Subversion Repositories svnkaklik

Compare Revisions

Ignore whitespace Rev 864 → Rev 865

/dokumenty/skolni/PRA2/GeomOptika/GeomOptika.pdf
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
/dokumenty/skolni/PRA2/GeomOptika/GeomOptika.tex
37,7 → 37,7
\begin{tabular}{|l|l|}
\hline
\multicolumn{ 2}{|c|}{\Large \bfseries FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE \huge\strut} \\ \hline
\textbf{Datum měření:} {11.3.2011} & \textbf{Jméno:} {Jakub Kákona} \\ \hline
\textbf{Datum měření:} {10.5.2011} & \textbf{Jméno:} {Jakub Kákona} \\ \hline
\textbf{Pracovní skupina:} {4} & \textbf{Ročník a kroužek:} {Pa 9:30} \\ \hline
\textbf{Spolupracovníci:} {Jana Navrátilová} & \textbf{Hodnocení:} \\ \hline
\end{tabular}
47,10 → 47,13
\begin{center} \Large{Geometrická optika - Ohniskové vzdálenosti čoček a zvětšení optických přístrojů} \end{center}
 
\begin{abstract}
Úloha se zabývá měřením základních geometrických parametrů zobrazovacích elementů.
V úloze bylo použito několik metod měření ohniskových vzdáleností spojných čoček. Určili jsme ohniskovou vzdálenost rozptylky, Zkonstruovali jsme vlastní dalekohled a mikroskop. Změřili jsme zvětšení obou těchto přístrojů a porovnali s teoretickým výpočtem.
\end{abstract}
 
\section{Úvod}
 
Geometrická optika popisuje základní jevy při šíření světla a zanedbává jeho vlnové projevy. Proto nelze stejným způsobem popisovat i složitější děje, jako je polarizace či interference světla. V této úloze budeme proto zkoumat pouze základní optické elementy, jako jsou čočky a jejich soustavy.
 
\subsection{Zadání}
\begin{enumerate}
\item Určete ohniskovou vzdálenost tenké spojky následujícími metodami: odhadem, autokolimací, ze znalosti polohy předmětu a jeho obrazu (pro čtyři různé polohy předmětu; provést též graficky). Pokud jste se v Základech fyzikálních měření již s těmito metodami seznámili, je pro Vás tento úkol nepovinný.
64,12 → 67,6
\item Výsledky měření zvětšení mikroskopu a dalekohledu porovnejte s hodnotami vypočítanými z ohniskových vzdáleností a optického intervalu. Ohniskové vzdálenosti jste naměřili s určitou chybou, můžete proto spočítat i chybu vypočítaných zvětšení.
\end{enumerate}
 
\section{Experimentální uspořádání a metody}
 
\subsection{Pomůcky}
Optická lavice s jezdci a držáky čoček, žárovka, mikroskopický objektiv, Ramsdenův okulár v držáku s Abbeho kostkou, spojné čočky +100, +200, rozptylka -100, matnice, clona s otvorem, clona se šipkou, pomocný světelný zdroj s milimetrovou stupnicí, objektivový mikrometr se stupnicí 100 x 0,01 mm, matnice se stupnicí 50 x 0,1 mm, pomocný mikroskop se stupnicí v zorném poli, pomocný dalekohled.
 
 
\subsection{Teoretický úvod}
 
Pro tenkou spojnou čočku platí v případě geometrické optiky čočková zobrazovací rovnice
92,34 → 89,245
\begin{equation} Z = Z_1 Z_2 = \frac{\Delta l}{f_1 f_2 }, \end{equation}
Oboje je vztaženo k takzvané konvenční zrakové vzdálenosti, která je l=25cm.
 
\section{Experimentální uspořádání a metody}
 
\section{Výsledky a postup měření}
\subsection{Pomůcky}
Optická lavice s jezdci a držáky čoček, žárovka, mikroskopický objektiv, Ramsdenův okulár v držáku s Abbeho kostkou, spojné čočky +100, +200, rozptylka -100, matnice, clona s otvorem, clona se šipkou, pomocný světelný zdroj s milimetrovou stupnicí, objektivový mikrometr se stupnicí 100 x 0,01 mm, matnice se stupnicí 50 x 0,1 mm, pomocný mikroskop se stupnicí v zorném poli, pomocný dalekohled.
 
