
394 |
// note that this is only an estimate! |
|
|
395 |
static float gauss[3][3]={ { 1.0, 2.0, 1.0}, |
|
|
396 |
{ 2.0, 4.0, 2.0}, |
|
|
397 |
{ 1.0, 2.0, 1.0}}; |
|
|
398 |
static float gaussfac=(1.0/16.0); |
|
|
399 |
|
|
|
400 |
assert( &imageout != &imagein ); |
|
|
401 |
imageout.init(imagein.getWidth()/2, imagein.getHeight()/2); |
|
|
402 |
|
|
|
403 |
for (int j=1; j<imagein.getHeight(); j+=2) |
|
|
404 |
for (int i=1; i<imagein.getWidth(); i+=2) |
|
|
405 |
{ |
|
|
406 |
float tempval=0.0; |
|
|
407 |
for (int y=-1; y<=1; y++) |
|
|
408 |
for (int x=-1; x<=1; x++) |
|
|
409 |
tempval+=(imagein.pixel(i+x,j+y)*gauss[y+1][x+1]); |
|
|
410 |
imageout.pixel(i/2,j/2)=(U)(tempval*gaussfac); |
|
|
411 |
} |
|
|
412 |
} |
|
|
413 |
|
|
|
414 |
|
|
|
415 |
template<typename T> |
|
|
416 |
void halfResolutionIt( image_ref<T> &imagein ) |
|
|
417 |
{ |
|
|
418 |
image<T> tempimage; |
|
|
419 |
|
|
|
420 |
halfResolution(imagein, tempimage); |
|
|
421 |
|
|
|
422 |
imagein = tempimage; |
|
|
423 |
} |
|
|
424 |
|
|
|
425 |
// Note this assumes black edges on white background unlike halfResolution |
|
|
426 |
// above |
|
|
427 |
template<typename T, typename TPtr, typename U> |
|
|
428 |
void halfResolutionEdgePyramid( const const_image_ref< T, TPtr > &imagein, |
|
|
429 |
image<U> &imageout) |
|
|
430 |
{ |
|
|
431 |
// set background colour of object to be white |
|
|
432 |
assert( &imageout != &imagein ); |
|
|
433 |
imageout.init(imagein.getWidth()/2, imagein.getHeight()/2); |
|
|
434 |
imageout.fill(255); |
|
|
435 |
|
|
|
436 |
for (int j=1; j<imagein.getHeight(); j+=2) |
|
|
437 |
for (int i=1; i<imagein.getWidth(); i+=2) |
|
|
438 |
{ |
|
|
439 |
int tempval=0; |
|
|
440 |
for (int y=-1; y<=1; y++) |
|
|
441 |
for (int x=-1; x<=1; x++) |
|
|
442 |
if (imagein.getPixel(i+x,j+y)>127) |
|
|
443 |
tempval=255; |
|
|
444 |
|
|
|
445 |
imageout.pixel(i/2,j/2)=(U)tempval; |
|
|
446 |
} |
|
|
447 |
} |
|
|
448 |
|
|
|
449 |
|
|
|
450 |
template<typename T> |
|
|
451 |
void halfResolutionEdgePyramidIt( image_ref<T> &imagein ) |
|
|
452 |
{ |
|
|
453 |
image<T> tempimage; |
|
|
454 |
|
|
|
455 |
halfResolutionEdgePyramid(imagein, tempimage); |
|
|
456 |
|
|
|
457 |
imagein = tempimage; |
|
|
458 |
} |
|
|
459 |
|
|
|
460 |
// 3x3 median despecking filter |
|
|
461 |
template< typename T, typename TPtr > |
|
|
462 |
void despeckleMedian( const const_image_ref<T,TPtr> &imagein, |
|
|
463 |
image<T> &imageout) |
|
|
464 |
{ |
|
|
465 |
std::vector<T> pixvals; |
|
|
466 |
assert( &imageout != &imagein ); |
