Subversion Repositories svnkaklik

Compare Revisions

Ignore whitespace Rev 1021 → Rev 1022

/dokumenty/skolni/BP/DOC/SRC/laserovy_vysilac.glo
18,6 → 18,7
\glossaryentry{FOV?\glossaryentryfield{FOV}{\glsnamefont{FOV}}{field of view}{\relax }|setentrycounter{page}\glsnumberformat}{8}
\glossaryentry{S/N?\glossaryentryfield{SNR}{\glsnamefont{S/N}}{Signal-to-noise ratio}{\relax }|setentrycounter{page}\glsnumberformat}{8}
\glossaryentry{DPSS?\glossaryentryfield{DPSS}{\glsnamefont{DPSS}}{Diode-pumped solid-state LASER}{\relax }|setentrycounter{page}\glsnumberformat}{9}
\glossaryentry{UV?\glossaryentryfield{UV}{\glsnamefont{UV}}{Ultraviolet (10 nm to 400 nm)}{\relax }|setentrycounter{page}\glsnumberformat}{10}
\glossaryentry{Nd:YAG?\glossaryentryfield{Nd:YAG}{\glsnamefont{Nd:YAG}}{Neodymium-doped yttrium aluminum garnet ($Nd:Y_3Al_5O_12$)}{\relax }|setentrycounter{page}\glsnumberformat}{10}
\glossaryentry{Nd:YVO$_4$?\glossaryentryfield{Nd:YVO}{\glsnamefont{Nd:YVO$_4$}}{Neodymium-doped yttrium orthovanadate (Nd:YVO$_4$)}{\relax }|setentrycounter{page}\glsnumberformat}{10}
\glossaryentry{DPSSFD?\glossaryentryfield{DPSSFD}{\glsnamefont{DPSSFD}}{Diode pumped solid state frequency-doubled LASER}{\relax }|setentrycounter{page}\glsnumberformat}{11}
29,10 → 30,10
\glossaryentry{DPSSFD?\glossaryentryfield{DPSSFD}{\glsnamefont{DPSSFD}}{Diode pumped solid state frequency-doubled LASER}{\relax }|setentrycounter{page}\glsnumberformat}{14}
\glossaryentry{MPE?\glossaryentryfield{MPE}{\glsnamefont{MPE}}{maximum permissible exposure}{\relax }|setentrycounter{page}\glsnumberformat}{15}
\glossaryentry{FOV?\glossaryentryfield{FOV}{\glsnamefont{FOV}}{field of view}{\relax }|setentrycounter{page}\glsnumberformat}{15}
\glossaryentry{UAV?\glossaryentryfield{UAV}{\glsnamefont{UAV}}{unmanned aerial vehicle}{\relax }|setentrycounter{page}\glsnumberformat}{15}
\glossaryentry{FWHM?\glossaryentryfield{FWHM}{\glsnamefont{FWHM}}{Full width at half maximum}{\relax }|setentrycounter{page}\glsnumberformat}{15}
\glossaryentry{VCSEL?\glossaryentryfield{VCSEL}{\glsnamefont{VCSEL}}{Vertical Cavity Surface Emitting Laser}{\relax }|setentrycounter{page}\glsnumberformat}{15}
\glossaryentry{UAV?\glossaryentryfield{UAV}{\glsnamefont{UAV}}{unmanned aerial vehicle}{\relax }|setentrycounter{page}\glsnumberformat}{16}
\glossaryentry{FWHM?\glossaryentryfield{FWHM}{\glsnamefont{FWHM}}{Full width at half maximum}{\relax }|setentrycounter{page}\glsnumberformat}{16}
\glossaryentry{VCSEL?\glossaryentryfield{VCSEL}{\glsnamefont{VCSEL}}{Vertical Cavity Surface Emitting Laser}{\relax }|setentrycounter{page}\glsnumberformat}{16}
\glossaryentry{FWHM?\glossaryentryfield{FWHM}{\glsnamefont{FWHM}}{Full width at half maximum}{\relax }|setentrycounter{page}\glsnumberformat}{16}
\glossaryentry{LRF?\glossaryentryfield{LRF}{\glsnamefont{LRF}}{Laser rangefinder}{\relax }|setentrycounter{page}\glsnumberformat}{16}
\glossaryentry{MD?\glossaryentryfield{MD}{\glsnamefont{MD}}{Monitor Diode}{\relax }|setentrycounter{page}\glsnumberformat}{18}
\glossaryentry{LD?\glossaryentryfield{LD}{\glsnamefont{LD}}{LASER Diode}{\relax }|setentrycounter{page}\glsnumberformat}{18}
/dokumenty/skolni/BP/DOC/SRC/laserovy_vysilac.pdf
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
/dokumenty/skolni/BP/DOC/SRC/laserovy_vysilac.tex
257,13 → 257,13
 