\subsection{Ohnisková vzdálenost tenké spojky}
 
Ohniskovou vzdálenost tenké spojky jsme měřili Besselovou metodou. Pro dostatečně velkou vzdálenost stínítka a předmětu, v našem případě e=76cm jsme nalezli dvě polohy čočky, které na stínítku dávaly výsledný obraz vzdálenost mezi těmito pozicemi byla 11,8cm. Dosazením do vzorce pak dostaneme ohniskovou vzdálenost spojky f=18,54cm.
\subsubsection{Odhadem}
Využijeme-li toho, že obraz dostatečně vzdáleného objektu vzniká přibližně v ohniskové rovině čočky. Jako přibližný odhad ohniskové vzdálenosti čočky pak bereme vzdálenost čočky od vzniklého obrazu.
 
\subsection{Ohnisková vzdálenost tenké rozptylky}
Pro měření ohniskové vzdálenosti rozptylky bylo nutné požít ještě spojku, neboť rozptylka nedovede sama o sobě vytvářet skutečný obraz. Jako spojku jsme použili čočku s označením +100. Naměřili jsme vzdálenosti optických elementů $l_1$=47,7cm $l_2$=43,9cm $l_3$=50,9cm. Použitím zobrazovací rovnice pak dostáváme ohniskovou vzdálenost rozptylky f=8,31cm.
\subsubsection{Autokolimační metoda}
 
V této metodě se využívá faktu, že paprsky bodového zdroje umístěného v ohnisky spojné čočky se lámou rovnoběžně. Po odrazu od rovinného zrcadla se vytvoří obraz. Je-li bodový zdroj realizovaný pomocí Malého kruhového otvoru, můžeme nepatrným vychýlením zrcátka docílit toho, že se zobrazí těsně vedle kruhového otvoru. Nyní stačí nastavit čočku do takové vzdálenosti, aby vznikl ostrý obraz (bod stejný, jako je velikost původního otvoru). Hledaná ohnisková vzdálenost pak odpovídá vzdálenosti čočky od kruhového otvoru.
 
\subsection{Ohnisková vzdálenost mikroskopického objektivu a Ramsdenova okuláru}
Ohniskové vzdálenosti optických soustav okuláru a objektivu jsme měřili opět Besselovou metodou. Pro objektiv jsme naměřili hodnoty e=31,5cm a d=25,5cm pro okulár bylo e=25,5cm a d=18,3cm.
Vyčíslením vzorce pak dostáváme ohniskovou vzdálenost okuláru 3,09 cm a v případě objektivu 2,71cm.
\subsubsection{Z polohy předmětu a jeho obrazu}
 
Vyjdeme z čočkové rovnice
\begin{equation}
\frac{1}{a}+\frac{1}{a'}=\frac{1}{f}. \label{1}
\end{equation}
kde $a, a'$ jsou vzdálenosti předmětu, resp. obrazu od čočky, f je ohnisková vzdálenost.
Z \eqref{1} vyjádříme
\begin{equation}
f=\frac{aa'}{a+a'} \label{o}
\end{equation}
 
Tuto metodu lze modifikovat tak, že je možné ji řešit graficky.
 
\subsubsection{Besselova metoda} \label{co}
 
Pokud máme spojnou čočku s ohniskovou vzdáleností \textbf{f}. A vzdálenost předmětu od stínítka \textbf{e} větší, než $4$\textbf{$\cdot$f}. Potom, je možné čočku umístit do dvou pozic mezi stínítko a předmět, tak aby na stínítku vznikl ostrý obraz. Pro ohniskovou vzdálenost čočky přitom platí:
 
\begin{equation}
f=\frac{e^2-d^2}{4e}.\label{b}
\end{equation}
Pro ostrý obraz předmětu na stínítku platí vztah mezi vzdáleností předmětu a obrazu od čočky ($a, a'$) vztah:
$a+a'=e.$ Vyjádřením $a'= e-a$ a dosazením do čočkové rovnice \eqref{1} dostaneme postupně
 
