Subversion Repositories svnkaklik

Compare Revisions

Ignore whitespace Rev 878 → Rev 879

/dokumenty/skolni/RoP/DOC/SRC/GP201A.pdf
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
/dokumenty/skolni/RoP/DOC/SRC/TCPC.pdf
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
/dokumenty/skolni/RoP/DOC/SRC/TCPC.tex
3,6 → 3,7
\usepackage{array}
\usepackage{times}
\usepackage{graphicx}
\usepackage{pdfpages}
\usepackage{color}
 
\usepackage[pdftex]{graphicx}
80,15 → 81,15
Nejjednodušším způsobem elektronického měření časových intervalů je použití čítače a oscilátoru. Čítač pak počítá počet period oscilátoru mezi příchozími pulzy pro start a stop signál. Toto řešení ale začíná být se zkracujícími se intervaly velmi nepraktické, jelikož pro získání velkého časového rozlišení je třeba vysoká frekvence velice přesného oscilátoru.
Navíc pro požadované časové rozlišení asi 65ps by nutná frekvence oscilátoru byla zhruba 15,3GHz, což je ale se současnou digitální technikou neproveditelné. Nezanedbatelná je zároveň také potřebná délka extrémně rychlého čítače, která by pro praktické použití dosahovala desítek bitů.
 
K měření se proto používá vhodnějšího principu a to šíření postupné vlny v sofistikovaném řetězci logických hradel. Ideové znázornění je na \ref{TDC_unit}.
K měření se proto používá vhodnějšího principu a to šíření postupné vlny v sofistikovaném řetězci logických hradel. Ideové znázornění je na obrázku \ref{TDC_unit}.
Metoda funguje tak, že příchozím startovacím impulzem je v řetězci vygenerována postupná vlna, která se šíří po jednotlivých hradlech až do doby, než je pomocí nadřazené logiky zamezeno jejímu šíření příchozím stop pulsem. Následně je pak podle počtu překlopených hradel mezi pulzy START a STOP možné určit délku časového intervalu.
Metoda tedy využívá konečnou rychlost šíření signálu přes hradla a její přesnost závisí na mnoha faktorech, jako je například geometrie čipu nebo zapojení řetězce.
 
\begin{figure}[htbp]
\begin{center}
\label{TDC_unit}
\includegraphics[width=150mm]{./img/TDC_principle2.png}
\caption{Ideové schéma měřící jednotky TDC}
\label{TDC_unit}
\end{center}
\end{figure}
 
97,9 → 98,9
 
\begin{figure}[htbp]
\begin{center}
\label{TDC_unit_long}
\includegraphics[width=150mm]{./img/TDC_principle.png}
\caption{Způsob přesného měření delších časových úseků}
\label{TDC_unit_long}
\end{center}
\end{figure}
 
107,25 → 108,25
 
\section{Realizace}
 
Pro konstrukci přístroje byl zvolen čip TDC-GP2 od firmy Acam. Tento integrovaný obvod využívá k měření krátkých časových intervalů výše popsané metody řetězově zapojených hradel. Blokové schéma vnitřní architektury čipu je znázorněno na \ref{GP2_chip_block}.
Cip obsahuje mnoho dalších podpůrných obvodů, které zjednodušují jeho použití a také přidávají další funkce (generování spouštěcího pulzu pro výstřel LASERu, měření teploty atd.).
Pro konstrukci přístroje byl zvolen jako hlavní měřící prvek čip TDC-GP2 od firmy Acam. Tento integrovaný obvod využívá k měření krátkých časových intervalů výše popsané metody řetězově zapojených hradel. Blokové schéma vnitřní architektury čipu je znázorněno na obrázku \ref{GP2_chip_block}.
Čip obsahuje mnoho dalších podpůrných obvodů, které zjednodušují jeho použití a také přidávají další funkce (generování spouštěcího pulzu například pro výstřel LASERu, blok umožňující měření teploty atd.).
 
S ohledem na tyto možnosti byla navržena koncepce výsledného zařízení tak, aby umožnila využití všech potenciálních možností čipu. Blokové schéma této koncepce je na \ref{device_block}. A obsahuje jednak obvody potřebné pro funkci čipu TDC-GP2, jako kalibrační oscilátor a napěťový stabilizátor. Tak i řídící mikroprocesor, několik možných komunikačních rozhraní a obvody pro referenční měření teploty i pro manipulaci se vstupními a výstupními signály (vstupní signál z experimentu může být poškozen rušením, nebo disperzí vedení, výstupní signál musí naopak odpovídat požadavkům experimentálního zařízení).
S ohledem na tyto možnosti byla navržena koncepce výsledného zařízení tak, aby umožnila využití všech potenciálních možností čipu. Blokové schéma této koncepce je na obrázku \ref{device_block}. A obsahuje jednak obvody potřebné pro funkci čipu TDC-GP2, jako kalibrační oscilátor a napěťový stabilizátor. Tak i řídící mikroprocesor, několik možných komunikačních rozhraní a obvody pro referenční měření teploty i pro manipulaci se vstupními a výstupními signály (vstupní signál z experimentu může být poškozen rušením, nebo disperzí vedení, výstupní signál musí naopak odpovídat požadavkům experimentálního zařízení).
 
\begin{figure}[htbp]
\begin{center}
\label{device_block}
\includegraphics[width=150mm]{./img/blokove_schema.png}
\caption{Ideové schéma cílového zařízení}
\label{device_block}
\end{center}
\end{figure}
 
\begin{figure}[htbp]
\begin{center}
\label{GP2_chip_block}
\includegraphics[width=150mm]{./img/TDC_block.png}
\caption{Blokové schéma čipu TDC-GP2}
\label{GP2_chip_block}
\end{center}
\end{figure}
 
