Subversion Repositories svnkaklik

Compare Revisions

No changes between revisions

Ignore whitespace Rev 607 → Rev 608

/dokumenty/PRA1/1-Cavendish/cavedish.pdf
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Property changes:
Deleted: svn:mime-type
-application/octet-stream
\ No newline at end of property
/dokumenty/PRA1/1-Cavendish/cavendish.gp
1,6 → 1,5
#set terminal postscript
set terminal postscript
set samples 2000
#set output "cavendish.ps"
set key off
set xlabel "Time [s]"
set ylabel "Amplitude [mm]"
13,8 → 12,21
fi="-300"
 
fit f(x) "poloha1A.txt" using 1:2:3 via a,d,T,fi,s
 
s=950
d=0.0002
a=390
T=496
fi="-300"
 
set output "poloha2.ps"
fit f(x) "poloha2A.txt" using 1:2:3 via a,d,T,fi,s
fit f(x) "poloha1B.txt" using 1:2:3 via a,d,T,fi,s
plot "poloha2A.txt" using 1:2:3 with errorbars, f(x)
 
plot "poloha1A.txt" using 1:2:3 with errorbars, "poloha2A.txt" using 1:2:3 with errorbars, "poloha1B.txt" using 1:2:3 with errorbars, f(x)
#!ps2pdf cavedish.ps
#set output "poloha1.ps"
#fit f(x) "poloha1B.txt" using 1:2:3 via a,d,T,fi,s
#plot "poloha1B.txt" using 1:2:3 with errorbars, f(x)
 
#plot "poloha1A.txt" using 1:2:3 with errorbars, "poloha2A.txt" using 1:2:3 with errorbars, "poloha1B.txt" using 1:2:3 with errorbars, f(x)
#!ps2pdf poloha1.ps
!ps2pdf poloha2.ps
/dokumenty/PRA1/1-Cavendish/cavendish.pdf
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Property changes:
Added: svn:mime-type
+application/octet-stream
\ No newline at end of property
/dokumenty/PRA1/1-Cavendish/cavendish.tex
0,0 → 1,79
\documentclass[12pt,a4paper,oneside]{article}
\usepackage[colorlinks=true]{hyperref}
\usepackage[utf8]{inputenc}
\usepackage[czech]{babel}
\usepackage{graphicx}
\textwidth 16cm \textheight 24.6cm
\topmargin -1.3cm
\oddsidemargin 0cm
\pagestyle{empty}
\begin{document}
\title{Cavendishův experiment}
\author{Jakub Kákona, kaklik@mlab.cz}
\date{9.11.2009}
\maketitle
\thispagestyle{empty}
\begin{abstract}
 
\end{abstract}
\section{Úvod}
\begin{enumerate}
\item Odvodte vztah pro výpočet chyby měření.
\item Zkontrolujte měřící aparaturu.
\item Dynamickou metodou změřte časový průběh torzních kmitů kyvadla v obou možných pozicích olověných koulí.
\item Naměřenou závislost nafitujte funkcí a zjistěte její fyzikální parametry.
\item Z takto získaných údajů dopočítejte gravitační konstantu a její chybu.
\item Výsledek srovnejte s tabulkovou hodnotou gravitační konstanty.
\end{enumerate}
 
\section{Postup měření}
Měření silového momentu, kterým působí dvě olověné koule na torzní kyvadlo jsme provedli tak, že koule byly nejprve umístěny křížem v blízkosti hmotností na koncích torzního kyvadla tak, aby na kyvadlo působili maximálním silovým momentem způsobeným gravitačním přitahováním. Následně jsme změřili střední polohu kyvadla dynamickou metodou. A koule prohodili tak, aby nyní působily svým silovým momentem na opačnou stranu. Po opětovném změření střední polohy jsme nyní dokázali určit silový moment, kterým koule působí na kyvadlo. Obrázky dobře popisující tento postup, jsou ve zdroji \cite{Cavendish}
 
\begin{figure}
\includegraphics[width=150mm]{./poloha1.pdf}
\caption{Casovy prubeh vychylky torzniho kyvadla v 1. pozici kouli.}
\end{figure}
 
\begin{figure}
\includegraphics[width=150mm]{./poloha2.pdf}
\caption{Casovy prubeh vychylky torzniho kyvadla v 2. pozici kouli.}
\end{figure}
 
Fitem naměřených dat funkcí
\begin{equation}
x=A \exp (- \delta t) \sin(2* \pi /T + \varphi)
\end{equation}
 
Jsme dostali žádané fyzikální parametry potřebné pro výpočet gravitační konstanty.
 
\begin{tabular}
 
\begin{table}{cc}
A & 429.751 & \pm 2.133 \\
\delta & 0.000470283 & \pm 7.339e-06 \\
T & 497.817 & \pm 0.3167 \\
\varphi & -302.227 \pm 0.005104 \\
s & = 1062.89 \pm 0.6162 \\
\caption{Vypoctene hodnoty pro prvni pozici kouli}
\end{table}
 
a = 254.373 +/- 0.4389 (0.1725%)
d = 0.000457669 +/- 2.783e-06 (0.6082%)
T = 498.212 +/- 0.1441 (0.02893%)
fi = -304.321 +/- 0.002424 (0.0007966%)
s = 961.297 +/- 0.1507 (0.01568%)
 
 
\end{tabular}
 
\section{Diskuse}
Při měření Peltierova článku by bylo asi vhodné použít kratší přívodní hadičky ke chladící lázni, jelikož voda se tak zbytečně ohřívá z původní teploty tání ledu a teplota studené strany článku se tak stává nestabilní.
 
\section{Závěr}
Pomocí torzních vah jsme celkem úspěšně určili gravitační konstantu s
 
 
\begin{thebibliography}{99}
\bibitem{Cavendish}{Zadání úlohy 1 - Cavendishův experiment}\\.\href{http://rumcajs.fjfi.cvut.cz/fyzport/FundKonst/Cavendish/cav.pdf}{http://rumcajs.fjfi.cvut.cz/fyzport/FundKonst/Cavendish/cav.pdf}
\end{thebibliography}
\end{document}
/dokumenty/PRA1/1-Cavendish/fit.log
154,3 → 154,1407
T -0.354 -0.148 1.000
fi -0.418 -0.205 0.837 1.000
s 0.040 -0.073 0.036 0.073 1.000
 
 
*******************************************************************************
Tue Nov 17 18:59:20 2009
 
 
FIT: data read from "poloha1A.txt" using 1:2:3
#datapoints = 62
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 21771.3 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 26906.6
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 8 iterations the fit converged.
final sum of squares of residuals : 13090
rel. change during last iteration : -6.37733e-06
 
degrees of freedom (FIT_NDF) : 57
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 15.1542
variance of residuals (reduced chisquare) = WSSR/ndf : 229.65
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.164 +/- 30.37 (7.315%)
d = 0.000373673 +/- 8.872e-05 (23.74%)
T = 500.425 +/- 4.134 (0.8261%)
fi = -299.787 +/- 0.07885 (0.0263%)
s = 973.781 +/- 7.373 (0.7572%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.901 1.000
T -0.259 -0.113 1.000
fi -0.306 -0.142 0.879 1.000
s -0.029 -0.118 -0.067 0.037 1.000
 
 
*******************************************************************************
Tue Nov 17 18:59:20 2009
 
 
FIT: data read from "poloha2A.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 1.22136e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 21052.8
 
initial set of free parameter values
 
a = 415.164
d = 0.000373673
T = 500.425
fi = -299.787
s = 973.781
 
After 17 iterations the fit converged.
final sum of squares of residuals : 334093
rel. change during last iteration : -9.79107e-06
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 75.2502
variance of residuals (reduced chisquare) = WSSR/ndf : 5662.6
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.153 +/- 8.725e+05 (2.102e+05%)
d = 0.0775612 +/- 21.79 (2.809e+04%)
T = 500.396 +/- 7.341e+05 (1.467e+05%)
fi = -304.146 +/- 1292 (424.9%)
s = 1042.02 +/- 33.32 (3.197%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.999 1.000
T 0.998 0.993 1.000
fi -1.000 -0.999 -0.998 1.000
s 0.139 0.133 0.146 -0.139 1.000
 
