0,0 → 1,379 |
/*! \file uart2.c \brief Dual UART driver with buffer support. */ |
//***************************************************************************** |
// |
// File Name : 'uart2.c' |
// Title : Dual UART driver with buffer support |
// Author : Pascal Stang - Copyright (C) 2000-2004 |
// Created : 11/20/2000 |
// Revised : 07/04/2004 |
// Version : 1.0 |
// Target MCU : ATMEL AVR Series |
// Editor Tabs : 4 |
// |
// Description : This is a UART driver for AVR-series processors with two |
// hardware UARTs such as the mega161 and mega128 |
// |
// This code is distributed under the GNU Public License |
// which can be found at http://www.gnu.org/licenses/gpl.txt |
// |
//***************************************************************************** |
|
#include <avr/io.h> |
#include <avr/interrupt.h> |
|
#include "buffer.h" |
#include "uart2.h" |
|
// UART global variables |
// flag variables |
volatile u08 uartReadyTx[2]; |
volatile u08 uartBufferedTx[2]; |
// receive and transmit buffers |
cBuffer uartRxBuffer[2]; |
cBuffer uartTxBuffer[2]; |
unsigned short uartRxOverflow[2]; |
#ifndef UART_BUFFER_EXTERNAL_RAM |
// using internal ram, |
// automatically allocate space in ram for each buffer |
static char uart0RxData[UART0_RX_BUFFER_SIZE]; |
static char uart0TxData[UART0_TX_BUFFER_SIZE]; |
static char uart1RxData[UART1_RX_BUFFER_SIZE]; |
static char uart1TxData[UART1_TX_BUFFER_SIZE]; |
#endif |
|
typedef void (*voidFuncPtru08)(unsigned char); |
volatile static voidFuncPtru08 UartRxFunc[2]; |
|
void uartInit(void) |
{ |
// initialize both uarts |
uart0Init(); |
uart1Init(); |
} |
|
void uart0Init(void) |
{ |
// initialize the buffers |
uart0InitBuffers(); |
// initialize user receive handlers |
UartRxFunc[0] = 0; |
// enable RxD/TxD and interrupts |
outb(UCSR0B, BV(RXCIE)|BV(TXCIE)|BV(RXEN)|BV(TXEN)); |
// set default baud rate |
uartSetBaudRate(0, UART0_DEFAULT_BAUD_RATE); |
// initialize states |
uartReadyTx[0] = TRUE; |
uartBufferedTx[0] = FALSE; |
// clear overflow count |
uartRxOverflow[0] = 0; |
// enable interrupts |
sei(); |
} |
|
void uart1Init(void) |
{ |
// initialize the buffers |
uart1InitBuffers(); |
// initialize user receive handlers |
UartRxFunc[1] = 0; |
// enable RxD/TxD and interrupts |
outb(UCSR1B, BV(RXCIE)|BV(TXCIE)|BV(RXEN)|BV(TXEN)); |
// set default baud rate |
uartSetBaudRate(1, UART1_DEFAULT_BAUD_RATE); |
// initialize states |
uartReadyTx[1] = TRUE; |
uartBufferedTx[1] = FALSE; |
// clear overflow count |
uartRxOverflow[1] = 0; |
// enable interrupts |
sei(); |
} |
|
void uart0InitBuffers(void) |
{ |
#ifndef UART_BUFFER_EXTERNAL_RAM |
// initialize the UART0 buffers |
bufferInit(&uartRxBuffer[0], uart0RxData, UART0_RX_BUFFER_SIZE); |
bufferInit(&uartTxBuffer[0], uart0TxData, UART0_TX_BUFFER_SIZE); |
#else |
// initialize the UART0 buffers |
bufferInit(&uartRxBuffer[0], (u08*) UART0_RX_BUFFER_ADDR, UART0_RX_BUFFER_SIZE); |