Vzhledem k tomu, že pro větší vzdálenosti je pravděpodobnost zachycení zpětně odraženého fotonu malá, jsou využívány různé techniky pro zlepšení poměru \acrshort{SNR}. Často jde o metody pokročilého signálového zpracování jako například lock-in měření.
 
Tato metoda má vzhledem k předchozím podstatnou výhodou především v tom, že její princip umožňuje změřit vzdálenosti v obrovském rozsahu a přitom neklade vysoké nároky na odstup měřeného signálu od šumu. Běžně se proto využívá například pro měření a následné výpočty korekcí drah družic, nebo i měření podélných parametrů optických komunikačních vláken, kde je metoda známa, jako \acrshort{TDR}.
Možnosti aplikace metody měření doby šíření jsou tak rozsáhlé, že je používána i v mnoha dalších přístrojích, jako radiolokátory nebo echolokátory.
Tato metoda má vzhledem k předchozím podstatnou výhodou především v tom, že její princip umožňuje změřit vzdálenosti v obrovském rozsahu a přitom neklade vysoké nároky na odstup měřeného signálu od šumu. Běžně se proto využívá například pro měření a následné výpočty korekcí drah družic nebo měření podélných parametrů optických komunikačních vláken, kde je metoda známa, jako \acrshort{TDR}.
Možnosti aplikace metody měření doby šíření jsou tak rozsáhlé, že je využívána i v mnoha dalších přístrojích jako radiolokátory nebo echolokátory.
 
V principu existují dvě možné varianty implementace \gls{TOF} metody měření vzdálenosti, které se liší způsobem zpracování signálu. První je měření časového průběhu intenzity odraženého signálu z prostředí před vysílačem. Využívá se při tom rychlý intenzitní detektor a vzorkovací obvod, který v intervalech odpovídajících časovému rozlišení přístroje periodicky vzorkuje signál z detektoru. Velkou výhodou tohoto přístupu je, že i z jediného výstřelu laseru je možné získat poměrně značné množství informací.
Problémem ale je požadavek na velký špičkový výstupní výkon laseru (řádově stovky Wattů), který může značně snížit bezpečnost provozu zařízení. Nezanedbatelné jsou zároveň také požadavky na velkou vstupní aperturu detekčního teleskopu, která je obvykle řádově desítky cm.
Problémem je ale požadavek na velký špičkový výstupní výkon laseru (řádově stovky Wattů), který může značně snížit bezpečnost provozu zařízení. Nezanedbatelné jsou zároveň také požadavky na velkou vstupní aperturu detekčního teleskopu, která je obvykle řádově desítky cm.
Používá se proto i méně náročná implementace, která využívá kvantovou povahu světla a snímačem jsou detekovány pouze jednotlivé odražené fotony, což umožňuje podstatně snížit nároky na špičkový výstupní výkon i na sběrnou plochu detektoru. Nevýhodou ale je nutnost opakovat mnoho měření k získání několika tisíc až stovek tisíc hodnot, které je pak možné statisticky zpracovat. Podstatnou výhodou této metody ale je fakt, že je možné ji aplikovat i na extrémní vzdálenosti, kde i původní vícefotonová implementace již z principiálních důvodů selhává (respektive konverguje k této jednofotonové variantě) \cite{CTU_reports}.
Používá se proto i méně náročná implementace, která využívá kvantovou povahu světla, a kde jsou snímačem detekovány pouze jednotlivé odražené fotony, což umožňuje podstatně snížit nároky na špičkový výstupní výkon i na sběrnou plochu detektoru. Nevýhodou je ale nutnost opakovat mnoho měření k získání několika tisíc až stovek tisíc hodnot, které je pak možné statisticky zpracovat. Podstatnou výhodou této metody ale je fakt, že je možné ji aplikovat i na extrémní vzdálenosti, kde i původní vícefotonová implementace již z principiálních důvodů selhává (respektive konverguje k této jednofotonové variantě) \cite{CTU_reports}.
 