|
|
467 |
imageout.init(imagein.getWidth(),imagein.getHeight()); |
|
|
468 |
|
|
|
469 |
for (int j=1; j<imagein.getHeight()-1; j++) |
|
|
470 |
for (int i=1; i<imagein.getWidth()-1; i++) |
|
|
471 |
{ |
|
|
472 |
if (!pixvals.empty()) pixvals.clear(); |
|
|
473 |
for (int y=-1; y<=1; y++) |
|
|
474 |
for (int x=-1; x<=1; x++) |
|
|
475 |
pixvals.push_back(imagein.pixel(i+x,j+y)); |
|
|
476 |
|
|
|
477 |
sort(pixvals.begin(), pixvals.end()); |
|
|
478 |
imageout.pixel(i,j)=pixvals[pixvals.size()/2]; |
|
|
479 |
} |
|
|
480 |
|
|
|
481 |
for (int j=0; j<imagein.getHeight(); j++) |
|
|
482 |
{ |
|
|
483 |
imageout.pixel(0,j) = imagein.pixel(0,j); |
|
|
484 |
imageout.pixel(imagein.getWidth()-1,j)=imagein.pixel(imagein.getWidth()-1,j); |
|
|
485 |
} |
|
|
486 |
|
|
|
487 |
for (int i=0; i<imagein.getWidth(); i++) |
|
|
488 |
{ |
|
|
489 |
imageout.pixel(i,0)=imagein.pixel(i,0); |
|
|
490 |
imageout.pixel(i,imagein.getHeight()-1)=imagein.pixel(i,imagein.getHeight()-1); |
|
|
491 |
} |
|
|
492 |
} |
|
|
493 |
|
|
|
494 |
template<typename T> |
|
|
495 |
void despeckleMedianIt( image_ref<T> &imagein ) |
|
|
496 |
{ |
|
|
497 |
image<T> tempimage; |
|
|
498 |
|
|
|
499 |
despeckleMedian(imagein, tempimage); |
|
|
500 |
|
|
|
501 |
imagein = tempimage; |
|
|
502 |
} |
|
|
503 |
|
|
|
504 |
template<typename T> |
|
|
505 |
void chamfer(image_ref<T> &inimage) |
|
|
506 |
{ |
|
|
507 |
int nw,n,ne,w,e,sw,s,se; |
|
|
508 |
int fp; |
|
|
509 |
|
|
|
510 |
for (int j=1; j<inimage.getHeight()-1; j++) |
|
|
511 |
for (int i=1; i<inimage.getWidth(); i++) |
|
|
512 |
{ |
|
|
513 |
fp=inimage.pixel(i,j); |
|
|
514 |
nw=4+inimage.pixel(i-1,j-1); |
|
|
515 |
n=3+inimage.pixel(i,j-1); |
|
|
516 |
w=3+inimage.pixel(i-1,j); |
|
|
517 |
sw=4+inimage.pixel(i-1,j+1); |
|
|
518 |
|
|
|
519 |
fp=fp<nw?fp:nw; |
|
|
520 |
fp=fp<n?fp:n; |
|
|
521 |
fp=fp<w?fp:w; |
|
|
522 |
fp=fp<sw?fp:sw; |
|
|
523 |
inimage.pixel(i,j)=fp; |
|
|
524 |
|
|
|
525 |
} |
|
|
526 |
|
|
|
527 |
for (int j=inimage.getHeight()-2; j>0; j--) |
|
|
528 |
for (int i=inimage.getWidth()-2; i>=0; i--) |
|
|
529 |
{ |
|
|
530 |
fp=inimage.pixel(i,j); |
|
|
531 |
ne=4+inimage.pixel(i+1,j-1); |
|
|
532 |
e=3+inimage.pixel(i+1,j); |
|
|
533 |
s=3+inimage.pixel(i,j+1); |
|
|
534 |
se=4+inimage.pixel(i+1,j+1); |
|
|
535 |
|
|
|
536 |
fp=fp<ne?fp:ne; |
|
|
537 |
fp=fp<e?fp:e; |
|
|
538 |
fp=fp<s?fp:s; |
|
|
539 |
fp=fp<se?fp:se; |
|
|
540 |
inimage.pixel(i,j)=fp; |
|
|
541 |
|
|
|
542 |
} |
|
|
543 |
|
|
|
544 |
for (int i=0; i<inimage.getWidth(); i++) |