\begin{equation}
\frac{a'+a}{aa'}&=\frac{1}{f} \nonumber \\
\frac{e}{a(e-a)}&=\frac{1}{f} \nonumber \\
a^2-ae+ef&=0. \label{4}
\end{equation}
Podle předpokladu $e>4f$, a tedy má rovnice \eqref{4} právě dvě řešení, které tvoří hledanou dvojici poloh, při kterých vzniká na stínítku ostrý obraz. Pro vzdálenost obou kořenů platí vztah:
 
\begin{equation}
d&=\frac{e+\sqrt{e^2-4ef}}{2}-\frac{e-\sqrt{e^2-4ef}}{2} \nonumber \\
d&=\sqrt{e^2-4ef}. \label{5}
\end{equation}
 
Vztah \eqref{b} dostaneme vyjádřením $f$.
 
\subsubsection{Určení poloh ohniskových rovin tlustých čoček}
Provedeme pomocí dalekohledu zaostřeného na nekonečno. Předmět se bude nacházet v ohniskové rovině čočky, když skrz čočku a dalekohled uvidíme ostrý obraz předmětu.
 
\subsubsection{Stanovení ohniskové vzdálenosti tenké rozptylky} \label{dc}
Měření ohniskové vzdálenosti rozptylky provedeme výpočtem ze znalosti polohy obrazu a předmětu. K měření ale musíme pomocnou spojkou nejprve vytvořit reálný obraz, jehož polohu je možné změřit. Z naměřených vzdáleností $l1, l2, l3$ (vzdálenosti předmětu od spojky, od obrazu s rozptylkou a obrazu bez rozptylky) pak vypočteme $a, a'$. (Vzdálenosti obrazů od rozptylky) Ohniskovou vzdálenost pak získáme z čočkové rovnice pro rozptylku
\begin{equation}
\frac{1}{a}-\frac{1}{a'}=-\frac{1}{f}.
\end{equation}
 
 
\section{Optické přístroje}
\subsection{Lupa}
Lupa je jeden z nejjednodušších optických přístrojů.
Úhlové zvětšení lupy je poměr mezi $\tan$ zorného úhlu $u'$, pod kterým vidíme předmět lupou k tangentě úhlu $u$, pod kterým pozorujeme předmět v tzv. \textit{konvenční zrakové vzdálenosti} $l=25 \,cm$. Tj. lze psát
\begin{equation}
Z=\frac{\tan u'}{\tan u}.
\end{equation}
 
\begin{itemize}
\item \textit{Při akomodaci oka na nekonečno:} $Z_{\infty}=\frac{l}{f}$
\item \textit{Při akomodaci oka na konvenční zrakovou vzdálenost:} $Z_{l}=\frac{y'}{y}$, což je poměr mezi velikostí obrazu a předmětu.
\end{itemize}
 
\subsection{Mikroskop}
Mikroskop ve své základní konfiguraci je tvořen dvojicí čoček: objektivem a okulárem. Důležitou roli hraje vzájemná vzdálenost ohniskových rovin obou čoček, kterou nazýváme \textit{optickým intervalem soustavy} a značíme $\Delta$.
 
 
Celkové zvětšení mikroskopu je dáno vztahem
\begin{equation}
Z_{mik}=\frac{\Delta l}{f_{1}f_{2}} \label{mm}
\end{equation}
 
Zvětšuje se tedy s větší velikostí optického intervalu.
 
\subsection{Dalekohled}
Dalekohled slouží ke zvětšování zorného úhlu vzdálených předmětů Konstrukce je podobná jako u mikroskopu, s tím rozdílem, že optický interval $\Delta$ je roven nule. Přístroj tedy příčně nezvětšuje.
 
Uhlové zvětšení dalekohledu je popsáno rovnicí
\begin{equation}
Z=\frac{f_{1}}{f_{2}}.
\end{equation}
 
 
\section{Výsledky a postup měření}
 
\subsection{Měření ohniskových vzdáleností čoček}
\subsubsection{Odhadem} \label{odhad}
Měřili jsme spojnou čočku označenou číslem +150. Její ohniskovou vzdálenost jsme určili odhadem vzdálenosti obrazu vzdálené lampy jako $\vys{13.5}{0.5}\jed{cm}$.
 