 
*******************************************************************************
Tue Nov 17 18:59:20 2009
 
 
FIT: data read from "poloha1B.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 211576 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 18.4936
 
initial set of free parameter values
 
a = 415.153
d = 0.0775612
T = 500.396
fi = -304.146
s = 1042.02
 
After 11 iterations the fit converged.
final sum of squares of residuals : 7.14462
rel. change during last iteration : -8.7874e-06
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.347987
variance of residuals (reduced chisquare) = WSSR/ndf : 0.121095
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 254.373 +/- 0.4389 (0.1725%)
d = 0.000457669 +/- 2.783e-06 (0.6082%)
T = 498.212 +/- 0.1441 (0.02893%)
fi = -304.321 +/- 0.002424 (0.0007966%)
s = 961.297 +/- 0.1507 (0.01568%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.802 1.000
T -0.354 -0.148 1.000
fi -0.418 -0.205 0.837 1.000
s 0.040 -0.073 0.036 0.073 1.000
 
 
*******************************************************************************
Tue Nov 17 19:05:12 2009
 
 
FIT: data read from "poloha1A.txt" using 1:2:3
#datapoints = 62
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 21771.3 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 26906.6
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 8 iterations the fit converged.
final sum of squares of residuals : 13090
rel. change during last iteration : -6.37733e-06
 
degrees of freedom (FIT_NDF) : 57
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 15.1542
variance of residuals (reduced chisquare) = WSSR/ndf : 229.65
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.164 +/- 30.37 (7.315%)
d = 0.000373673 +/- 8.872e-05 (23.74%)
T = 500.425 +/- 4.134 (0.8261%)
fi = -299.787 +/- 0.07885 (0.0263%)
s = 973.781 +/- 7.373 (0.7572%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.901 1.000
T -0.259 -0.113 1.000
fi -0.306 -0.142 0.879 1.000
s -0.029 -0.118 -0.067 0.037 1.000
 
 
*******************************************************************************
Tue Nov 17 19:05:12 2009
 
 
FIT: data read from "poloha2A.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 1.22136e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 21052.8
 
initial set of free parameter values
 
a = 415.164
d = 0.000373673
T = 500.425
fi = -299.787
s = 973.781
 
After 17 iterations the fit converged.
final sum of squares of residuals : 334093
rel. change during last iteration : -9.79107e-06
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 75.2502
variance of residuals (reduced chisquare) = WSSR/ndf : 5662.6
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.153 +/- 8.725e+05 (2.102e+05%)
d = 0.0775612 +/- 21.79 (2.809e+04%)
T = 500.396 +/- 7.341e+05 (1.467e+05%)
fi = -304.146 +/- 1292 (424.9%)
s = 1042.02 +/- 33.32 (3.197%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.999 1.000
T 0.998 0.993 1.000
fi -1.000 -0.999 -0.998 1.000
s 0.139 0.133 0.146 -0.139 1.000
 
 
*******************************************************************************
Tue Nov 17 19:05:13 2009
 
 
FIT: data read from "poloha1B.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 211576 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 18.4936
 
initial set of free parameter values
 
a = 415.153
d = 0.0775612
T = 500.396
fi = -304.146
s = 1042.02
 
After 11 iterations the fit converged.
final sum of squares of residuals : 7.14462
rel. change during last iteration : -8.7874e-06
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.347987
variance of residuals (reduced chisquare) = WSSR/ndf : 0.121095
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 254.373 +/- 0.4389 (0.1725%)
d = 0.000457669 +/- 2.783e-06 (0.6082%)
T = 498.212 +/- 0.1441 (0.02893%)
fi = -304.321 +/- 0.002424 (0.0007966%)
s = 961.297 +/- 0.1507 (0.01568%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.802 1.000
T -0.354 -0.148 1.000
fi -0.418 -0.205 0.837 1.000
s 0.040 -0.073 0.036 0.073 1.000
 
 
*******************************************************************************
Tue Nov 17 19:05:21 2009
 
 
FIT: data read from "poloha1A.txt" using 1:2:3
#datapoints = 62
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 21771.3 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 26906.6
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 8 iterations the fit converged.
final sum of squares of residuals : 13090
rel. change during last iteration : -6.37733e-06
 
degrees of freedom (FIT_NDF) : 57
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 15.1542
variance of residuals (reduced chisquare) = WSSR/ndf : 229.65
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.164 +/- 30.37 (7.315%)
d = 0.000373673 +/- 8.872e-05 (23.74%)
T = 500.425 +/- 4.134 (0.8261%)
fi = -299.787 +/- 0.07885 (0.0263%)
s = 973.781 +/- 7.373 (0.7572%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.901 1.000
T -0.259 -0.113 1.000
fi -0.306 -0.142 0.879 1.000
s -0.029 -0.118 -0.067 0.037 1.000
 
 
*******************************************************************************
Tue Nov 17 19:05:21 2009
 
 
FIT: data read from "poloha2A.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 1.22136e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 21052.8
 
initial set of free parameter values
 
a = 415.164
d = 0.000373673
T = 500.425
fi = -299.787
s = 973.781
 
After 17 iterations the fit converged.
final sum of squares of residuals : 334093
rel. change during last iteration : -9.79107e-06
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 75.2502
variance of residuals (reduced chisquare) = WSSR/ndf : 5662.6
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.153 +/- 8.725e+05 (2.102e+05%)
d = 0.0775612 +/- 21.79 (2.809e+04%)
T = 500.396 +/- 7.341e+05 (1.467e+05%)
fi = -304.146 +/- 1292 (424.9%)
s = 1042.02 +/- 33.32 (3.197%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.999 1.000
T 0.998 0.993 1.000
fi -1.000 -0.999 -0.998 1.000
s 0.139 0.133 0.146 -0.139 1.000
 
 
*******************************************************************************
Tue Nov 17 19:05:21 2009
 
 
FIT: data read from "poloha1B.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 211576 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 18.4936
 
initial set of free parameter values
 
a = 415.153
d = 0.0775612
T = 500.396
fi = -304.146
s = 1042.02
 
After 11 iterations the fit converged.
final sum of squares of residuals : 7.14462
rel. change during last iteration : -8.7874e-06
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.347987
variance of residuals (reduced chisquare) = WSSR/ndf : 0.121095
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 254.373 +/- 0.4389 (0.1725%)
d = 0.000457669 +/- 2.783e-06 (0.6082%)
T = 498.212 +/- 0.1441 (0.02893%)
fi = -304.321 +/- 0.002424 (0.0007966%)
s = 961.297 +/- 0.1507 (0.01568%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.802 1.000
T -0.354 -0.148 1.000
fi -0.418 -0.205 0.837 1.000
s 0.040 -0.073 0.036 0.073 1.000
 
 
*******************************************************************************
Tue Nov 17 19:06:40 2009
 
 
FIT: data read from "poloha1A.txt" using 1:2:3
#datapoints = 62
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 21771.3 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 26906.6
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 8 iterations the fit converged.
final sum of squares of residuals : 13090
rel. change during last iteration : -6.37733e-06
 
degrees of freedom (FIT_NDF) : 57
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 15.1542
variance of residuals (reduced chisquare) = WSSR/ndf : 229.65
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.164 +/- 30.37 (7.315%)
d = 0.000373673 +/- 8.872e-05 (23.74%)
T = 500.425 +/- 4.134 (0.8261%)
fi = -299.787 +/- 0.07885 (0.0263%)
s = 973.781 +/- 7.373 (0.7572%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.901 1.000
T -0.259 -0.113 1.000
fi -0.306 -0.142 0.879 1.000
s -0.029 -0.118 -0.067 0.037 1.000
 
 
*******************************************************************************
Tue Nov 17 19:06:40 2009
 
 
FIT: data read from "poloha2A.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 1.22136e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 21052.8
 
initial set of free parameter values
 
a = 415.164
d = 0.000373673
T = 500.425
fi = -299.787
s = 973.781
 
After 17 iterations the fit converged.
final sum of squares of residuals : 334093
rel. change during last iteration : -9.79107e-06
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 75.2502
variance of residuals (reduced chisquare) = WSSR/ndf : 5662.6
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.153 +/- 8.725e+05 (2.102e+05%)
d = 0.0775612 +/- 21.79 (2.809e+04%)
T = 500.396 +/- 7.341e+05 (1.467e+05%)
fi = -304.146 +/- 1292 (424.9%)
s = 1042.02 +/- 33.32 (3.197%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.999 1.000
T 0.998 0.993 1.000
fi -1.000 -0.999 -0.998 1.000
s 0.139 0.133 0.146 -0.139 1.000
 