|
|
545 |
{ |
|
|
546 |
inimage.pixel(i,0)=inimage.pixel(i,1); |
|
|
547 |
inimage.pixel(i,inimage.getHeight()-1)=inimage.pixel(i,inimage.getHeight()-2); |
|
|
548 |
} |
|
|
549 |
|
|
|
550 |
for (int j=0; j<inimage.getHeight(); j++) |
|
|
551 |
{ |
|
|
552 |
inimage.pixel(0,j)=inimage.pixel(1,j); |
|
|
553 |
inimage.pixel(inimage.getWidth()-1,j)=inimage.pixel(inimage.getWidth()-2,j); |
|
|
554 |
} |
|
|
555 |
} |
|
|
556 |
|
|
|
557 |
|
|
|
558 |
template<typename T,typename TPtr> |
|
|
559 |
void paethRotateRadian(const const_image_ref<T,TPtr> &imagein, |
|
|
560 |
image<T> &imageout, |
|
|
561 |
float radian) |
|
|
562 |
{ |
|
|
563 |
assert( &imageout != &imagein ); |
|
|
564 |
imageout.init(imagein.getWidth(),imagein.getHeight()); |
|
|
565 |
imageout.fill(255); |
|
|
566 |
|
|
|
567 |
if (fabs(radian-M_PI)<1e-3) radian=radian<M_PI?M_PI-1e-3:M_PI+1e-3; // Quick hack to fix the problem when tan goes to infinity |
|
|
568 |
float s1=-tan(-radian/2.0); |
|
|
569 |
float s2=sin(-radian); |
|
|
570 |
|
|
|
571 |
float xr, yr; |
|
|
572 |
int x,y; |
|
|
573 |
for (int j=0; j<imageout.getHeight(); j++) |
|
|
574 |
for (int i=0; i<imageout.getWidth(); i++) |
|
|
575 |
{ |
|
|
576 |
x=i-imageout.getWidth()/2; |
|
|
577 |
y=j-imageout.getHeight()/2; |
|
|
578 |
//x=i; |
|
|
579 |
//y=j; |
|
|
580 |
|
|
|
581 |
xr = (float)x + s1 * (float)y; |
|
|
582 |
yr = (float)y + s2 * xr; |
|
|
583 |
xr = xr + s1 * yr; |
|
|
584 |
|
|
|
585 |
xr+=(float)imageout.getWidth()/2; |
|
|
586 |
yr+=(float)imageout.getHeight()/2; |
|
|
587 |
imageout.pixel(i, j)=imagein.getPixel((int)xr,(int)yr); |
|
|
588 |
//imageout.setPixel(i,j, imagein.getPixel(i,j)); |
|
|
589 |
} |
|
|
590 |
} |
|
|
591 |
|
|
|
592 |
template< typename T, typename T1Ptr, typename T2Ptr > |
|
|
593 |
void multiLevelCorrelation( const const_image_ref< T, T1Ptr > &edgemap, |
|
|
594 |
const const_image_ref< T, T2Ptr > &objectedgemap, |
|
|
595 |
int levels, int &x, int &y, float &corrval, |
|
|
596 |
bool chamferObject) |
|
|
597 |
{ |
|
|
598 |
image<T> object[levels], image[levels]; |
|
|
599 |
|
|
|
600 |
image[0] = edgemap; |
|
|
601 |
// invert(image[0]); |
|
|
602 |
|
|
|
603 |
object[0] = objectedgemap; |
|
|
604 |
// invert(object[0]); |
|
|
605 |
|
|
|
606 |
for (int l=1; l<levels; l++) |
|
|
607 |
{ |
|
|
608 |
halfResolutionEdgePyramid(image[l-1],image[l]); |
|
|
609 |
halfResolutionEdgePyramid(object[l-1],object[l]); |
|
|
610 |
} |
|
|
611 |
|
|
|
612 |
for (int l=0; l<levels; l++) |
|
|
613 |
{ |
|
|
614 |
