Subversion Repositories svnkaklik

Compare Revisions

Ignore whitespace Rev 689 → Rev 690

/dokumenty/skolni/VAK/netesnosti/netesnosti.pdf
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
/dokumenty/skolni/VAK/netesnosti/netesnosti.tex
26,7 → 26,7
 
\item Ověřte funkci halogenového hledače netěsností přikládáním tamponu, navlhčeného perchlorethylenem k lehce otevřenému jehlovému ventilu. Vysvětlete.
 
\item Seznamte se s heliovým hledačem netěsností. Uveďte jej do provozu. Než se v něm ustálí vacuum (<7x10^(-3)Pa), seznamte se s duplikátem analyzační komůrky.
\item Seznamte se s heliovým hledačem netěsností. Uveďte jej do provozu. Než se v něm ustálí vacuum $<7 \times 10^{-3} Pa$, seznamte se s duplikátem analyzační komůrky.
 
\item Změřte indukci magnetického pole permanentního magnetu He-hledače. Z rozměrů uspořádání v komůrce a zjištěné hodnoty magnetického pole určete napětí, jímž musí být urychleny ionty helia, aby byl detekovaný jejich signál.
 
37,20 → 37,34
 
\section{Postup měření}
\subsection{Vakuová zkoušečka}
Pro hledání netěsnosti vakuovou zkoušečkou jsme po nalezení díry vtaženým výbojem ještě demonstrativně použili několik druhů rozpouštědel. Nejdříve ethanol smýchaný s benzínem, kdy jsme nepozorovali žádnou zřetelnou změnu.
Pro hledání netěsnosti vakuovou zkoušečkou jsme po nalezení díry vtaženým výbojem ještě demonstrativně použili několik druhů rozpouštědel. Nejdříve ethanol smíchaný s benzínem, kdy jsme nepozorovali žádnou zřetelnou změnu.
Následně aceton, kdy se výboj mírně zmodral a zeslabil. A nakonec perchlorethylen, kdy výboj znatelně zmodral a zesílil.
 
\subsection{Porraniho měrka a halogenový hledač netěsností}
\subsection{Piraniho měrka a halogenový hledač netěsností}
 
Dále jsme vývěvu přepojili na aparuturu se skleněným křížem na kterém byl Pirraniho vakuometr, halogenový hledač netěsností a jehlový uzávěr, který představoval netěsnost. Při řerpání uzavřené aparatury, jsme dosáhli mezního tlaku asi 50Pa, později jsme zjistili, že to bylo pravděpodobně způsobeno chybějícím olejem v rotační vývěvě.
Nejdříve jsme zkoušeli hledat netěsnost pomocí Pirraniho vakuové měrky. Kdy ethanol i aceton způsobyly značné zvýšení tlaku měřeného Pirraniho vakuometrem. Perchlorethylen ale žádnou zřejmou změnu nezpůsoboval. (pravděpodobně má příliš kompaktní molekuly na to aby došlo k jejich rozpadu na Pyrraniho měrce a tím k měřitelnému ochlazení)
Dále jsme vývěvu přepojili na aparaturu se skleněným křížem na kterém byl Piraniho vakuometr, halogenový hledač netěsností a jehlový uzávěr, který představoval netěsnost. Při čerpání uzavřené aparatury, jsme dosáhli mezního tlaku asi 50Pa, později jsme zjistili, že to bylo pravděpodobně způsobeno chybějícím olejem v rotační vývěvě.
Nejdříve jsme zkoušeli hledat netěsnost pomocí Piraniho vakuové měrky. Kdy ethanol i aceton způsobily značné zvýšení tlaku měřeného Piraniho vakuometrem. Perchlorethylen ale žádnou zřejmou změnu nezpůsoboval. (pravděpodobně má příliš kompaktní molekuly na to aby došlo k jejich rozpadu na Piraniho měrce a tím k měřitelnému ochlazení)
 
Perchlorethylen se ale celkem očekávatelně zřetelně projevoval při měření halogenovým hledačem netěsností.
Perchlorethylen se ale celkem očekávaně zřetelně projevoval při měření halogenovým hledačem netěsností.
 
\subsection{Heliový hledač nětěsností}
\subsection{Heliový hledač netěsností}
 
Po vyzkoušení předchozích hledacích metod jsme uzavřeli jehlový ventil na aparatuře a uvedli do provozu heliový hledač netěsnosttí podle provozního postupu v přiložených deskách.
Po vyzkoušení předchozích hledacích metod jsme uzavřeli jehlový ventil na aparatuře a uvedli do provozu heliový hledač netěsností podle provozního postupu v přiložených deskách.
 
Následně nastavili rozsah na nejmenší citlivost a začali zkoušet ofukovat aparaturu heliem z balonku. Po delší době jsme objevili netěsnost v oblasti příruby u Pirraniho měrky.
Následně nastavili rozsah na nejmenší citlivost a začali zkoušet ofukovat aparaturu heliem z balonku. Po delší době jsme objevili netěsnost v oblasti příruby u Piraniho měrky.
 
Urychlovací napětí potřebné k předání správné rychlosti jádrům helia, aby byla jejich dráha zakřivena na poloměr 40mm v magnetickém poli 150mT spočítáme podle Lorentzovy síly a dostředivého zrychlení, které se musejí rovnat.
 
\begin{displaymath} F_d = \frac{m v^2}{r} = q v B. \end{displaymath}
 
Po vyjádření $v$ dostáváme.
 
\begin{displaymath} v = \frac{r q B}{m}. \end{displaymath}
 
Dosadíme do vztahu pro kinetickou energii a máme.
 
\begin{displaymath} E = \frac{(r q B)^2}{2 m}. \end{displaymath}
 
Po vyčíslení získáme energii \begin{displaymath} E = 2,8247 \times 10^{-16} [J] \end{displaymath} což odpovídá \begin{displaymath} E = 1763 [eV]. \end{displaymath}. A potřebné urychlovací napětí tedy je 1763 V.
 
\end{document}