Tato práce je proto zaměřena právě na tento jednofotonový princip měření.
 
273,17 → 273,19
Význam jednotlivých částí v blokovém schématu je následující.
 
\begin{description}
\item[Target] - předmět jehož vzdálenost měříme. V našem případě to bude základna oblačnosti. Tedy vodní kapky mikroskopických rozměrů.
\item[Optics] - Vstupní a výstupní optická část obvykle realizována některou z konstrukcí optického teleskopu (Kepler, Newton). Důležitá je kvůli vymezení divergence vystupujícího svazku a omezení \gls{FOV} detektoru. Její další úlohou je také ochrana vnitřních částí přístroje před vnějším prostředím. Proto musí mít vnější optická plocha často speciální konstrukci.
\item[Target] - předmět jehož vzdálenost měříme. V našem případě to bude základna oblačnosti. (tzn. vodní kapky mikroskopických rozměrů).
\item[Optics] - Vstupní a výstupní optická část, obvykle realizována některou z konstrukcí optického teleskopu (Kepler, Newton). Důležitá je kvůli vymezení divergence vystupujícího svazku a omezení \gls{FOV} detektoru. Její další úlohou je také ochrana vnitřních částí přístroje před vnějším prostředím. Proto musí mít vnější optická plocha často speciální konstrukci.
\item[Laser pulser] - Zdroj měřícího impulzu splňující požadavky popsané v následující sekci \ref{vysilac_pozadavky}.
\item[Receiver channel] - Detektor selektivně citlivý na vlnové délce vysílaného záření. Může být realizován PIN diodou, nebo v případě jednofotonového měření \gls{APD} detektorem.
\item[Time to digital converter] - Elektronický obvod, umožňující přesné měření časového intervalu. Jeho přesnost vedle délky vyslaného laserového impulzu rozhoduje o výsledném rozlišení přístroje. V principu jede o digitální čítač. Pro přesné měření jsou ale využívány speciální \acrshort{TDC} integrované obvody. Jeho výstupem je číselná hodnota odpovídající délce časového intervalu.
 
\item[Receiver channel] - Detektor selektivně citlivý na vlnovou délku vysílaného záření. Může být realizován PIN diodou, nebo v případě jednofotonového měření \gls{APD} detektorem.
 
\item[Time to digital converter] - Elektronický obvod umožňující přesné měření časového intervalu. Jeho přesnost vedle délky vyslaného laserového impulzu rozhoduje o výsledném rozlišení přístroje. V principu jede o digitální čítač. Pro přesné měření jsou ale využívány speciální \acrshort{TDC} integrované obvody. Jeho výstupem je číselná hodnota odpovídající délce časového intervalu.
\end{description}
 
\section{Požadavky na pulsní laserový vysílač}
\label{vysilac_pozadavky}
 
Protože laserový vysílač může mít různé specifické parametry podle účelu jeho použití, tak se následující kapitola týká parametrů vysílače určeného k měření oblačnosti.
Protože laserový vysílač může mít různé specifické parametry podle účelu jeho použití, týká se následující kapitola parametrů vysílače určeného k měření oblačnosti.
 