163,13 → 164,13
 
\subsection{Hardware}
 
Pro realizaci všech prototypů experimentálního zařízení bylo s výhodou využito stávajícího elektronického vývojového systému MLAB, který byl pro účely realizace měřícího zařízení obohacen o nový modul GP201A, který obsahuje čip TDC-GP2. Zapojení modulu bylo opět zvoleno tak, aby neomezilo využitelné možnosti čipu. Jeho konkrétní zapojení je součástí přílohy. Motiv navrženého plošného spoje je na \ref{GP201A_PCB}.
Pro realizaci všech prototypů experimentálního zařízení bylo s výhodou využito stávajícího elektronického vývojového systému MLAB, který byl pro účely realizace měřícího zařízení obohacen o nový modul GP201A, který obsahuje čip TDC-GP2. Zapojení modulu bylo opět zvoleno tak, aby neomezilo využitelné možnosti čipu. Jeho konkrétní zapojení je součástí přílohy. Motiv navrženého plošného spoje je na obrázku \ref{GP201A_PCB}.
 
\begin{figure}[htbp]
\begin{center}
\label{GP201A_PCB}
\includegraphics[width=150mm]{./img/GP2_PCB.png}
\caption{Návrh plošného spoje modulu GP201A}
\label{GP201A_PCB}
\end{center}
\end{figure}
 
182,13 → 183,13
 
Princip měření čipu TDC-GP2 je ze své podstaty závislý na mnoha dalších proměnných (Rychlost překlápění hradel se mění například s teplotou a napájecím napětím) a proto je třeba měřící řetězec soustavně a systematicky kalibrovat. K tomu slouží externí oscilátor o kterém se předpokládá, že má stabilní periodu. Měřící řetězec TDC čipu se pak použije ke změření periody oscilátoru a je jej pak možné kalibrovat za předpokladu, že výstupní digitální hodnota z měřícího řetězce je lineární funkcí času.
Při návrhu konstrukce prototypu bylo vybíráno z celé řady oscilátorů [viz příloha] a hodnoceny jejich parametry; cena, stabilita a dostupnost. Výsledným vybraným kalibračním oscilátorem je SG8002 - 5MHz.
Při návrhu konstrukce prototypu bylo vybíráno z celé řady oscilátorů [viz příloha] a hodnoceny jejich parametry; cena, stabilita a dostupnost. Výsledným vybraným kalibračním oscilátorem je CFPS-73 - 6MHz.
 
\subsubsection{Teplotní kalibrace}
 
Samotný čip TDC-GP2 je vybaven elektronikou určenou k měření teploty avšak její princip je založen měření doby na nabíjení referenčního kondenzátoru přes statické odpory a termistory - jde tedy o poměrovou metodu. Použití poměrového měření ke korekci teplotních driftů samotného čipu TDC-GP2 by tudíž bylo problematické navíc jeho TDC jednotka, kterou chceme teplotně kalibrovat se v tomto měření přímo využívá.
Samotný čip TDC-GP2 je vybaven elektronikou určenou k měření teploty avšak její princip je založen měření doby nabíjení externího referenčního kondenzátoru přes statické odpory a termistory - jde tedy o poměrovou metodu, která navíc předpokládá absolutní teplotní stabilitu referenčního kondenzátoru. Použití poměrového měření ke korekci teplotních driftů samotného čipu TDC-GP2 by tudíž bylo problematické navíc jeho TDC jednotka, kterou chceme teplotně kalibrovat se v tomto měření přímo využívá.
 
Prototyp byl tedy obohacen o digitální teploměr DS18B20 jehož absolutní přesnost 0,6K a rozlišení 0,01K lze pokládat za dostačující. A lze tedy TDC čip spolu s oscilátorem kalibrovat vzhledem k teplotě naměřené tímto teploměrem.
Prototyp byl tedy doplněn o digitální teploměr DS18B20 jehož absolutní přesnost 0,6K a rozlišení 0,01K lze pokládat za dostačující. A lze tedy TDC čip spolu s referenčním oscilátorem kalibrovat vzhledem k teplotě naměřené tímto teploměrem.
 
\subsection{Firmware}
 
201,7 → 202,7
\end{center}
\end{figure}
 
Programová smyčka řídícího mikrokontroléru je navržena tak, aby umožnila realizovat oba měřící režimy TDC čipu. K ovládání TDC-GP2 byla vytvořena knihovna, která umožňuje nastavit všechny možnosti čipu.
Programová smyčka řídícího mikrokontroléru je navržena tak, aby umožnila realizovat oba všechny hlavní měřící režimy TDC čipu. K ovládání TDC-GP2 byla vytvořena knihovna, která umožňuje nastavit všechny možnosti čipu.
 
Obsahuje také několik funkcí vyšší úrovně, které se týkají ovládání určitého měřícího módu čipu. TDC-GP2 má dva hlavní časové měřící módy, liší se především v rozsahu měřeného intervalu a počtem kanálů na kterých je možné sledovat STOP impuls.
 
283,13 → 284,17
 
Výsledkem práce je přístroj, který lze bez zásadních úprav využít k měření krátkých časových intervalů v laboratorních experimentech. Zařízení je zároveň dostatečně flexibilní pro potřebné úpravy některých speciálních aplikacích, které zatím nelze předvídat.
 
%\pagebreak
%\listoffigures
 
\pagebreak
\listoffigures
 
\begin{thebibliography}{99}
\bibitem{}
\end{thebibliography}
 
\pagebreak
 
\includepdf[pages={1},landscape=true]{GP201A.pdf}
\label{GP201A_SCH}
\includepdf[pages={1},landscape=true]{oscilatory.pdf}
 
\end{document}