bufferInit(&uartTxBuffer[0], (u08*) UART0_TX_BUFFER_ADDR, UART0_TX_BUFFER_SIZE); |
#endif |
} |
|
void uart1InitBuffers(void) |
{ |
#ifndef UART_BUFFER_EXTERNAL_RAM |
// initialize the UART1 buffers |
bufferInit(&uartRxBuffer[1], uart1RxData, UART1_RX_BUFFER_SIZE); |
bufferInit(&uartTxBuffer[1], uart1TxData, UART1_TX_BUFFER_SIZE); |
#else |
// initialize the UART1 buffers |
bufferInit(&uartRxBuffer[1], (u08*) UART1_RX_BUFFER_ADDR, UART1_RX_BUFFER_SIZE); |
bufferInit(&uartTxBuffer[1], (u08*) UART1_TX_BUFFER_ADDR, UART1_TX_BUFFER_SIZE); |
#endif |
} |
|
void uartSetRxHandler(u08 nUart, void (*rx_func)(unsigned char c)) |
{ |
// make sure the uart number is within bounds |
if(nUart < 2) |
{ |
// set the receive interrupt to run the supplied user function |
UartRxFunc[nUart] = rx_func; |
} |
} |
|
void uartSetBaudRate(u08 nUart, u32 baudrate) |
{ |
// calculate division factor for requested baud rate, and set it |
u16 bauddiv = ((F_CPU+(baudrate*8L))/(baudrate*16L)-1); |
if(nUart) |
{ |
outb(UBRR1L, bauddiv); |
#ifdef UBRR1H |
outb(UBRR1H, bauddiv>>8); |
#endif |
} |
else |
{ |
outb(UBRR0L, bauddiv); |
#ifdef UBRR0H |
outb(UBRR0H, bauddiv>>8); |
#endif |
} |
} |
|
cBuffer* uartGetRxBuffer(u08 nUart) |
{ |
// return rx buffer pointer |
return &uartRxBuffer[nUart]; |
} |
|
cBuffer* uartGetTxBuffer(u08 nUart) |
{ |
// return tx buffer pointer |
return &uartTxBuffer[nUart]; |
} |
|
void uartSendByte(u08 nUart, u08 txData) |
{ |
// wait for the transmitter to be ready |
// while(!uartReadyTx[nUart]); |
// send byte |
if(nUart) |
{ |
while(!(UCSR1A & (1<<UDRE))); |
outb(UDR1, txData); |
} |
else |
{ |
while(!(UCSR0A & (1<<UDRE))); |
outb(UDR0, txData); |
} |
// set ready state to FALSE |
uartReadyTx[nUart] = FALSE; |
} |
|
void uart0SendByte(u08 data) |
{ |
// send byte on UART0 |
uartSendByte(0, data); |
} |
|
void uart1SendByte(u08 data) |
{ |
// send byte on UART1 |
uartSendByte(1, data); |
} |
|
int uart0GetByte(void) |
{ |
// get single byte from receive buffer (if available) |
u08 c; |
if(uartReceiveByte(0,&c)) |
return c; |
else |
return -1; |
} |
|
int uart1GetByte(void) |
{ |
// get single byte from receive buffer (if available) |
u08 c; |
if(uartReceiveByte(1,&c)) |
return c; |
else |
return -1; |
} |
|
|
u08 uartReceiveByte(u08 nUart, u08* rxData) |
{ |
// make sure we have a receive buffer |
if(uartRxBuffer[nUart].size) |
{ |
// make sure we have data |
if(uartRxBuffer[nUart].datalength) |
{ |
// get byte from beginning of buffer |
*rxData = bufferGetFromFront(&uartRxBuffer[nUart]); |
return TRUE; |
} |
else |
return FALSE; // no data |
} |
else |
return FALSE; // no buffer |
} |
|
void uartFlushReceiveBuffer(u08 nUart) |
{ |
// flush all data from receive buffer |
bufferFlush(&uartRxBuffer[nUart]); |
} |
|
u08 uartReceiveBufferIsEmpty(u08 nUart) |
{ |
return (uartRxBuffer[nUart].datalength == 0); |
} |
|
void uartAddToTxBuffer(u08 nUart, u08 data) |