\subsubsection{Autokolimací}
Ohnisková vzdálenost čočky +150 určená autokolimační metodou je $\vys{14}{0.4}\jed{cm}$. Chyba měření je odhadnuta s ohledem na tloušťku čočky a ostrost obrazu zobrazovaného otvoru.
 
\subsubsection{Z polohy předmětu a obrazu}
Změřili jsme tři různé polohy předmětu a jeho obrazu vzhledem k čočce +150 (v tabulce \ref{ob}). Příslušné ohniskové vzdálenosti jsme vypočítali ze vztahu \eqref{o}.
\begin{table}[htbp]
\begin{center}
\begin{tabular}{|cccc|}
\hline
\# & $a$ [cm] & $a'$ [cm] & $f$ [cm] \\ \hline
1 & 23.0 & 35.5 & 14.0 $\pm$ 0.1 \\
2 & 30.0 & 26.5 & 14.1 $\pm$ 0.1\\
3 & 32.5 & 25.0 & 14.1 $\pm$ 0.1\\ \hline
\end{tabular}
\end{center}
\caption{Určení ohniskové vzdálenosti spojné čočky +150 z pozic vzoru a obrazu. }
\label{ob}
\end{table}
 
Celkový výsledek dostaneme jako aritmetický průměr hodnot; chybu odhadneme $\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}$, kde $\sigma_{1}$ je chyba aritmetického průměru a $\sigma_{2}$ je chyba nepřímého měření. Ohnisková vzdálenost čočky +150 tedy vychází
\begin{equation*}
f=\vys{14.1}{0.1}
\end{equation*}
 
 
\subsubsection{Besselova metoda}
Touto metodou jsme změřili ohniskovou vzdálenost tenké spojky +200, Ramsdenova okuláru a mikroskopového objektivu.
Nejprve jsme pozorovali čočkou +200 předmět vytvořený otvorem a promítaný na matnici. Výpočet chyby jsme provedli podle vzorce chyb nepřímých měření. Neurčitost vzdálenosti předmětu od stínítka jsme brali 1\jed{mm}, neurčitost vzdálenosti dvou \textit{ostrých} poloh 2\jed{mm}.
 
\begin{table}[htbp]
\begin{center}
\begin{tabular}{|ccc|}
\hline
$d$ [cm] & $e'$ [cm] & $f$ [cm] \\ \hline
37.6 & 90.0 & \hod{18.6}{0.1} \\
29.8 & 85.0 & \hod{18.6}{0.1} \\
43.8 & 95.0 & \hod{18.7}{0.1} \\ \hline
\end{tabular}
\end{center}
\caption{Besselova metoda, čočka +200.}
\label{c}
\end{table}
 
Ohniskovou vzdálenost čočky +200 jsme tedy stanovili na \vys{18.6}{0.1}\jed{cm}.
 
U ostatních elementů v důsledku toho, že ohnisková vzdálenost mikroskopového objektivu a Ramsdenova okuláru je poměrně malá, pozorovali jsme obraz pomocným mikroskopem. výsledky měření jsou v tabulce \ref{m}.
 
\begin{table}[htbp]
\begin{center}
\begin{tabular}{|ccc|ccc|}
\hline
\multicolumn{3}{|c|}{mikroskopový objektiv}
& \multicolumn{3}{c|}{Ramsdenův okulár} \\ \hline
$d$ [cm] & $e'$ [cm] & $f$ [cm] & $d$ [cm] & $e'$ [cm] & $f$ [cm] \\ \hline
3.40 & 10.5 & 2.36 $\pm$ 0.05& 2.65 & 12.5 & 2.99 $\pm$ 0.04\\
4.10 & 11.0 & 2.38 $\pm$ 0.05& 7.60 & 15.5 & 2.95 $\pm$ 0.04\\
2.45 & 10.0 & 2.36 $\pm$ 0.05& 2.90 & 12.5 & 2.96 $\pm$ 0.04\\ \hline
\end{tabular}
\end{center}
\caption{Besselova metoda; mikroskopový objektiv, Ramsdenův okulár}
\label{m}
\end{table}
 
Ohnisková vzdálenost mikroskopového objektivu vychází \vys{2.38}{0.05}\jed{cm}, Ramsdenova okuláru \vys{2.97}{0.04}\jed{cm}.
 