 
*******************************************************************************
Tue Nov 17 19:06:42 2009
 
 
FIT: data read from "poloha1A.txt" using 1:2:3
#datapoints = 62
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 21771.3 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 26906.6
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 8 iterations the fit converged.
final sum of squares of residuals : 13090
rel. change during last iteration : -6.37733e-06
 
degrees of freedom (FIT_NDF) : 57
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 15.1542
variance of residuals (reduced chisquare) = WSSR/ndf : 229.65
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.164 +/- 30.37 (7.315%)
d = 0.000373673 +/- 8.872e-05 (23.74%)
T = 500.425 +/- 4.134 (0.8261%)
fi = -299.787 +/- 0.07885 (0.0263%)
s = 973.781 +/- 7.373 (0.7572%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.901 1.000
T -0.259 -0.113 1.000
fi -0.306 -0.142 0.879 1.000
s -0.029 -0.118 -0.067 0.037 1.000
 
 
*******************************************************************************
Tue Nov 17 19:06:43 2009
 
 
FIT: data read from "poloha2A.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 1.22136e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 21052.8
 
initial set of free parameter values
 
a = 415.164
d = 0.000373673
T = 500.425
fi = -299.787
s = 973.781
 
After 17 iterations the fit converged.
final sum of squares of residuals : 334093
rel. change during last iteration : -9.79107e-06
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 75.2502
variance of residuals (reduced chisquare) = WSSR/ndf : 5662.6
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.153 +/- 8.725e+05 (2.102e+05%)
d = 0.0775612 +/- 21.79 (2.809e+04%)
T = 500.396 +/- 7.341e+05 (1.467e+05%)
fi = -304.146 +/- 1292 (424.9%)
s = 1042.02 +/- 33.32 (3.197%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.999 1.000
T 0.998 0.993 1.000
fi -1.000 -0.999 -0.998 1.000
s 0.139 0.133 0.146 -0.139 1.000
 
 
*******************************************************************************
Tue Nov 17 19:06:44 2009
 
 
FIT: data read from "poloha1A.txt" using 1:2:3
#datapoints = 62
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 21771.3 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 26906.6
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 8 iterations the fit converged.
final sum of squares of residuals : 13090
rel. change during last iteration : -6.37733e-06
 
degrees of freedom (FIT_NDF) : 57
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 15.1542
variance of residuals (reduced chisquare) = WSSR/ndf : 229.65
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.164 +/- 30.37 (7.315%)
d = 0.000373673 +/- 8.872e-05 (23.74%)
T = 500.425 +/- 4.134 (0.8261%)
fi = -299.787 +/- 0.07885 (0.0263%)
s = 973.781 +/- 7.373 (0.7572%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.901 1.000
T -0.259 -0.113 1.000
fi -0.306 -0.142 0.879 1.000
s -0.029 -0.118 -0.067 0.037 1.000
 
 
*******************************************************************************
Tue Nov 17 19:06:44 2009
 
 
FIT: data read from "poloha2A.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 1.22136e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 21052.8
 
initial set of free parameter values
 
a = 415.164
d = 0.000373673
T = 500.425
fi = -299.787
s = 973.781
 
After 17 iterations the fit converged.
final sum of squares of residuals : 334093
rel. change during last iteration : -9.79107e-06
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 75.2502
variance of residuals (reduced chisquare) = WSSR/ndf : 5662.6
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.153 +/- 8.725e+05 (2.102e+05%)
d = 0.0775612 +/- 21.79 (2.809e+04%)
T = 500.396 +/- 7.341e+05 (1.467e+05%)
fi = -304.146 +/- 1292 (424.9%)
s = 1042.02 +/- 33.32 (3.197%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.999 1.000
T 0.998 0.993 1.000
fi -1.000 -0.999 -0.998 1.000
s 0.139 0.133 0.146 -0.139 1.000
 
 
*******************************************************************************
Tue Nov 17 19:06:47 2009
 
 
FIT: data read from "poloha1A.txt" using 1:2:3
#datapoints = 62
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 21771.3 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 26906.6
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 8 iterations the fit converged.
final sum of squares of residuals : 13090
rel. change during last iteration : -6.37733e-06
 
degrees of freedom (FIT_NDF) : 57
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 15.1542
variance of residuals (reduced chisquare) = WSSR/ndf : 229.65
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.164 +/- 30.37 (7.315%)
d = 0.000373673 +/- 8.872e-05 (23.74%)
T = 500.425 +/- 4.134 (0.8261%)
fi = -299.787 +/- 0.07885 (0.0263%)
s = 973.781 +/- 7.373 (0.7572%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.901 1.000
T -0.259 -0.113 1.000
fi -0.306 -0.142 0.879 1.000
s -0.029 -0.118 -0.067 0.037 1.000
 
 
*******************************************************************************
Tue Nov 17 19:06:47 2009
 
 
FIT: data read from "poloha2A.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 1.22136e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 21052.8
 
initial set of free parameter values
 
a = 415.164
d = 0.000373673
T = 500.425
fi = -299.787
s = 973.781
 
After 17 iterations the fit converged.
final sum of squares of residuals : 334093
rel. change during last iteration : -9.79107e-06
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 75.2502
variance of residuals (reduced chisquare) = WSSR/ndf : 5662.6
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.153 +/- 8.725e+05 (2.102e+05%)
d = 0.0775612 +/- 21.79 (2.809e+04%)
T = 500.396 +/- 7.341e+05 (1.467e+05%)
fi = -304.146 +/- 1292 (424.9%)
s = 1042.02 +/- 33.32 (3.197%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.999 1.000
T 0.998 0.993 1.000
fi -1.000 -0.999 -0.998 1.000
s 0.139 0.133 0.146 -0.139 1.000
 
 
*******************************************************************************
Tue Nov 17 19:06:52 2009
 
 
FIT: data read from "poloha1A.txt" using 1:2:3
#datapoints = 62
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 21771.3 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 26906.6
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 8 iterations the fit converged.
final sum of squares of residuals : 13090
rel. change during last iteration : -6.37733e-06
 
degrees of freedom (FIT_NDF) : 57
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 15.1542
variance of residuals (reduced chisquare) = WSSR/ndf : 229.65
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.164 +/- 30.37 (7.315%)
d = 0.000373673 +/- 8.872e-05 (23.74%)
T = 500.425 +/- 4.134 (0.8261%)
fi = -299.787 +/- 0.07885 (0.0263%)
s = 973.781 +/- 7.373 (0.7572%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.901 1.000
T -0.259 -0.113 1.000
fi -0.306 -0.142 0.879 1.000
s -0.029 -0.118 -0.067 0.037 1.000
 
 
*******************************************************************************
Tue Nov 17 19:06:52 2009
 
 
FIT: data read from "poloha2A.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 1.22136e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 21052.8
 
initial set of free parameter values
 
a = 415.164
d = 0.000373673
T = 500.425
fi = -299.787
s = 973.781
 
After 17 iterations the fit converged.
final sum of squares of residuals : 334093
rel. change during last iteration : -9.79107e-06
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 75.2502
variance of residuals (reduced chisquare) = WSSR/ndf : 5662.6
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.153 +/- 8.725e+05 (2.102e+05%)
d = 0.0775612 +/- 21.79 (2.809e+04%)
T = 500.396 +/- 7.341e+05 (1.467e+05%)
fi = -304.146 +/- 1292 (424.9%)
s = 1042.02 +/- 33.32 (3.197%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.999 1.000
T 0.998 0.993 1.000
fi -1.000 -0.999 -0.998 1.000
s 0.139 0.133 0.146 -0.139 1.000
 