image[l] = (T)255 - image[l]; |
|
|
615 |
object[l] = (T)255 - object[l]; |
|
|
616 |
//image[l].display(); |
|
|
617 |
//object[l].display(); |
|
|
618 |
chamfer(image[l]); |
|
|
619 |
if (chamferObject) chamfer(object[l]); |
|
|
620 |
} |
|
|
621 |
|
|
|
622 |
int xmin = INT_MIN, ymin = INT_MIN; |
|
|
623 |
int xminsearch, xmaxsearch, yminsearch, ymaxsearch; |
|
|
624 |
float corr, mincorr; |
|
|
625 |
|
|
|
626 |
x=0; y=0; |
|
|
627 |
xminsearch=0; |
|
|
628 |
yminsearch=0; |
|
|
629 |
xmaxsearch=image[levels-1].getWidth(); |
|
|
630 |
ymaxsearch=image[levels-1].getHeight(); |
|
|
631 |
|
|
|
632 |
for (int l=levels-1; l>=0; l--) |
|
|
633 |
{ |
|
|
634 |
//object[l].display(); |
|
|
635 |
//image[l].display(); |
|
|
636 |
|
|
|
637 |
mincorr=FLT_MAX; |
|
|
638 |
for (int j=yminsearch; j<ymaxsearch-object[l].getHeight(); j++) |
|
|
639 |
for (int i=xminsearch; i<xmaxsearch-object[l].getWidth(); i++) |
|
|
640 |
{ |
|
|
641 |
corr=0.0; |
|
|
642 |
int count=0; |
|
|
643 |
for (int b=0; b<object[l].getHeight(); b++) |
|
|
644 |
for (int a=0; a<object[l].getWidth(); a++) |
|
|
645 |
{ |
|
|
646 |
if (!chamferObject) if (object[l].pixel(a,b)>127) continue; |
|
|
647 |
corr+=(float)abs((int)image[l].pixel(i+a,j+b)-(int)object[l].pixel(a,b)); |
|
|
648 |
count++; |
|
|
649 |
} |
|
|
650 |
|
|
|
651 |
corr/=count; |
|
|
652 |
if (corr<mincorr) |
|
|
653 |
{ |
|
|
654 |
xmin=i; ymin=j; |
|
|
655 |
mincorr=corr; |
|
|
656 |
} |
|
|
657 |
} |
|
|
658 |
|
|
|
659 |
if (l!=0) |
|
|
660 |
{ |
|
|
661 |
xminsearch=(xmin*2)-1-20; |
|
|
662 |
yminsearch=(ymin*2)-1-20; |
|
|
663 |
|
|
|
664 |
xmaxsearch=(xmin*2)-1+object[l-1].getWidth()+20; |
|
|
665 |
ymaxsearch=(ymin*2)-1+object[l-1].getHeight()+20; |
|
|
666 |
|
|
|
667 |
if (xminsearch<0) xminsearch=0; |
|
|
668 |
if (yminsearch<0) yminsearch=0; |
|
|
669 |
|
|
|
670 |
if (xmaxsearch>image[l-1].getWidth()) xmaxsearch=image[l-1].getWidth(); |
|
|
671 |
if (ymaxsearch>image[l-1].getHeight()) ymaxsearch=image[l-1].getHeight(); |
|
|
672 |
} |
|
|
673 |
|
|
|
674 |
|
|
|
675 |
} |
|
|
676 |
|
|
|
677 |
assert( xmin != INT_MIN && ymin != INT_MIN ); |
|
|
678 |
x=xmin; |
|
|
679 |
y=ymin; |
|
|
680 |
corrval=mincorr; |
|
|
681 |
|
|
|
682 |
} |
|
|
683 |
|
|
|
684 |
template< typename T, typename T1Ptr, typename T2Ptr > |
|
|
685 |
void correlation( const const_image_ref<T> &imagein, |
|
|
686 |
const const_image_ref<T> &templatein, |
|
|
687 |
int &x, int &y, float &corrval) |
|
|
688 |
{ |
|
|
689 |
|
|
|
690 |
int xmin = INT_MIN, ymin = INT_MIN; |
|
|
691 |
