Subversion Repositories svnkaklik

Compare Revisions

Ignore whitespace Rev 1011 → Rev 1012

/dokumenty/skolni/BP/DOC/SRC/glossaries.tex
1,6 → 1,8
\newacronym{TOF}{ToF}{Time of flight}
\newacronym{LRF}{LRF}{Laser rangefinder}
\newacronym{TDC}{TDC}{Time to digital converter}
\newacronym{AFM}{AFM}{Atomic force microscopy}
\newacronym{APD}{APD}{Avalanche photodiode}
\newacronym{DPSS}{DPSS}{Diode-pumped solid-state LASER}
\newacronym{DPSSFD}{DPSSFD}{Diode pumped solid state frequency-doubled LASER}
\newacronym{LASER}{LASER}{Light Amplification by Stimulated Emission of Radiation}
/dokumenty/skolni/BP/DOC/SRC/laserovy_vysilac.glo
9,7 → 9,10
\glossaryentry{ToF?\glossaryentryfield{TOF}{\glsnamefont{ToF}}{Time of flight}{\relax }|setentrycounter{page}\glsnumberformat}{5}
\glossaryentry{ToF?\glossaryentryfield{TOF}{\glsnamefont{ToF}}{Time of flight}{\relax }|setentrycounter{page}\glsnumberformat}{5}
\glossaryentry{LRF?\glossaryentryfield{LRF}{\glsnamefont{LRF}}{Laser rangefinder}{\relax }|setentrycounter{page}\glsnumberformat}{5}
\glossaryentry{UV?\glossaryentryfield{UV}{\glsnamefont{UV}}{Ultraviolet (10 nm to 400 nm)}{\relax }|setentrycounter{page}\glsnumberformat}{5}
\glossaryentry{FOV?\glossaryentryfield{FOV}{\glsnamefont{FOV}}{field of view}{\relax }|setentrycounter{page}\glsnumberformat}{5}
\glossaryentry{APD?\glossaryentryfield{APD}{\glsnamefont{APD}}{Avalanche photodiode}{\relax }|setentrycounter{page}\glsnumberformat}{5}
\glossaryentry{TDC?\glossaryentryfield{TDC}{\glsnamefont{TDC}}{Time to digital converter}{\relax }|setentrycounter{page}\glsnumberformat}{5}
\glossaryentry{UV?\glossaryentryfield{UV}{\glsnamefont{UV}}{Ultraviolet (10 nm to 400 nm)}{\relax }|setentrycounter{page}\glsnumberformat}{6}
\glossaryentry{FOV?\glossaryentryfield{FOV}{\glsnamefont{FOV}}{field of view}{\relax }|setentrycounter{page}\glsnumberformat}{8}
\glossaryentry{S/N?\glossaryentryfield{SNR}{\glsnamefont{S/N}}{Signal-to-noise ratio}{\relax }|setentrycounter{page}\glsnumberformat}{8}
\glossaryentry{DPSS?\glossaryentryfield{DPSS}{\glsnamefont{DPSS}}{Diode-pumped solid-state LASER}{\relax }|setentrycounter{page}\glsnumberformat}{8}
37,7 → 40,9
\glossaryentry{SMA?\glossaryentryfield{SMA}{\glsnamefont{SMA}}{SubMiniature version A}{\relax }|setentrycounter{page}\glsnumberformat}{20}
\glossaryentry{ToF?\glossaryentryfield{TOF}{\glsnamefont{ToF}}{Time of flight}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{LRF?\glossaryentryfield{LRF}{\glsnamefont{LRF}}{Laser rangefinder}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{TDC?\glossaryentryfield{TDC}{\glsnamefont{TDC}}{Time to digital converter}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{AFM?\glossaryentryfield{AFM}{\glsnamefont{AFM}}{Atomic force microscopy}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{APD?\glossaryentryfield{APD}{\glsnamefont{APD}}{Avalanche photodiode}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{DPSS?\glossaryentryfield{DPSS}{\glsnamefont{DPSS}}{Diode-pumped solid-state LASER}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{DPSSFD?\glossaryentryfield{DPSSFD}{\glsnamefont{DPSSFD}}{Diode pumped solid state frequency-doubled LASER}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{LASER?\glossaryentryfield{LASER}{\glsnamefont{LASER}}{Light Amplification by Stimulated Emission of Radiation}{\relax }|setentrycounter{page}\glsnumberformat}{33}
/dokumenty/skolni/BP/DOC/SRC/laserovy_vysilac.pdf
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
/dokumenty/skolni/BP/DOC/SRC/laserovy_vysilac.tex
260,8 → 260,11
Význam jednotlivých částí v blokovém schématu je následující.
 
\begin{description}
\item[Laser pulser] - Zdroj měřícího impulzu splnující požadavky popsané v následující sekci .
 