 
*******************************************************************************
Tue Nov 17 19:06:54 2009
 
 
FIT: data read from "poloha1A.txt" using 1:2:3
#datapoints = 62
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 21771.3 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 26906.6
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 8 iterations the fit converged.
final sum of squares of residuals : 13090
rel. change during last iteration : -6.37733e-06
 
degrees of freedom (FIT_NDF) : 57
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 15.1542
variance of residuals (reduced chisquare) = WSSR/ndf : 229.65
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.164 +/- 30.37 (7.315%)
d = 0.000373673 +/- 8.872e-05 (23.74%)
T = 500.425 +/- 4.134 (0.8261%)
fi = -299.787 +/- 0.07885 (0.0263%)
s = 973.781 +/- 7.373 (0.7572%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.901 1.000
T -0.259 -0.113 1.000
fi -0.306 -0.142 0.879 1.000
s -0.029 -0.118 -0.067 0.037 1.000
 
 
*******************************************************************************
Tue Nov 17 19:06:54 2009
 
 
FIT: data read from "poloha2A.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 1.22136e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 21052.8
 
initial set of free parameter values
 
a = 415.164
d = 0.000373673
T = 500.425
fi = -299.787
s = 973.781
 
After 17 iterations the fit converged.
final sum of squares of residuals : 334093
rel. change during last iteration : -9.79107e-06
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 75.2502
variance of residuals (reduced chisquare) = WSSR/ndf : 5662.6
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.153 +/- 8.725e+05 (2.102e+05%)
d = 0.0775612 +/- 21.79 (2.809e+04%)
T = 500.396 +/- 7.341e+05 (1.467e+05%)
fi = -304.146 +/- 1292 (424.9%)
s = 1042.02 +/- 33.32 (3.197%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.999 1.000
T 0.998 0.993 1.000
fi -1.000 -0.999 -0.998 1.000
s 0.139 0.133 0.146 -0.139 1.000
 
 
*******************************************************************************
Tue Nov 17 19:07:02 2009
 
 
FIT: data read from "poloha1A.txt" using 1:2:3
#datapoints = 62
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 21771.3 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 26906.6
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 8 iterations the fit converged.
final sum of squares of residuals : 13090
rel. change during last iteration : -6.37733e-06
 
degrees of freedom (FIT_NDF) : 57
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 15.1542
variance of residuals (reduced chisquare) = WSSR/ndf : 229.65
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.164 +/- 30.37 (7.315%)
d = 0.000373673 +/- 8.872e-05 (23.74%)
T = 500.425 +/- 4.134 (0.8261%)
fi = -299.787 +/- 0.07885 (0.0263%)
s = 973.781 +/- 7.373 (0.7572%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.901 1.000
T -0.259 -0.113 1.000
fi -0.306 -0.142 0.879 1.000
s -0.029 -0.118 -0.067 0.037 1.000
 
 
*******************************************************************************
Tue Nov 17 19:07:02 2009
 
 
FIT: data read from "poloha2A.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 1.22136e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 21052.8
 
initial set of free parameter values
 
a = 415.164
d = 0.000373673
T = 500.425
fi = -299.787
s = 973.781
 
After 17 iterations the fit converged.
final sum of squares of residuals : 334093
rel. change during last iteration : -9.79107e-06
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 75.2502
variance of residuals (reduced chisquare) = WSSR/ndf : 5662.6
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.153 +/- 8.725e+05 (2.102e+05%)
d = 0.0775612 +/- 21.79 (2.809e+04%)
T = 500.396 +/- 7.341e+05 (1.467e+05%)
fi = -304.146 +/- 1292 (424.9%)
s = 1042.02 +/- 33.32 (3.197%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.999 1.000
T 0.998 0.993 1.000
fi -1.000 -0.999 -0.998 1.000
s 0.139 0.133 0.146 -0.139 1.000
 
 
*******************************************************************************
Tue Nov 17 19:07:56 2009
 
 
FIT: data read from "poloha1A.txt" using 1:2:3
#datapoints = 62
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 21771.3 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 26906.6
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 8 iterations the fit converged.
final sum of squares of residuals : 13090
rel. change during last iteration : -6.37733e-06
 
degrees of freedom (FIT_NDF) : 57
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 15.1542
variance of residuals (reduced chisquare) = WSSR/ndf : 229.65
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.164 +/- 30.37 (7.315%)
d = 0.000373673 +/- 8.872e-05 (23.74%)
T = 500.425 +/- 4.134 (0.8261%)
fi = -299.787 +/- 0.07885 (0.0263%)
s = 973.781 +/- 7.373 (0.7572%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.901 1.000
T -0.259 -0.113 1.000
fi -0.306 -0.142 0.879 1.000
s -0.029 -0.118 -0.067 0.037 1.000
 
 
*******************************************************************************
Tue Nov 17 19:07:56 2009
 
 
FIT: data read from "poloha2A.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 1.21688e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 22719
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 37 iterations the fit converged.
final sum of squares of residuals : 119.509
rel. change during last iteration : -4.23227e-08
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 1.42323
variance of residuals (reduced chisquare) = WSSR/ndf : 2.02558
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 429.751 +/- 2.133 (0.4963%)
d = 0.000470283 +/- 7.339e-06 (1.561%)
T = 497.817 +/- 0.3167 (0.06361%)
fi = -302.227 +/- 0.005104 (0.001689%)
s = 1062.89 +/- 0.6162 (0.05797%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.851 1.000
T -0.091 0.044 1.000
fi -0.128 0.025 0.813 1.000
s -0.020 0.035 -0.037 -0.062 1.000
 
 
*******************************************************************************
Tue Nov 17 19:07:58 2009
 
 
FIT: data read from "poloha1A.txt" using 1:2:3
#datapoints = 62
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 21771.3 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 26906.6
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 8 iterations the fit converged.
final sum of squares of residuals : 13090
rel. change during last iteration : -6.37733e-06
 
degrees of freedom (FIT_NDF) : 57
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 15.1542
variance of residuals (reduced chisquare) = WSSR/ndf : 229.65
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 415.164 +/- 30.37 (7.315%)
d = 0.000373673 +/- 8.872e-05 (23.74%)
T = 500.425 +/- 4.134 (0.8261%)
fi = -299.787 +/- 0.07885 (0.0263%)
s = 973.781 +/- 7.373 (0.7572%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.901 1.000
T -0.259 -0.113 1.000
fi -0.306 -0.142 0.879 1.000
s -0.029 -0.118 -0.067 0.037 1.000
 
 
*******************************************************************************
Tue Nov 17 19:07:58 2009
 
 
FIT: data read from "poloha2A.txt" using 1:2:3
#datapoints = 64
function used for fitting: f(x)
fitted parameters initialized with current variable values
 
 
 
Iteration 0
WSSR : 1.21688e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 22719
 
initial set of free parameter values
 
a = 390
d = 0.0002
T = 496
fi = -300
s = 950
 
After 37 iterations the fit converged.
final sum of squares of residuals : 119.509
rel. change during last iteration : -4.23227e-08
 
degrees of freedom (FIT_NDF) : 59
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 1.42323
variance of residuals (reduced chisquare) = WSSR/ndf : 2.02558
 
Final set of parameters Asymptotic Standard Error
======================= ==========================
 
a = 429.751 +/- 2.133 (0.4963%)
d = 0.000470283 +/- 7.339e-06 (1.561%)
T = 497.817 +/- 0.3167 (0.06361%)
fi = -302.227 +/- 0.005104 (0.001689%)
s = 1062.89 +/- 0.6162 (0.05797%)
 
 
correlation matrix of the fit parameters:
 