int xminsearch, xmaxsearch, yminsearch, ymaxsearch; |
|
|
692 |
float corr, mincorr; |
|
|
693 |
|
|
|
694 |
x=0; y=0; |
|
|
695 |
xminsearch=0; |
|
|
696 |
yminsearch=0; |
|
|
697 |
xmaxsearch=imagein.getWidth(); |
|
|
698 |
ymaxsearch=imagein.getHeight(); |
|
|
699 |
|
|
|
700 |
mincorr=FLT_MAX; |
|
|
701 |
for (int j=yminsearch; j<ymaxsearch-templatein.getHeight(); j++) |
|
|
702 |
for (int i=xminsearch; i<xmaxsearch-templatein.getWidth(); i++) |
|
|
703 |
{ |
|
|
704 |
corr=0.0; |
|
|
705 |
for (int b=0; b<templatein.getHeight(); b++) |
|
|
706 |
for (int a=0; a<templatein.getWidth(); a++) |
|
|
707 |
{ |
|
|
708 |
//if (object[l].getPixel(a,b)>127) continue; |
|
|
709 |
corr+=(float)abs((int)imagein.pixel(i+a,j+b)-(int)templatein.pixel(a,b)); |
|
|
710 |
} |
|
|
711 |
|
|
|
712 |
if (corr<mincorr) |
|
|
713 |
{ |
|
|
714 |
xmin=i; ymin=j; |
|
|
715 |
mincorr=corr; |
|
|
716 |
} |
|
|
717 |
} |
|
|
718 |
|
|
|
719 |
assert( xmin != INT_MIN && ymin != INT_MIN ); |
|
|
720 |
x=xmin; |
|
|
721 |
y=ymin; |
|
|
722 |
corrval=mincorr; |
|
|
723 |
|
|
|
724 |
} |
|
|
725 |
|
|
|
726 |
template<typename T, typename T1Ptr, typename T2Ptr > |
|
|
727 |
void correlationChamfer( const const_image_ref< T, T1Ptr > &imagein, |
|
|
728 |
const const_image_ref< T, T2Ptr > &templatein, |
|
|
729 |
int &x, int &y, float &corrval) |
|
|
730 |
{ |
|
|
731 |
|
|
|
732 |
int xmin = INT_MIN, ymin = INT_MIN; |
|
|
733 |
int xminsearch, xmaxsearch, yminsearch, ymaxsearch; |
|
|
734 |
float corr, mincorr; |
|
|
735 |
|
|
|
736 |
x=0; y=0; |
|
|
737 |
xminsearch=0; |
|
|
738 |
yminsearch=0; |
|
|
739 |
xmaxsearch=imagein.getWidth(); |
|
|
740 |
ymaxsearch=imagein.getHeight(); |
|
|
741 |
|
|
|
742 |
mincorr=FLT_MAX; |
|
|
743 |
for (int j=yminsearch; j<ymaxsearch-templatein.getHeight(); j++) |
|
|
744 |
for (int i=xminsearch; i<xmaxsearch-templatein.getWidth(); i++) |
|
|
745 |
{ |
|
|
746 |
corr=0.0; |
|
|
747 |
for (int b=0; b<templatein.getHeight(); b++) |
|
|
748 |
for (int a=0; a<templatein.getWidth(); a++) |
|
|
749 |
{ |
|
|
750 |
if (templatein.pixel(a,b)>127) continue; |
|
|
751 |
corr+=(float)abs((int)imagein.pixel(i+a,j+b)-(int)templatein.pixel(a,b)); |
|
|
752 |
} |
|
|
753 |
|
|
|
754 |
if (corr<mincorr) |
|
|
755 |
{ |
|
|
756 |
xmin=i; ymin=j; |
|
|
757 |
mincorr=corr; |
|
|
758 |
} |
|
|
759 |
} |
|
|
760 |
|
|
|
761 |
assert( xmin != INT_MIN && ymin != INT_MIN ); |
|
|
762 |
x=xmin; |
|
|
763 |
y=ymin; |
|
|
764 |
corrval=mincorr; |
|
|
765 |
|
|
|
766 |
} |
|
|
767 |
|
|
|
768 |
template<typename T> |