\item[Target] - předmět jehož vzdálenost měříme. V našem případě to bude základna oblačnosti.
\item[Optics] - Vstupní a výstupní optická část obvykle realizována některou z konstrukcí optického teleskopu (Kepler, Newton). Důležitá je kvůli vymezení divergence vystupujícího svazku a omezení \gls{FOV} detektoru. Její další úlohou je také ochrana vnitřních částí přístroje před vnějším prostředím. Proto musí mít vnější optická plocha často speciální konstrukci.
\item[Laser pulser] - Zdroj měřícího impulzu splňující požadavky popsané v následující sekci \ref{vysilac_pozadavky}.
\item[Receiver channel] - Detektor selektivně citlivý na vlnové délce vysílaného záření. Může být realizován PIN diodou, nebo v případě jednofotonového měření \gls{APD} detektorem.
\item[Time to digital converter] - Elektronický obvod, umožňující přesné měření časového intervalu. Jeho přesnost vedle délky vyslaného laserového impulzu rozhoduje o výsledném rozlišení přístroje. V principu jede o digitální čítač. Pro přesné měření jsou ale využívány speciální \acrshort{TDC} integrované obvody. Jeho výstupem je číselná hodnota odpovídající délce časového intervalu.
\end{description}
 
\section{Požadavky na pulsní laserový vysílač}
373,7 → 376,7
 
\section{Fyzikální model laserového vysílače}
 
K zachycení dějů v aktivním prostředí je zajímavé pokusit se o numerické namodelování laseru. Vzhledem, tomu, že jde převážně o materiálové a těžko měřitelné jevy je přesné modelování obtížné, přesto ale bude uvedeno několik základních postupů, které mohou tento problém řešit.
K zachycení dějů v aktivním prostředí je zajímavé pokusit se o numerické namodelování laseru. Vzhledem, tomu, že jde převážně o materiálové a těžko měřitelné jevy je přesné modelování obtížné, přesto bude nastíněn postup, který může tento problém řešit.
 
\subsection{Rychlostní rovnice}
\label{rychlostni_rovnice}
418,12 → 421,14
\label{narust_populace}
\end{equation}
 
Následně začíná vlivem spontánní emise narůstat hustota fotonů v rezonátoru a naopak se stává zanedbatelná rychlost čerpání i ztráty v rezonátoru. Rychlostní rovnice pak nabývají tvaru \ref{equ_relaxacni_oscilace}.
Následně začíná vlivem spontánní emise narůstat hustota fotonů v rezonátoru a naopak se stává zanedbatelná rychlost čerpání i ztráty v rezonátoru. Rychlostní rovnice pak nabývají tvaru \ref{equ_relaxacni_oscilace_n} a \ref{equ_relaxacni_oscilace_pho}.
 
 
\begin{eqnarray}
\frac{\partial n}{\partial t} &=& -n c \sigma \phi \gamma \\ \frac{\partial \phi}{\partial t} &=& c \sigma \phi n
\label{equ_relaxacni_oscilace}
\label{equ_relaxacni_oscilace_n}
\frac{\partial n}{\partial t} &=& -n c \sigma \phi \gamma \\
\frac{\partial \phi}{\partial t} &=& c \sigma \phi n
\label{equ_relaxacni_oscilace_pho}
\end{eqnarray}
 
Relaxační oscilace jsou tedy fundamentálním jevem, který je předpovězený rychlostními rovnicemi. Ve značném množství aplikací ale jde o jev nežádoucí a proto se pokusy o jejich aktivní tlumení datují již do roku 1962 \cite{koechner}. K tomuto účelu byly využívány elementy v podobě Kerrovy cely, Pockelsovy cely nebo akusto-optické modulátory. Moderní diodově čerpané lasery s velmi nízkým šumem, využívají monolitické konstrukce rezonátoru s konduktivním odvodem tepla a rychlou elektronickou zpětnou vazbu ovlivňující čerpání.