a d T fi s
a 1.000
d 0.851 1.000
T -0.091 0.044 1.000
fi -0.128 0.025 0.813 1.000
s -0.020 0.035 -0.037 -0.062 1.000
/dokumenty/PRA1/1-Cavendish/poloha1.pdf
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Property changes:
Added: svn:mime-type
+application/octet-stream
\ No newline at end of property
/dokumenty/PRA1/1-Cavendish/poloha1.ps
0,0 → 1,3106
%!PS-Adobe-2.0
%%Title: poloha1.ps
%%Creator: gnuplot 4.2 patchlevel 5
%%CreationDate: Tue Nov 17 19:05:22 2009
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 554 770
%%Orientation: Landscape
%%Pages: (atend)
%%EndComments
%%BeginProlog
/gnudict 256 dict def
gnudict begin
%
% The following 6 true/false flags may be edited by hand if required
% The unit line width may also be changed
%
/Color false def
/Blacktext false def
/Solid false def
/Dashlength 1 def
/Landscape true def
/Level1 false def
/Rounded false def
/TransparentPatterns false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
%
/vshift -46 def
/dl1 {
10.0 Dashlength mul mul
Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if
} def
/dl2 {
10.0 Dashlength mul mul
Rounded { currentlinewidth 0.75 mul add } if
} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
Level1 {} {
/SDict 10 dict def
systemdict /pdfmark known not {
userdict /pdfmark systemdict /cleartomark get put
} if
SDict begin [
/Title (poloha1.ps)
/Subject (gnuplot plot)
/Creator (gnuplot 4.2 patchlevel 5 )
/Author (Jakub Kakona,,,)
% /Producer (gnuplot)
% /Keywords ()
/CreationDate (Tue Nov 17 19:05:22 2009)
/DOCINFO pdfmark
end
} ifelse
%
% Gnuplot Prolog Version 4.2 (August 2006)
%
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/N {newpath moveto} bind def
/Z {closepath} bind def
/C {setrgbcolor} bind def
/f {rlineto fill} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow {currentpoint stroke M 0 vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/Rshow {currentpoint stroke M dup stringwidth pop neg vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
/hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def
/DL {Color {setrgbcolor Solid {pop []} if 0 setdash}
{pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def
/BL {stroke userlinewidth 2 mul setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
/AL {stroke userlinewidth 2 div setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
/UL {dup gnulinewidth mul /userlinewidth exch def
dup 1 lt {pop 1} if 10 mul /udl exch def} def
/PL {stroke userlinewidth setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
% Default Line colors
/LCw {1 1 1} def
/LCb {0 0 0} def
/LCa {0 0 0} def
/LC0 {1 0 0} def
/LC1 {0 1 0} def
/LC2 {0 0 1} def
/LC3 {1 0 1} def
/LC4 {0 1 1} def
/LC5 {1 1 0} def
/LC6 {0 0 0} def
/LC7 {1 0.3 0} def
/LC8 {0.5 0.5 0.5} def
% Default Line Types
/LTw {PL [] 1 setgray} def
/LTb {BL [] LCb DL} def
/LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def
/LT0 {PL [] LC0 DL} def
/LT1 {PL [4 dl1 2 dl2] LC1 DL} def
/LT2 {PL [2 dl1 3 dl2] LC2 DL} def
/LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def
/LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def
/LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def
/LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def
/LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def
/LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def
/Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def
/Dia {stroke [] 0 setdash 2 copy vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath stroke
Pnt} def
/Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V
currentpoint stroke M
hpt neg vpt neg R hpt2 0 V stroke
} def
/Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath stroke
Pnt} def
/Crs {stroke [] 0 setdash exch hpt sub exch vpt add M
hpt2 vpt2 neg V currentpoint stroke M
hpt2 neg 0 R hpt2 vpt2 V stroke} def
/TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath stroke
Pnt} def
/Star {2 copy Pls Crs} def
/BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath fill} def
/TriUF {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath fill} def
/TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath stroke
Pnt} def
/TriDF {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath fill} def
/DiaF {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath fill} def
/Pent {stroke [] 0 setdash 2 copy gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath stroke grestore Pnt} def
/PentF {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath fill grestore} def
/Circle {stroke [] 0 setdash 2 copy
hpt 0 360 arc stroke Pnt} def
/CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def
/C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def
/C1 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc closepath fill
vpt 0 360 arc closepath} bind def
/C2 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C3 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C4 {BL [] 0 setdash 2 copy moveto
2 copy vpt 180 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C5 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc
2 copy moveto
2 copy vpt 180 270 arc closepath fill
vpt 0 360 arc} bind def
/C6 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C7 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C8 {BL [] 0 setdash 2 copy moveto
2 copy vpt 270 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C9 {BL [] 0 setdash 2 copy moveto
2 copy vpt 270 450 arc closepath fill
vpt 0 360 arc closepath} bind def
/C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
2 copy moveto
2 copy vpt 90 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C11 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 180 arc closepath fill
2 copy moveto
2 copy vpt 270 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C12 {BL [] 0 setdash 2 copy moveto
2 copy vpt 180 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C13 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc closepath fill
2 copy moveto
2 copy vpt 180 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C14 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 360 arc closepath fill
vpt 0 360 arc} bind def
/C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
neg 0 rlineto closepath} bind def
/Square {dup Rec} bind def
/Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def
/S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def
/S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def
/S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
/S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def
/S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
/S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill
exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
/S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def
/S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
2 copy vpt Square fill Bsquare} bind def
/S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def
/S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def
/S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
Bsquare} bind def
/S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
Bsquare} bind def
/S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def
/S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
2 copy vpt Square fill Bsquare} bind def
/S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
/S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def
/D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def
/D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def
/D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def
/D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def
/D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def
/D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def
/D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def
/D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def
/D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def
/D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def
/D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def
/D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def
/D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def
/D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def
/D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def
/D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def
/DiaE {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath stroke} def
/BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath stroke} def
/TriUE {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath stroke} def
/TriDE {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath stroke} def
/PentE {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath stroke grestore} def
/CircE {stroke [] 0 setdash
hpt 0 360 arc stroke} def
/Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def
/DiaW {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V Opaque stroke} def
/BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V Opaque stroke} def
/TriUW {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V Opaque stroke} def
/TriDW {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V Opaque stroke} def
/PentW {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
Opaque stroke grestore} def
/CircW {stroke [] 0 setdash
hpt 0 360 arc Opaque stroke} def
/BoxFill {gsave Rec 1 setgray fill grestore} def
/Density {
/Fillden exch def
currentrgbcolor
/ColB exch def /ColG exch def /ColR exch def
/ColR ColR Fillden mul Fillden sub 1 add def
/ColG ColG Fillden mul Fillden sub 1 add def
/ColB ColB Fillden mul Fillden sub 1 add def
ColR ColG ColB setrgbcolor} def
/BoxColFill {gsave Rec PolyFill} def
/PolyFill {gsave Density fill grestore grestore} def
/h {rlineto rlineto rlineto gsave closepath fill grestore} bind def
%
% PostScript Level 1 Pattern Fill routine for rectangles
% Usage: x y w h s a XX PatternFill
% x,y = lower left corner of box to be filled
% w,h = width and height of box
% a = angle in degrees between lines and x-axis
% XX = 0/1 for no/yes cross-hatch
%
/PatternFill {gsave /PFa [ 9 2 roll ] def
PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
gsave 1 setgray fill grestore clip
currentlinewidth 0.5 mul setlinewidth
/PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
0 0 M PFa 5 get rotate PFs -2 div dup translate
0 1 PFs PFa 4 get div 1 add floor cvi
{PFa 4 get mul 0 M 0 PFs V} for
0 PFa 6 get ne {
0 1 PFs PFa 4 get div 1 add floor cvi
{PFa 4 get mul 0 2 1 roll M PFs 0 V} for
} if
stroke grestore} def
%
/languagelevel where
{pop languagelevel} {1} ifelse
2 lt
{/InterpretLevel1 true def}
{/InterpretLevel1 Level1 def}
ifelse
%
% PostScript level 2 pattern fill definitions
%
/Level2PatternFill {
/Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8}
bind def
/KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke}
>> matrix makepattern
/Pat1 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke
0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke}
>> matrix makepattern
/Pat2 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L
8 8 L 8 0 L 0 0 L fill}
>> matrix makepattern
/Pat3 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L
0 12 M 12 0 L stroke}
>> matrix makepattern
/Pat4 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L
0 -4 M 12 8 L stroke}
>> matrix makepattern
/Pat5 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L
0 12 M 8 -4 L 4 12 M 10 0 L stroke}
>> matrix makepattern
/Pat6 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L
0 -4 M 8 12 L 4 -4 M 10 8 L stroke}
>> matrix makepattern
/Pat7 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L
12 0 M -4 8 L 12 4 M 0 10 L stroke}
>> matrix makepattern
/Pat8 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L
-4 0 M 12 8 L -4 4 M 8 10 L stroke}
>> matrix makepattern
/Pat9 exch def
/Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def
/Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def
/Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def
/Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def
/Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def
/Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def
/Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def
} def
%
%
%End of PostScript Level 2 code
%
/PatternBgnd {
TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse
} def
%
% Substitute for Level 2 pattern fill codes with
% grayscale if Level 2 support is not selected.
%
/Level1PatternFill {
/Pattern1 {0.250 Density} bind def
/Pattern2 {0.500 Density} bind def
/Pattern3 {0.750 Density} bind def
/Pattern4 {0.125 Density} bind def
/Pattern5 {0.375 Density} bind def
/Pattern6 {0.625 Density} bind def
/Pattern7 {0.875 Density} bind def
} def
%
% Now test for support of Level 2 code
%
Level1 {Level1PatternFill} {Level2PatternFill} ifelse
%
/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
currentdict end definefont pop
end
%%EndProlog
%%Page: 1 1
gnudict begin
gsave
50 50 translate
0.100 0.100 scale
90 rotate
0 -5040 translate
0 setgray
newpath
(Helvetica) findfont 140 scalefont setfont
1.000 UL
LTb
938 448 M
63 0 V
5989 0 R
-63 0 V
854 448 M
( 700) Rshow
1.000 UL
LTb
938 890 M
63 0 V
5989 0 R
-63 0 V
854 890 M
( 750) Rshow
1.000 UL
LTb
938 1333 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 800) Rshow