|
|
769 |
void rotationChamferCorrelationEdgeMap(image<T> &edgemap, image<T> |
|
|
770 |
&objectedgemap, int angle1, int angle2, int anglestep, int &x, int &y, int &outangle, float &corrval) |
|
|
771 |
{ |
|
|
772 |
image<T> chamferedImage, rotatedObject, chamferedObject; |
|
|
773 |
|
|
|
774 |
chamferedImage = (T)255 - edgemap; |
|
|
775 |
chamfer(chamferedImage); |
|
|
776 |
|
|
|
777 |
|
|
|
778 |
objectedgemap = (T)255 - objectedgemap; |
|
|
779 |
// Make sure that object boundaries are white: |
|
|
780 |
drawLine(objectedgemap, 0,0,0,objectedgemap.getHeight()-1,255); |
|
|
781 |
drawLine(objectedgemap, objectedgemap.getWidth()-1,0,objectedgemap.getWidth()-1,objectedgemap.getHeight()-1,255); |
|
|
782 |
drawLine(objectedgemap, 0,0,objectedgemap.getWidth()-1,objectedgemap.getHeight()-1,255); |
|
|
783 |
drawLine(objectedgemap, 0,objectedgemap.getHeight()-1,objectedgemap.getWidth()-1,objectedgemap.getHeight()-1,255); |
|
|
784 |
//chamfer(objectedgemap); |
|
|
785 |
|
|
|
786 |
float cval; |
|
|
787 |
int tx,ty; |
|
|
788 |
corrval=FLT_MAX; |
|
|
789 |
for (int angle=angle1; angle<=angle2; angle+=anglestep) |
|
|
790 |
{ |
|
|
791 |
rotatedObject = objectedgemap; |
|
|
792 |
//invert(rotatedObject); |
|
|
793 |
paethRotateRadian(rotatedObject,chamferedObject,(float)angle*M_PI/180.0); |
|
|
794 |
//chamfer(chamferedObject); |
|
|
795 |
correlationChamfer(chamferedImage, chamferedObject, tx, ty, cval); |
|
|
796 |
|
|
|
797 |
if (cval<corrval) |
|
|
798 |
{ |
|
|
799 |
corrval=cval; |
|
|
800 |
x=tx; |
|
|
801 |
y=ty; |
|
|
802 |
outangle=angle; |
|
|
803 |
} |
|
|
804 |
} |
|
|
805 |
} |
|
|
806 |
|
|
|
807 |
template< typename T, typename TPtr > |
|
|
808 |
image< T > focusEnhance( const const_image_ref< T, TPtr > &im ) |
|
|
809 |
{ |
|
|
810 |
const T enhance[3][3]={ { -1, 0, -1 }, |
|
|
811 |
{ 0, 7, 0 }, |
|
|
812 |
{ -1, 0, -1 } }; |
|
|
813 |
const_image_ref< T > filter( &enhance[0][0], 3, 3 ); |
|
|
814 |
return normalise( correlate( im, filter ), (T)0, (T)255 ); |
|
|
815 |
} |
|
|
816 |
|
|
|
817 |
template< typename T, typename TPtr > |
|
|
818 |
image< T > featureEnhance( const const_image_ref< T, TPtr > &im ) |
|
|
819 |
{ |
|
|
820 |
const T enhance[3][3]={ { 0, -1, 0 }, |
|
|
821 |
{ -1, 10, -1 }, |
|
|
822 |
{ 0, -1, 0 } }; |
|
|
823 |
const_image_ref< T > filter( &enhance[0][0], 3, 3 ); |
|
|
824 |
return normalise( correlate( im, filter ), (T)0, (T)255 ); |
|
|
825 |
} |
|
|
826 |
|
|
|
827 |
template< typename T, typename TPtr > |
|
|
828 |