 
\subsubsection{Ohnisková vzdálenost rozptylky}
Měřená rozptylka byla označena číslem -100, pomocná spojka byla použita čočka +100. Naměřené hodnoty jsou uvedeny v tabulce \ref{r}.
\begin{table}[htbp]
\begin{center}
\begin{tabular}{|cccccc|}
\hline
$l_1$\jed{cm} & $l_2$\jed{cm} & $l_3$\jed{cm} & a\jed{cm} & a'\jed{cm} & f\jed{cm} \\ \hline
47.8 & 40.0 & 71.0 & 7.8 & 31.0 & 10.4 $\pm$ 0.4\\
46.7 & 42.0 & 51.0 & 4.7 & 9.0 & 9.8 $\pm$ 0.9\\
47.7 & 42.0 & 55.6 & 5.7 & 13.6 & 9.8 $\pm$ 0.6\\ \hline
\end{tabular}
\end{center}
\caption{Měření ohniskové vzdálenosti tenké rozptylky}
\label{r}
\end{table}
Ohnisková vzdálenost rozptylky vychází \vys{10.0}{0.5}\jed{cm}.
 
\subsection{Polohy ohniskových rovin}
Změřili jsme polohy ohniskové roviny Ramsdenova okuláru a mikroskopového objektivu. Vždy jsme měřili \textit{vnitřní} rovinu; tu, která se normálně nachází uvnitř přístroje a je zapotřebí pro určení optického intervalu. Vzdálenost jsme odečítali od konce osazení součástky.
 
\begin{tabular}{|lc|}
\hline
Vzdálenost ohniskové roviny Ramsdenova okuláru od jeho kraje: & \vys{0.53}{0.05}\jed{cm}. \\
Vzdálenost ohniskové roviny mikroskopového objektivu od jeho kraje: & \vys{1.04}{0.05}\jed{cm}. \\ \hline
\end{tabular}
 
 
 
\subsection{Zvětšení lupy}
 
Měření zvětšení lupy jsme provedli přímou metodou měřením poměru dvou stupnic zobrazených na sebe pomocí Abbeho kostky. Tím jsme určili zvětšení lupy na hodnotu 8x. Z námi změřené ohniskové vzdálenosti okuláru který byl použitý, jako lupa vyplývá ze vzorce hodnota zvětšení při akomodaci oka na nekonečno 8,09x.
Měření zvětšení lupy jsme provedli přímou metodou měřením poměru dvou stupnic zobrazených na sebe pomocí Abbeho kostky. Tím jsme určili zvětšení lupy na hodnotu 8,8 $\pm$ 0,3. Z námi změřené ohniskové vzdálenosti okuláru který byl použitý, jako lupa vyplývá ze vzorce hodnota zvětšení při akomodaci oka na nekonečno 8,42x.
 
\subsection{Zvětšení mikroskopu}
Obdobným způsobem (pomocí zobrazované a referenční stupnice) jsme určili i zvětšení námi postaveného mikroskopu. Použitý optický interval měl velikost \vys{14.3}{0.1}\jed{cm}. Změřené zvětšení má hodnotu $Z_{l}= 50\,\pm\, 1$. Teoretick0 zvětšení by podle vzorce \eqref{mm} mělo být $Z_{teor}= 51\,\pm\, 2$.
 