1.000 UL
LTb
938 1775 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 850) Rshow
1.000 UL
LTb
938 2218 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 900) Rshow
1.000 UL
LTb
938 2660 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 950) Rshow
1.000 UL
LTb
938 3102 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 1000) Rshow
1.000 UL
LTb
938 3545 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 1050) Rshow
1.000 UL
LTb
938 3987 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 1100) Rshow
1.000 UL
LTb
938 4430 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 1150) Rshow
1.000 UL
LTb
938 4872 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 1200) Rshow
1.000 UL
LTb
938 448 M
0 63 V
0 4361 R
0 -63 V
938 308 M
( 0) Cshow
1.000 UL
LTb
1803 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 200) Cshow
1.000 UL
LTb
2667 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 400) Cshow
1.000 UL
LTb
3532 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 600) Cshow
1.000 UL
LTb
4396 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 800) Cshow
1.000 UL
LTb
5261 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 1000) Cshow
1.000 UL
LTb
6125 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 1200) Cshow
1.000 UL
LTb
6990 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 1400) Cshow
1.000 UL
LTb
1.000 UL
LTb
938 4872 N
938 448 L
6052 0 V
0 4424 V
-6052 0 V
Z stroke
LCb setrgbcolor
280 2660 M
currentpoint gsave translate 90 rotate 0 0 M
(Amplitude [mm]) Cshow
grestore
LTb
LCb setrgbcolor
3964 98 M
(Time [s]) Cshow
LTb
1.000 UP
1.000 UL
LTb
1.000 UP
1.000 UL
LT0
/Helvetica findfont 140 scalefont setfont
938 1828 M
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
55 -557 R
0 88 V
-31 -88 R
62 0 V
-62 88 R
62 0 V
56 -469 R
0 89 V
-31 -89 R
62 0 V
-62 89 R
62 0 V
55 -319 R
0 36 V
-31 -36 R
62 0 V
-62 36 R
62 0 V
56 -177 R
0 35 V
-31 -35 R
62 0 V
-62 35 R
62 0 V
55 -35 R
0 70 V
-31 -70 R
62 0 V
-62 70 R
62 0 V
56 71 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
55 168 R
0 106 V
1512 970 M
62 0 V
-62 106 R
62 0 V
56 274 R
0 89 V
-31 -89 R
62 0 V
-62 89 R
62 0 V
55 354 R
0 106 V
-31 -106 R
62 0 V
-62 106 R
62 0 V
56 398 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
55 451 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
55 460 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
56 345 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
55 318 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
56 212 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
55 80 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
56 8 R
0 36 V
-31 -36 R
62 0 V
stroke 2439 4668 M
-62 36 R
62 0 V
55 -115 R
0 35 V
-31 -35 R
62 0 V
-62 35 R
62 0 V
56 -221 R
0 35 V
-31 -35 R
62 0 V
-62 35 R
62 0 V
55 -327 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
56 -460 R
0 88 V
-31 -88 R
62 0 V
-62 88 R
62 0 V
55 -522 R
0 89 V
-31 -89 R
62 0 V
-62 89 R
62 0 V
56 -531 R
0 88 V
-31 -88 R
62 0 V
-62 88 R
62 0 V
55 -548 R
0 88 V
-31 -88 R
62 0 V
-62 88 R
62 0 V
55 -495 R
0 70 V
-31 -70 R
62 0 V
-62 70 R
62 0 V
56 -433 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
55 -381 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
56 -265 R
0 70 V
-31 -70 R
62 0 V
-62 70 R
62 0 V
55 -150 R
0 35 V
-31 -35 R
62 0 V
-62 35 R
62 0 V
56 -26 R
0 35 V
-31 -35 R
62 0 V
-62 35 R
62 0 V
55 71 R
0 35 V
-31 -35 R
62 0 V
-62 35 R
62 0 V
56 195 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
55 230 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
56 292 R
0 70 V
-31 -70 R
62 0 V
-62 70 R
62 0 V
stroke 3909 2111 M
55 292 R
0 89 V
-31 -89 R
62 0 V
-62 89 R
62 0 V
55 345 R
0 88 V
-31 -88 R
62 0 V
-62 88 R
62 0 V
56 292 R
0 89 V
-31 -89 R
62 0 V
-62 89 R
62 0 V
55 265 R
0 89 V
-31 -89 R
62 0 V
-62 89 R
62 0 V
56 239 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
55 123 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
56 89 R
0 70 V
-31 -70 R
62 0 V
-62 70 R
62 0 V
55 -79 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
56 -133 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
55 -222 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
56 -309 R
0 70 V
-31 -70 R
62 0 V
-62 70 R
62 0 V
55 -345 R
0 36 V
-31 -36 R
62 0 V
-62 36 R
62 0 V
55 -372 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
56 -469 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
55 -443 R
0 89 V
-31 -89 R
62 0 V
-62 89 R
62 0 V
56 -434 R
0 89 V
-31 -89 R
62 0 V
-62 89 R
62 0 V
55 -363 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
56 -275 R
0 53 V
stroke 5434 1642 M
-31 -53 R
62 0 V
-62 53 R
62 0 V
55 -203 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
56 -133 R
0 35 V
-31 -35 R
62 0 V
-62 35 R
62 0 V
55 -17 R
0 35 V
-31 -35 R
62 0 V
-62 35 R
62 0 V
56 62 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
55 115 R
0 88 V
-31 -88 R
62 0 V
-62 88 R
62 0 V
56 160 R
0 88 V
-31 -88 R
62 0 V
-62 88 R
62 0 V
55 186 R
0 88 V
-31 -88 R
62 0 V
-62 88 R
62 0 V
55 204 R
0 88 V
-31 -88 R
62 0 V
-62 88 R
62 0 V
56 257 R
0 71 V
-31 -71 R
62 0 V
-62 71 R
62 0 V
55 239 R
0 70 V
-31 -70 R
62 0 V
-62 70 R
62 0 V
56 204 R
0 88 V
-31 -88 R
62 0 V
-62 88 R
62 0 V
938 1864 Pls
1024 1386 Pls
1111 1005 Pls
1197 749 Pls
1284 607 Pls
1370 625 Pls
1457 767 Pls
1543 1023 Pls
1630 1395 Pls
1716 1846 Pls
1803 2333 Pls
1889 2855 Pls
1975 3386 Pls
2062 3801 Pls
2148 4191 Pls
2235 4474 Pls
2321 4624 Pls
2408 4686 Pls
2494 4607 Pls
2581 4421 Pls
2667 4146 Pls
2754 3766 Pls
2840 3332 Pls
2927 2890 Pls
3013 2430 Pls
3099 2014 Pls
3186 1651 Pls
3272 1342 Pls
3359 1147 Pls
3445 1050 Pls
3532 1059 Pls
3618 1165 Pls
3705 1412 Pls
3791 1713 Pls
3878 2076 Pls
3964 2448 Pls
4050 2881 Pls
4137 3262 Pls
4223 3616 Pls
4310 3934 Pls
4396 4129 Pls
4483 4288 Pls
4569 4279 Pls
4656 4217 Pls
4742 4067 Pls
4829 3828 Pls
4915 3536 Pls
5001 3217 Pls
5088 2819 Pls
5174 2456 Pls
5261 2111 Pls
5347 1828 Pls
5434 1616 Pls
5520 1474 Pls
5607 1395 Pls
5693 1412 Pls
5780 1527 Pls
5866 1722 Pls
5953 1970 Pls
6039 2244 Pls
6125 2536 Pls
6212 2872 Pls
6298 3182 Pls
6385 3465 Pls
1.000 UL
LT1
/Helvetica findfont 140 scalefont setfont
938 1856 M
3 -16 V
2 -16 V
3 -16 V
3 -16 V
3 -16 V
2 -15 V
3 -16 V
3 -16 V
3 -15 V
2 -16 V
3 -15 V
3 -15 V
2 -15 V
3 -16 V
3 -15 V
3 -15 V
2 -15 V
3 -14 V
3 -15 V
2 -15 V
3 -14 V
3 -15 V
3 -14 V
2 -14 V
3 -15 V
3 -14 V
3 -14 V
2 -14 V
3 -14 V
3 -13 V
2 -14 V
3 -14 V
3 -13 V
3 -13 V
2 -14 V
3 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -12 V
2 -13 V
3 -12 V
3 -13 V
3 -12 V
2 -12 V
3 -12 V
3 -12 V
3 -12 V
2 -12 V
3 -12 V
3 -11 V
2 -11 V