image< T > emboss( const const_image_ref< T, TPtr > &im ) |
|
|
829 |
{ |
|
|
830 |
const T diff[3][3]={ { -1, 0, 0 }, |
|
|
831 |
{ 0, 0, 0 }, |
|
|
832 |
{ 0, 0, 1 } }; |
|
|
833 |
const_image_ref< T > filter( &diff[0][0], 3, 3 ); |
|
|
834 |
return normalise( correlate( im, filter ), (T)0, (T)255 ); |
|
|
835 |
} |
|
|
836 |
|
|
|
837 |
template< typename T, typename TPtr > |
|
|
838 |
image< T > softenHeavy( const const_image_ref< T, TPtr > &im ) |
|
|
839 |
{ |
|
|
840 |
const T median[3]={ 1, 1, 1 }; |
|
|
841 |
const_image_ref< T > |
|
|
842 |
filterx( &median[0], 3, 1 ), |
|
|
843 |
filtery( &median[0], 1, 3 ); |
|
|
844 |
return |
|
|
845 |
normalise( correlate( correlate( im, filterx ), filtery ), |
|
|
846 |
(T)0, (T)255 ); |
|
|
847 |
} |
|
|
848 |
|
|
|
849 |
template< typename T, typename TPtr > |
|
|
850 |
image< T > softenMedium( const const_image_ref< T, TPtr > &im ) |
|
|
851 |
{ |
|
|
852 |
const T soften[3][3]={ { 1, 1, 1 }, |
|
|
853 |
{ 1, 2, 1 }, |
|
|
854 |
{ 1, 1, 1 } }; |
|
|
855 |
const_image_ref< T > filter( &soften[0][0], 3, 3 ); |
|
|
856 |
return normalise( correlate( im, filter ), (T)0, (T)255 ); |
|
|
857 |
} |
|
|
858 |
|
|
|
859 |
template< typename T, typename TPtr > |
|
|
860 |
image< T > softenLight( const const_image_ref< T, TPtr > &im ) |
|
|
861 |
{ |
|
|
862 |
const T soften[3][3]={ { 6, 12, 6 }, |
|
|
863 |
{ 12, 25, 12 }, |
|
|
864 |
{ 6, 12, 6 } }; |
|
|
865 |
const_image_ref< T > filter( &soften[0][0], 3, 3 ); |
|
|
866 |
return normalise( correlate( im, filter ), (T)0, (T)255 ); |
|
|
867 |
} |
|
|
868 |
|
|
|
869 |
template< typename T, typename TPtr > |
|
|
870 |
void oilPainting( const const_image_ref< T, TPtr > &imagein, |
|
|
871 |
image<T> &imageout, |
|
|
872 |
int regiondim) |
|
|
873 |
{ |
|
|
874 |
const int fy=regiondim; |
|
|
875 |
const int fx=regiondim; |
|
|
876 |
|
|
|
877 |
assert( &imageout != &imagein ); |
|
|
878 |
imageout.init(imagein.getWidth(),imagein.getHeight()); |
|
|
879 |
|
|
|
880 |
for (int y=0; y<imagein.getHeight(); y++) |
|
|
881 |
for (int x=0; x<imagein.getWidth(); x++) |
|
|
882 |
{ |
|
|
883 |
if (y-fy/2<0 || y+fy/2>imagein.getHeight()-1 || x-fx/2<0 || x+fx/2>imagein.getWidth()-1) |
|
|
884 |
{ |
|
|
885 |
imageout.pixel(x,y)=imagein.pixel(x,y); |
|
|
886 |
continue; |
|
|
887 |
} |
|
|
888 |
|
|
|
889 |
std::vector<int> pixcolor(regiondim*regiondim); |
|
|
890 |
std::vector<int> graylevel(256); |
|
|
891 |
|
|
|
892 |
int count=0; |
|
|
893 |
for (int j=-fy/2; j<=fy/2; j++) |
|
|
894 |
for (int i=-fx/2; i<=fx/2; i++) |