Pro výpočet zvětšení bylo třeba zjistit vzdálenosti ohniskových rovin okuláru a objektivu. Ty jsme určili jako 0,6cm a 1,08cm Potom jsme z okuláru a objektivu na optické lavici sestavili mikroskop a změřili jeho zvětšení za použití velmi jemné stupnice. Pro zvolenou vzdálenost objektivu a okuláru 23,2cm nám vyšlo zvětšení 44x.
\subsection{Zvětšení dalekohledu}
Dále jsme měřili zvětšení dalekohledu. Pozorovali jsme stupnici ve vzdálenosti přibližně 9 m skrz dalekohled a zároveň (pomocí Abbeho kostky přes zrcátko) přímo (tj nezvětšenou). Získané zvětšení dalekohledu je $Z=6.7\, \pm \,0.2$. Teoretická hodnota vychází $Z_{teor}= 6.4\,\pm\,0.1$.
 
 
\begin{table}[htbp]
\begin{center}
\begin{tabular}{|c|cc|}
\hline
přístroj & změřené zvětšení [--] & teoretické zvětšení [--] \\ \hline
lupa, akomodace na $l$ & $Z_{l}= 8.8\,\pm\, 0.3$ & \\
lupa, akomodace na $\infty$ & & $Z_{\infty}= 8.42\,\pm\, 0.02$\\
mikroskop & $Z_{l}= 50\,\pm\, 1$ & $Z_{teor}= 51\,\pm\, 2$\\
dalekohled & $Z= 6.7\,\pm\, 0.2$ & $Z_{teor}= 6.4\,\pm\, 0.1$ \\ \hline
\end{tabular}
\end{center}
\caption{Zvětšení optických přístrojů.}
\label{vv}
\end{table}
 
\section{Diskuze}
\subsection{Určování ohniskových vzdáleností čoček}
Jako velice přesná metoda se ukázala být metoda Besselova. Výhodou této metody je, že není třeba znát geometrický střed zkoumaného elementu, který ze obtížně určuje; stačí změřit vzdálenost \textit{ostrých} poloh čočky. Nevýhodou je komplikovanější výpočet. Dobré výsledky dává i autokolimační metoda, která umožňuje dobře určit i absolutní pozici ohniskové roviny vzhledem k čočce.
 
Poněkud méně přesné bylo měření rozptylky. Je to dáno tím, že ohniskovou vzdálenost rozptylky nelze měřit tak jednoduše, jako u spojky. Složitější uspořádání s větším množstvím vad pak vneslo do výsledku další chyby.
 
Přesnost všech našich měření byla obecně snížena vadami typickými pro reálně čočky, zejména \textit{barevnou vadou} (používali jsme bílé světlo) a sférickou vadou (zobrazený předmět nebyl bod).
 
\subsection{Zvětšení optických přístrojů}
 
Změřené zvětšení mikroskopu se dobře shoduje s teoretickou hodnotou. V případě dalekohledu vychází jeho zvětšení poněkud větší, než teoreticky vypočítaná hodnota. Výsledek mohla ovlivnit některá zobrazovací vada. Při výpočtu se také předpokládá, že je oko umístěno hned u okuláru, což v praxi nebylo možné, neboť před okulárem byla ještě Abbeho kostka.
 
\section{Závěr}
Besselovou metodou jsme určili ohniskovou vzdálenost spojky s označením +150 na f=18,54cm. Dále jsme určili ohniskovou vzdálenost rozptylky -100 jako f=8,31cm a také ohniskové vzdálenosti mikroskopového okuláru f=3,09cm a objektivu f=2,71cm. Při měření zvětšení okuláru použitého, jako lupa nám vyšla hodnota zvětšení 8x.
Změřit parametry dalekohledu sestaveného na stativu se nám z časových důvodů nepodařilo. I přes to, že jsme z důvodu úspory času v každém úkolu měřili pouze jednu hodnotu a nemůžeme tak statisticky určit chybu měření.
Několika metodami jsme určili ohniskovou vzdálenost tenké spojky +150, odhadem, autokolimací a Besselovou metodou. Dále jsme za použití pomocné čočky určili ohniskovou vzdálenost rozptylky -100. Zkoumali jsme také zvětšení základních optických přístrojů, jako lupa, mikroskop a dalekohled.
 
 
\begin{thebibliography}{10} %REFERENCE
\bibitem{3} {http://praktika.fjfi.cvut.cz/GeomOptika/}{ -Zadání úlohy}
\end{thebibliography}