\subsection{Vlnová délka záření}
 
294,7 → 296,7
\label{atmosfera_ztraty}
\end{figure}
 
Ovšem vzhledem k tomu, že na krátkých vlnových délkách směrem k \acrshort{UV} oblasti strmě stoupá vliv nežádoucího Rayleighova rozptylu (rovnice \ref{Raylengh}), který omezuje použitelný dosah měření. Tak je vhodné použít střední vlnovou délku optického záření, ze zelené oblasti spektra. Která relativně dobře prochází čistou atmosférou.
Vzhledem k tomu, že na krátkých vlnových délkách směrem k \acrshort{UV} oblasti strmě stoupá vliv nežádoucího Rayleighova rozptylu (rovnice \ref{Raylengh}), který omezuje použitelný dosah měření, je vhodné použít střední vlnovou délku optického záření ze zelené oblasti spektra. Která relativně dobře prochází čistou atmosférou.
 
\begin{equation}
\kappa _R (\lambda) = K \frac{1}{\lambda ^4}
302,10 → 304,10
\end{equation}
\begin{description}
\item[$\kappa _R (\lambda)$] - extinkční koeficient Rayleihova rozptylu.
\item[$K$] je parametr závisející na typech plynů v prostředí a jejich parciálních tlacích.
\item[$K$] - parametr závisející na typech plynů v prostředí a jejich parciálních tlacích.
\end{description}
 
Pro měření oblačnosti (částic) je však podstatný Mieův rozptyl (Mie scaterring), ke kterému dochází na částicích, které jsou srovnatelné s vlnovou délkou záření. Tento rozptyl má složitější závislost na vlnové délce, než Rayleighův díky vlivu geometrie částic. Naměřená závislost ze zdroje \cite{snih_vlocky} je uvedena na obrázku \ref{odrazivost_mraky}.
Pro měření oblačnosti (částic) je však podstatný Mieův rozptyl (Mie scaterring), ke kterému dochází na částicích, které jsou srovnatelné s vlnovou délkou záření. Tento rozptyl má složitější závislost na vlnové délce než Rayleighův díky vlivu geometrie částic. Naměřená závislost ze zdroje \cite{snih_vlocky} je uvedena na obrázku \ref{odrazivost_mraky}.
 
\begin{figure}[htbp]
\includegraphics[width=150mm]{./img/grafy/vlocky_snih.jpg}
315,21 → 317,21
 
\subsection{Délka výstupního světelného impulzu}
 
V případě, že nás zajímá metoda založená na měření doby šíření, tak od laserového vysílače budeme také požadovat, aby umožňoval generovat krátké časové impulzy. Což je důležité kvůli lepšímu časovému rozlišení při měření a následnému lepšímu prostorovému rozlišení při měření vzdálenosti. Je to dáno tím, že v impulzu je obvykle vysláno velké množství fotonů ale zpátky v detektoru je detekován jeden. A v případě dlouhého impulzu pak nejsme schopni určit z které části impulzu nám detekovaný foton přišel.
V případě, že nás zajímá metoda založená na měření doby šíření, budeme od laserového vysílače také požadovat, aby umožňoval generovat krátké časové impulzy, což je důležité kvůli lepšímu časovému rozlišení při měření a následnému lepšímu prostorovému rozlišení při měření vzdálenosti. Je to dáno tím, že v impulzu je obvykle vysláno velké množství fotonů, ale zpátky v detektoru je detekován pouze jeden. V případě dlouhého impulzu tedy pak nejsme schopni určit, z které části impulzu nám detekovaný foton přišel.
 
Pro případ měření výšky základny oblačnosti, která sama o sobě nemá příliš strmý přechod je zbytečné měřit s přesností lepší, než řádově metry. Proto stačí od laserového vysílače požadovat délky pulzů kratší, než stovky nanosekund.
Pro případ měření výšky základny oblačnosti, která sama o sobě nemá příliš strmý přechod, je zbytečné měřit s přesností vyšší, než řádově metry. Proto stačí od laserového vysílače požadovat délky pulzů kratší, než stovky nanosekund.
 