|
|
895 |
{ |
|
|
896 |
pixcolor[count]=imagein.pixel(x+i,y+j); |
|
|
897 |
graylevel[pixcolor[count]]+=1; |
|
|
898 |
|
|
|
899 |
count++; |
|
|
900 |
} |
|
|
901 |
|
|
|
902 |
count=0; |
|
|
903 |
int intensity=0, maxuse=0; |
|
|
904 |
for (int j=-fy/2; j<=fy/2; j++) |
|
|
905 |
for (int i=-fx/2; i<=fx/2; i++) |
|
|
906 |
{ |
|
|
907 |
if (graylevel[pixcolor[count]]>maxuse) |
|
|
908 |
{ |
|
|
909 |
maxuse=graylevel[pixcolor[count]]; |
|
|
910 |
intensity=pixcolor[count]; |
|
|
911 |
} |
|
|
912 |
|
|
|
913 |
count++; |
|
|
914 |
} |
|
|
915 |
|
|
|
916 |
imageout.pixel(x,y)=(T)(intensity); |
|
|
917 |
} |
|
|
918 |
|
|
|
919 |
|
|
|
920 |
} |
|
|
921 |
|
|
|
922 |
//some common features here with vector class ... |
|
|
923 |
//a cleverer man could probably use the same underlying base class |
|
|
924 |
//but for now it doesnt matter |
|
|
925 |
template< typename T, typename T1Ptr, typename T2Ptr > |
|
|
926 |
double dotProduct( const const_image_ref<T,T1Ptr> &im1, |
|
|
927 |
const const_image_ref<T,T2Ptr> &im2 ) throw (mimasexception) |
|
|
928 |
{ |
|
|
929 |
MMERROR( im1.getWidth() == im2.getWidth() && |
|
|
930 |
im1.getHeight() == im2.getHeight(), |
|
|
931 |
mimasexception, , |
|
|
932 |
"Can't (won't) compute the dot product of two images of " |
|
|
933 |
"differing sizes." ); |
|
|
934 |
|
|
|
935 |
double result = 0.0; |
|
|
936 |
|
|
|
937 |
const int size = (signed)im1.getSize(); |
|
|
938 |
const T |
|
|
939 |
*p = im1.rawData(), |
|
|
940 |
*q = im2.rawData(); |
|
|
941 |
|
|
|
942 |
for ( int i=0; i<size; i++ ) |
|
|
943 |
result += *p++ * *q++; |
|
|
944 |
|
|
|
945 |
return result; |
|
|
946 |
} |
|
|
947 |
|
|
|
948 |
/** Fast non-maxima suppression. |
|
|
949 |
This function provides fast non-maxima suppression. |
|
|
950 |
The function is provided separately, so that one can use the |
|
|
951 |
Sobel-operator as well as the Gauss-gradient together with this |
|
|
952 |
method. |
|
|
953 |
@author Jan Wedekind (jan@wedesoft.de) |
|
|
954 |
@date Mon Apr 10 13:53:00 2006 */ |
|
|
955 |
template< |
|
|
956 |
typename T1, typename T2, |
|
|
957 |
typename TAPtr, typename TBPtr, typename TCPtr |
|
|
958 |
> |
|
|
959 |
image< bool > nonMaximaSuppression |
|
|
960 |
( const const_image_ref< T1, TAPtr > &gradientX, |
|
|
961 |
const const_image_ref< T1, TBPtr > &gradientY, |
|
|
962 |
const const_image_ref< T2, TCPtr > &gradientSqr, |
|
|
963 |
T2 threshold ); |
|
|
964 |
|
|
|
965 |
} |
|
|
966 |
|
|
|
967 |
#include "image_funcs.tcc" |
|
|
968 |
|
|
|
969 |
#endif |