{ |
// add data byte to the end of the tx buffer |
bufferAddToEnd(&uartTxBuffer[nUart], data); |
} |
|
void uart0AddToTxBuffer(u08 data) |
{ |
uartAddToTxBuffer(0,data); |
} |
|
void uart1AddToTxBuffer(u08 data) |
{ |
uartAddToTxBuffer(1,data); |
} |
|
void uartSendTxBuffer(u08 nUart) |
{ |
// turn on buffered transmit |
uartBufferedTx[nUart] = TRUE; |
// send the first byte to get things going by interrupts |
uartSendByte(nUart, bufferGetFromFront(&uartTxBuffer[nUart])); |
} |
|
u08 uartSendBuffer(u08 nUart, char *buffer, u16 nBytes) |
{ |
register u08 first; |
register u16 i; |
|
// check if there's space (and that we have any bytes to send at all) |
if((uartTxBuffer[nUart].datalength + nBytes < uartTxBuffer[nUart].size) && nBytes) |
{ |
// grab first character |
first = *buffer++; |
// copy user buffer to uart transmit buffer |
for(i = 0; i < nBytes-1; i++) |
{ |
// put data bytes at end of buffer |
bufferAddToEnd(&uartTxBuffer[nUart], *buffer++); |
} |
|
// send the first byte to get things going by interrupts |
uartBufferedTx[nUart] = TRUE; |
uartSendByte(nUart, first); |
// return success |
return TRUE; |
} |
else |
{ |
// return failure |
return FALSE; |
} |
} |
|
// UART Transmit Complete Interrupt Function |
void uartTransmitService(u08 nUart) |
{ |
// check if buffered tx is enabled |
if(uartBufferedTx[nUart]) |
{ |
// check if there's data left in the buffer |
if(uartTxBuffer[nUart].datalength) |
{ |
// send byte from top of buffer |
if(nUart) |
outb(UDR1, bufferGetFromFront(&uartTxBuffer[1]) ); |
else |
outb(UDR0, bufferGetFromFront(&uartTxBuffer[0]) ); |
} |
else |
{ |
// no data left |
uartBufferedTx[nUart] = FALSE; |
// return to ready state |
uartReadyTx[nUart] = TRUE; |
} |
} |
else |
{ |
// we're using single-byte tx mode |
// indicate transmit complete, back to ready |
uartReadyTx[nUart] = TRUE; |
} |
} |
|
// UART Receive Complete Interrupt Function |
void uartReceiveService(u08 nUart) |
{ |
u08 c; |
// get received char |
if(nUart) |
c = inb(UDR1); |
else |
c = inb(UDR0); |
|
// if there's a user function to handle this receive event |
if(UartRxFunc[nUart]) |
{ |
// call it and pass the received data |
UartRxFunc[nUart](c); |
} |
else |
{ |
// otherwise do default processing |
// put received char in buffer |
// check if there's space |
if( !bufferAddToEnd(&uartRxBuffer[nUart], c) ) |
{ |
// no space in buffer |
// count overflow |
uartRxOverflow[nUart]++; |
} |
} |
} |
|
UART_INTERRUPT_HANDLER(SIG_UART0_TRANS) |
{ |
// service UART0 transmit interrupt |
uartTransmitService(0); |
} |
|
UART_INTERRUPT_HANDLER(SIG_UART1_TRANS) |
{ |
// service UART1 transmit interrupt |
uartTransmitService(1); |
} |
|
UART_INTERRUPT_HANDLER(SIG_UART0_RECV) |
{ |
// service UART0 receive interrupt |
uartReceiveService(0); |
} |
|
UART_INTERRUPT_HANDLER(SIG_UART1_RECV) |
{ |
// service UART1 receive interrupt |
uartReceiveService(1); |
} |