\subsection{Energie impulzu}
 
Energie výstupního impulzu je ideálně co největší, aby bylo dosaženo vysoké pravděpodobnosti zachycení některého zpětně odraženého fotonu v každém měření. Ale vzhledem k tomu, že je třeba brát ohled i na bezpečnostní rizika laserového systému, tak je potřeba se držet bezpečných úrovní pro intenzity elektromagnetického záření, které předepisuje norma IEC/EN 60825-1.
Energie výstupního impulzu by měla být ideálně co největší, aby bylo dosaženo vysoké pravděpodobnosti zachycení některého zpětně odraženého fotonu v každém měření. Zároveň je však třeba brát ohled i na bezpečnostní rizika laserového systému a držet se bezpečných úrovní pro intenzity elektromagnetického záření, které předepisuje norma IEC/EN 60825-1, která pro vlnovou délku 532nm a impulz délky 100ns specifikuje pro člověka bezpečnou hodnotu \gls{MPE} jako 0,75uJ/cm$^2$. Laserové zařízení splňující tento požadavek za všech okolností je pak považováno za bezpečné a označováno třídou bezpečnosti 1. Pokud tento požadavek nemůže být splněn za všech okolností (například díky použití nějaké externí kolimační optiky), je zařízení deklarováno jako 1M.
 
Která pro vlnovou délku 532nm a impulz délky 100ns specifikuje pro člověka bezpečnou hodnotu \gls{MPE} jako 0,75uJ/cm$^2$. Laserové zařízení splňující tento požadavek za všech okolností je pak považováno za bezpečné a označováno třídou bezpečnosti 1. Pokud tento požadavek nemůže být splněn za všech okolností, například díky použití nějaké externí kolimační optiky, tak je zařízení deklarováno, jako 1M. Zvláštním případem je provoz laserových zařízení ve venkovním prostředí, kdy může docházet k interakci s letovým provozem. Zde zatím neexistuje konzistentní opatření které by definovalo bezpečnost provozu \cite{wiki:aviation_lasers}. Podle doporučení U.S. FAA by však v běžném letovém prostoru \footnote{Dále než 18,5km od letiště a výše než 3000m nad povrchem.} neměla intenzita záření přesáhnout 2,5mW/cm$^2$.
Zvláštním případem je provoz laserových zařízení ve venkovním prostředí, kdy může docházet k interakci s letovým provozem. Zde zatím neexistuje konzistentní opatření, které by definovalo bezpečnost provozu \cite{wiki:aviation_lasers}. Podle doporučení U.S. FAA by však v běžném letovém prostoru \footnote{Dále než 18,5km od letiště a výše než 3000m nad povrchem.} neměla intenzita záření přesáhnout 2,5mW/cm$^2$.
 
Vysílač tedy musí být konstruován tak, aby výstupní svazek (který bude v případě využití jako ceilometru směřovat svisle do atmosféry) měl dostatečně malou hustotu energie, aby nebyla nebezpečná pro letecký provoz a ideálně ani pro případné živočichy pohybující se nad laserovým měřičem.
 
\subsection{Divergence a parametry svazku ve vzdálené zóně}
 
Během vygenerování balíku fotonů laserovým vysílačem, mají na prostorové rozložení energie v pulzu vliv různé asymetrie laserové dutiny, rezonátoru a apertury. Důsledkem obvykle je, jiný než gaussovský příčný profil svazku. A také vlivem konečného rozměru výstupní apertury i nenulová rozbíhavost svazku. Vzhledem k tomu, že svazek je takto modifikován primárně difrakčními jevy, tak je smysluplné zkoumat profil svazku hlavně ve vzdálené zóně. Avšak existuje difrakční limit minimální divergence svazku na apertuře konečného průměru, který lze vyjádřit vztahem \ref{difrakcni_limit}.
Během generování balíku fotonů laserovým vysílačem mají na prostorové rozložení energie v pulzu vliv různé asymetrie laserové dutiny, rezonátoru a apertury. Důsledkem obvykle je jiný než gaussovský příčný profil svazku a vlivem konečného rozměru výstupní apertury i jeho nenulová rozbíhavost. Vzhledem k tomu, že svazek je takto modifikován primárně difrakčními jevy, je smysluplné zkoumat profil svazku hlavně ve vzdálené zóně. Existuje však difrakční limit minimální divergence svazku na apertuře konečného průměru, který lze vyjádřit vztahem \ref{difrakcni_limit}.
\begin{equation}
\theta = \frac{2 \lambda}{\pi w_0}
336,20 → 338,21
\label{difrakcni_limit}
\end{equation}
\begin{description}
\item[$\theta$] - divergence svazku (plný úhel).
\item[$\lambda$] - vlnová délka záření.
\item[$w_0$] - poloměr nejužšího místa svazku.
\item[$\theta$] - divergence svazku (plný úhel)
\item[$\lambda$] - vlnová délka záření
\item[$w_0$] - poloměr nejužšího místa svazku
\end{description}
 
Pro laserový vysílač používaný k měření oblačnosti je však podstatné, že pokud předpokládáme velikost oblaku minimálně stejnou, jako průměr svazku v dané výšce, tak počet odražených fotonů není závislý na divergenci svazku výstupního záření (platí vztah \ref{radarova_rovnice}).
Pro laserový vysílač používaný k měření oblačnosti je však podstatné, že pokud předpokládáme velikost oblaku minimálně stejnou, jako průměr svazku v dané výšce, není počet odražených fotonů závislý na divergenci svazku výstupního záření (platí vztah \ref{radarova_rovnice}).
Větší divergence svazku však vyžaduje stejný \acrshort{FOV} na teleskopu přijímače, což komplikuje dosažení dobrého poměru \acrshort{SNR}.
 
\subsection{ Nejistota spouštění (Trigger jitter)}
 
Nejistota spuštění je časový parametr, který určuje velikost intervalu během kterého může po náhodném čase od sepnutí laseru dojít k vygenerování světelného impulzu. Skutečnost, že tato doba není striktně konstantní je dána mimo jiné například tím, že v laserovém oscilátoru vzniká stimulovaný světelný impulz na základě prvního uvolněného spontánního fotonu, k jehož uvolnění dochází v náhodném čase.
Nejistota spouštění je časový parametr, který určuje velikost intervalu, během kterého může po náhodném čase od sepnutí laseru dojít k vygenerování světelného impulzu. Skutečnost, že tato doba není striktně konstantní, je dána mimo jiné například tím, že v laserovém oscilátoru vzniká stimulovaný světelný impulz na základě prvního uvolněného spontánního fotonu, k jehož uvolnění dochází v náhodném čase.
 
Pro jednoduchost konstrukce laserového vysílače je výhodné, pokud laser generuje impulsy se známým zpožděním, nebot pak není nutné měřit přesnou dobu, kdy vygenerovaný balík fotonů ve skutečnosti opustil vysílač. Vzhledem k plánovanému použití vysílače, je asi rozumné požadovat aby jitter spuštění byl maximálně srovnatelný s generovanou délkou pulsu.
Tento požadavek by byl nejlépe splnitelný pro polovodičový diodový laser. Ale vzhledem ke komplikovanější konstrukci \gls{DPSS} modulu není úplně zřejmé, zda tohoto stavu je možné dosáhnout.
Pro jednoduchost konstrukce laserového vysílače je výhodné, když laser generuje impulsy se známým zpožděním, neboť pak není nutné měřit přesnou dobu, kdy vygenerovaný balík fotonů ve skutečnosti opustil vysílač.
Vzhledem k plánovanému využití vysílače je asi rozumné požadovat aby jitter spouštění byl maximálně srovnatelný s generovanou délkou pulsu.
Tento požadavek by byl nejlépe splnitelný pro polovodičový diodový laser. Ale vzhledem ke komplikovanější konstrukci \gls{DPSS} modulu není úplně zřejmé, zda je tohoto stavu možné dosáhnout.
 
\chapter{Rozbor problému}
 
360,13 → 363,13
 
\subsection{Polovodičový diodový LASER}
 
Polovodičové laserové diody, jsou aktuálně nejrozšířenějšími typy laserů, které dosahují dobrých parametrů avšak zatím pouze na vlnových délkách větších než cca 600nm, což pro použití v modelovém laserovém atmosférickém dálkoměru není ideální. Generování kratších vlnových délek pomocí laserových diod je ale v současné době v intenzivním vývoji vzhledem k potenciální možnosti použití modrých, zelených a červených laserů v barevných skenovacích projektorech s vysokým kontrastem a rozlišením.\cite{LD_zelene} Zatím ale nedosahují potřebných výstupních energií a navíc jejich pořizovací cena je stále dosti vysoká.
Polovodičové laserové diody, jsou aktuálně nejrozšířenějšími typy laserů, které dosahují dobrých parametrů avšak zatím pouze na vlnových délkách větších než cca 600nm, což pro použití v modelovém laserovém atmosférickém dálkoměru není ideální. Generování kratších vlnových délek pomocí laserových diod je ale v současné době v intenzivním vývoji vzhledem k potenciální možnosti použití modrých, zelených a červených laserů v barevných skenovacích projektorech s vysokým kontrastem a rozlišením.\cite{LD_zelene} Zatím ale nedosahují potřebných výstupních energií a navíc je jejich pořizovací cena stále poměrně vysoká.
 
 
\subsection{Pevnolátkové lasery}
 
Pevnolátkový laser byl vůbec prvním spuštěným laserem \footnote{Rubínový laser, Maiman, 1960}, jejich čerpání bylo klasicky prováděno zábleskem výbojky. A už od počátku vzniku prvního laseru byla snaha o jejich využití k laserovému měření vzdálenosti, což bylo zajímavé hlavně pro vojenské aplikace. Vhodný impulz byl většinou generován pasivním Q-spínáním. Tento koncept má ale řadu nepříjemných vlastností, mezi které patří hlavně nízká účinnost (vyzařované spektrum čerpací výbojky se překrývá s absorpčními pásy jenom minimálně), malá životnost (řádově tisíce výstřelů) neboť dochází k opotřebení elektrod výbojky a ke kontaminaci plynu a také postupná degradace Q-spínače například rozkladem UV zářením.
Moderní pevnolátkové lasery jsou proto nejčastěji čerpány polovodičovými diodami. Zvláště je to patrné v případech, kdy je jako aktivní prostředí využit \acrshort{Nd:YAG}, nebo \acrshort{Nd:YVO}. A v laserových dálkoměrech mají nadále největší zastoupení díky svým kompaktním rozměrům a odolnosti.
Pevnolátkový laser byl vůbec prvním spuštěným laserem. \footnote{Rubínový laser, Maiman, 1960} Jejich čerpání bylo klasicky prováděno zábleskem výbojky. A už od počátku vzniku prvního laseru byla snaha o jejich využití k laserovému měření vzdálenosti, což bylo zajímavé hlavně pro vojenské aplikace. Vhodný impulz byl většinou generován pasivním Q-spínáním. Tento koncept má ale řadu nepříjemných vlastností, mezi které patří hlavně nízká účinnost (vyzařované spektrum čerpací výbojky se překrývá s absorpčními pásy jenom minimálně), malá životnost (řádově tisíce výstřelů), neboť dochází k opotřebení elektrod výbojky a následné kontaminaci plynové náplně a také postupná degradace Q-spínače například rozkladem \acrshort{UV} zářením.
Moderní pevnolátkové lasery jsou proto nejčastěji čerpány polovodičovými diodami. Zvláště je to patrné v případech, kdy je jako aktivní prostředí využit \acrshort{Nd:YAG}, nebo \acrshort{Nd:YVO}. V laserových dálkoměrech mají nadále vedle polovodičových laserů silné zastoupení díky svým kompaktním rozměrům, odolnosti a vysokému špičkovému výkonu.
 
\subsection{Pevnolátkový diodově čerpaný LASER s generací druhé harmonické}