3 -12 V
3 -11 V
3 -11 V
2 -11 V
3 -11 V
3 -11 V
2 -10 V
3 -11 V
3 -10 V
3 -10 V
2 -11 V
3 -10 V
3 -10 V
3 -9 V
2 -10 V
3 -10 V
3 -9 V
2 -9 V
3 -10 V
3 -9 V
3 -9 V
2 -9 V
3 -8 V
3 -9 V
3 -8 V
2 -9 V
3 -8 V
3 -8 V
2 -8 V
3 -8 V
3 -8 V
3 -7 V
2 -8 V
3 -7 V
3 -7 V
3 -7 V
2 -7 V
3 -7 V
3 -7 V
2 -6 V
3 -7 V
3 -6 V
3 -6 V
2 -6 V
3 -6 V
3 -6 V
2 -6 V
3 -5 V
3 -5 V
3 -6 V
2 -5 V
stroke 1221 694 M
3 -5 V
3 -5 V
3 -4 V
2 -5 V
3 -4 V
3 -5 V
2 -4 V
3 -4 V
3 -4 V
3 -3 V
2 -4 V
3 -4 V
3 -3 V
3 -3 V
2 -3 V
3 -3 V
3 -3 V
2 -3 V
3 -2 V
3 -3 V
3 -2 V
2 -2 V
3 -2 V
3 -2 V
2 -2 V
3 -1 V
3 -2 V
3 -1 V
2 -1 V
3 -1 V
3 -1 V
3 -1 V
2 0 V
3 -1 V
3 0 V
2 0 V
3 -1 V
3 0 V
3 1 V
2 0 V
3 0 V
3 1 V
3 1 V
2 1 V
3 1 V
3 1 V
2 1 V
3 2 V
3 1 V
3 2 V
2 2 V
3 2 V
3 2 V
3 2 V
2 2 V
3 3 V
3 2 V
2 3 V
3 3 V
3 3 V
3 3 V
2 4 V
3 3 V
3 4 V
2 3 V
3 4 V
3 4 V
3 4 V
2 4 V
3 5 V
3 4 V
3 5 V
2 4 V
3 5 V
3 5 V
2 5 V
3 6 V
3 5 V
3 6 V
2 5 V
3 6 V
3 6 V
3 6 V
2 6 V
3 6 V
3 7 V
2 6 V
3 7 V
3 6 V
3 7 V
2 7 V
3 7 V
3 7 V
3 8 V
2 7 V
3 8 V
3 8 V
2 7 V
3 8 V
3 8 V
3 8 V
2 9 V
3 8 V
3 9 V
stroke 1505 896 M
2 8 V
3 9 V
3 9 V
3 9 V
2 9 V
3 9 V
3 9 V
3 10 V
2 9 V
3 10 V
3 9 V
2 10 V
3 10 V
3 10 V
3 10 V
2 11 V
3 10 V
3 10 V
3 11 V
2 10 V
3 11 V
3 11 V
2 11 V
3 11 V
3 11 V
3 11 V
2 12 V
3 11 V
3 12 V
2 11 V
3 12 V
3 12 V
3 11 V
2 12 V
3 13 V
3 12 V
3 12 V
2 12 V
3 13 V
3 12 V
2 13 V
3 12 V
3 13 V
3 13 V
2 13 V
3 13 V
3 13 V
3 13 V
2 13 V
3 13 V
3 14 V
2 13 V
3 14 V
3 13 V
3 14 V
2 14 V
3 13 V
3 14 V
3 14 V
2 14 V
3 14 V
3 14 V
2 14 V
3 15 V
3 14 V
3 14 V
2 15 V
3 14 V
3 15 V
2 15 V
3 14 V
3 15 V
3 15 V
2 15 V
3 14 V
3 15 V
3 15 V
2 15 V
3 15 V
3 16 V
2 15 V
3 15 V
3 15 V
3 16 V
2 15 V
3 15 V
3 16 V
3 15 V
2 16 V
3 15 V
3 16 V
2 16 V
3 15 V
3 16 V
3 16 V
2 15 V
3 16 V
3 16 V
3 16 V
2 16 V
3 16 V
3 16 V
2 16 V
3 16 V
stroke 1788 2255 M
3 16 V
3 16 V
2 16 V
3 16 V
3 16 V
2 16 V
3 16 V
3 16 V
3 16 V
2 17 V
3 16 V
3 16 V
3 16 V
2 16 V
3 17 V
3 16 V
2 16 V
3 16 V
3 16 V
3 17 V
2 16 V
3 16 V
3 16 V
3 17 V
2 16 V
3 16 V
3 16 V
2 17 V
3 16 V
3 16 V
3 16 V
2 16 V
3 17 V
3 16 V
2 16 V
3 16 V
3 16 V
3 16 V
2 17 V
3 16 V
3 16 V
3 16 V
2 16 V
3 16 V
3 16 V
2 16 V
3 16 V
3 16 V
3 16 V
2 15 V
3 16 V
3 16 V
3 16 V
2 16 V
3 15 V
3 16 V
2 16 V
3 15 V
3 16 V
3 15 V
2 16 V
3 15 V
3 16 V
3 15 V
2 15 V
3 16 V
3 15 V
2 15 V
3 15 V
3 15 V
3 16 V
2 15 V
3 15 V
3 14 V
2 15 V
3 15 V
3 15 V
3 15 V
2 14 V
3 15 V
3 14 V
3 15 V
2 14 V
3 15 V
3 14 V
2 14 V
3 14 V
3 15 V
3 14 V
2 14 V
3 14 V
3 13 V
3 14 V
2 14 V
3 14 V
3 13 V
2 14 V
3 13 V
3 14 V
3 13 V
2 13 V
3 13 V
3 13 V
3 13 V
stroke 2072 3851 M
2 13 V
3 13 V
3 13 V
2 13 V
3 12 V
3 13 V
3 12 V
2 13 V
3 12 V
3 12 V
2 12 V
3 12 V
3 12 V
3 12 V
2 12 V
3 12 V
3 11 V
3 12 V
2 11 V
3 11 V
3 12 V
2 11 V
3 11 V
3 11 V
3 11 V
2 11 V
3 10 V
3 11 V
3 10 V
2 11 V
3 10 V
3 10 V
2 10 V
3 10 V
3 10 V
3 10 V
2 10 V
3 9 V
3 10 V
2 9 V
3 10 V
3 9 V
3 9 V
2 9 V
3 9 V
3 9 V
3 8 V
2 9 V
3 8 V
3 9 V
2 8 V
3 8 V
3 8 V
3 8 V
2 8 V
3 7 V
3 8 V
3 7 V
2 8 V
3 7 V
3 7 V
2 7 V
3 7 V
3 7 V
3 7 V
2 6 V
3 7 V
3 6 V
3 6 V
2 6 V
3 6 V
3 6 V
2 6 V
3 6 V
3 5 V
3 6 V
2 5 V
3 5 V
3 5 V
2 5 V
3 5 V
3 5 V
3 4 V
2 5 V
3 4 V
3 4 V
3 4 V
2 4 V
3 4 V
3 4 V
2 4 V
3 3 V
3 3 V
3 4 V
2 3 V
3 3 V
3 3 V
3 3 V
2 2 V
3 3 V
3 2 V
2 2 V
3 3 V
3 2 V
stroke 2355 4671 M
3 2 V
2 1 V
3 2 V
3 2 V
3 1 V
2 1 V
3 2 V
3 1 V
2 1 V
3 0 V
3 1 V
3 1 V
2 0 V
3 0 V
3 1 V
2 0 V
3 0 V
3 0 V
3 -1 V
2 0 V
3 -1 V
3 0 V
3 -1 V
2 -1 V
3 -1 V
3 -1 V
2 -1 V
3 -2 V
3 -1 V
3 -2 V
2 -1 V
3 -2 V
3 -2 V
3 -2 V
2 -2 V
3 -3 V
3 -2 V
2 -3 V
3 -2 V
3 -3 V
3 -3 V
2 -3 V
3 -3 V
3 -4 V
2 -3 V
3 -4 V
3 -3 V
3 -4 V
2 -4 V
3 -4 V
3 -4 V
3 -4 V
2 -4 V
3 -5 V
3 -4 V
2 -5 V
3 -5 V
3 -5 V
3 -5 V
2 -5 V
3 -5 V
3 -5 V
3 -6 V
2 -5 V
3 -6 V
3 -6 V
2 -5 V
3 -6 V
3 -7 V
3 -6 V
2 -6 V
3 -6 V
3 -7 V
3 -7 V
2 -6 V
3 -7 V
3 -7 V
2 -7 V
3 -7 V
3 -8 V
3 -7 V
2 -7 V
3 -8 V
3 -8 V
2 -7 V
3 -8 V
3 -8 V
3 -8 V
2 -8 V
3 -9 V
3 -8 V
3 -9 V
2 -8 V
3 -9 V
3 -8 V
2 -9 V
3 -9 V
3 -9 V
3 -9 V
2 -10 V
3 -9 V
3 -9 V
3 -10 V
2 -9 V
stroke 2638 4244 M
3 -10 V
3 -10 V
2 -9 V
3 -10 V
3 -10 V
3 -10 V
2 -11 V
3 -10 V
3 -10 V
2 -11 V
3 -10 V
3 -11 V
3 -10 V
2 -11 V
3 -11 V
3 -11 V
3 -11 V
2 -11 V
3 -11 V
3 -11 V
2 -11 V
3 -12 V
3 -11 V
3 -12 V
2 -11 V
3 -12 V
3 -11 V
3 -12 V
2 -12 V
3 -12 V
3 -12 V
2 -12 V
3 -12 V
3 -12 V
3 -12 V
2 -13 V
3 -12 V
3 -13 V
3 -12 V
2 -13 V
3 -12 V
3 -13 V
2 -12 V
3 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
3 -13 V
2 -14 V
3 -13 V
3 -13 V
3 -14 V
2 -13 V
3 -14 V
3 -13 V
2 -14 V
3 -13 V
3 -14 V
3 -14 V
2 -14 V
3 -13 V
3 -14 V
3 -14 V
2 -14 V
3 -14 V
3 -14 V
2 -14 V
3 -14 V
3 -14 V
3 -14 V
2 -14 V
3 -14 V
3 -14 V
3 -14 V
2 -14 V
3 -15 V
3 -14 V
2 -14 V
3 -14 V
3 -15 V
3 -14 V
2 -14 V
3 -15 V
3 -14 V
2 -14 V
3 -15 V
3 -14 V
3 -15 V
2 -14 V
3 -15 V
3 -14 V
3 -14 V
2 -15 V
3 -14 V
3 -15 V
2 -14 V
3 -15 V
3 -14 V
3 -15 V
stroke 2922 2911 M
2 -14 V
3 -15 V
3 -14 V
3 -15 V
2 -14 V
3 -15 V
3 -14 V
2 -15 V
3 -14 V
3 -15 V
3 -14 V
2 -15 V
3 -14 V
3 -15 V
2 -14 V
3 -14 V
3 -15 V
3 -14 V
2 -14 V
3 -15 V
3 -14 V
3 -14 V
2 -15 V
3 -14 V
3 -14 V
2 -15 V
3 -14 V
3 -14 V
3 -14 V
2 -14 V
3 -14 V
3 -14 V
3 -14 V
2 -14 V
3 -14 V
3 -14 V
2 -14 V
3 -14 V
3 -14 V
3 -14 V
2 -14 V
3 -14 V
3 -13 V
3 -14 V
2 -14 V
3 -13 V
3 -14 V
2 -13 V
3 -14 V
3 -13 V
3 -14 V
2 -13 V
3 -13 V
3 -14 V
2 -13 V
3 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
2 -12 V
3 -13 V
3 -12 V
3 -13 V
2 -12 V
3 -13 V
3 -12 V
3 -12 V
2 -12 V
3 -13 V
3 -12 V
2 -12 V
3 -12 V
3 -12 V
3 -11 V
2 -12 V
3 -12 V
3 -11 V
3 -12 V
2 -11 V
3 -12 V
3 -11 V
2 -12 V
3 -11 V
3 -11 V
3 -11 V
2 -11 V
3 -11 V
3 -11 V
2 -10 V
3 -11 V
3 -11 V
3 -10 V
2 -11 V
3 -10 V
3 -10 V
3 -11 V
2 -10 V
3 -10 V
stroke 3205 1561 M
3 -10 V
2 -10 V
3 -9 V
3 -10 V
3 -10 V
2 -9 V
3 -10 V
3 -9 V
3 -9 V
2 -10 V
3 -9 V
3 -9 V
2 -9 V
3 -9 V
3 -8 V
3 -9 V
2 -9 V
3 -8 V
3 -9 V
2 -8 V
3 -8 V
3 -8 V
3 -8 V
2 -8 V
3 -8 V
3 -8 V
3 -8 V
2 -7 V
3 -8 V
3 -7 V
2 -7 V
3 -7 V
3 -7 V
3 -7 V
2 -7 V
3 -7 V
3 -7 V
3 -6 V
2 -7 V
3 -6 V
3 -7 V
2 -6 V
3 -6 V
3 -6 V
3 -6 V
2 -5 V
3 -6 V
3 -6 V
3 -5 V
2 -6 V
3 -5 V
3 -5 V
2 -5 V
3 -5 V
3 -5 V
3 -5 V
2 -4 V
3 -5 V
3 -4 V
2 -5 V
3 -4 V
3 -4 V
3 -4 V
2 -4 V
3 -4 V
3 -3 V
3 -4 V
2 -3 V
3 -4 V
3 -3 V
2 -3 V
3 -3 V
3 -3 V
3 -3 V
2 -3 V
3 -2 V
3 -3 V
3 -2 V
2 -2 V
3 -3 V
3 -2 V
2 -2 V
3 -1 V
3 -2 V
3 -2 V
2 -1 V
3 -2 V
3 -1 V
3 -1 V
2 -1 V
3 -1 V
3 -1 V
2 -1 V
3 -1 V
3 0 V
3 -1 V
2 0 V
3 0 V
3 0 V
2 0 V
3 0 V
3 0 V
3 0 V
2 1 V
stroke 3488 1042 M
3 0 V
3 1 V
3 1 V
2 1 V
3 1 V
3 1 V
2 1 V
3 1 V
3 2 V
3 1 V
2 2 V
3 2 V
3 1 V
3 2 V
2 2 V
3 2 V
3 3 V
2 2 V
3 3 V
3 2 V
3 3 V
2 3 V
3 3 V
3 3 V
2 3 V
3 3 V
3 3 V
3 4 V
2 3 V
3 4 V
3 3 V
3 4 V
2 4 V
3 4 V
3 4 V
2 5 V
3 4 V
3 4 V
3 5 V
2 5 V
3 4 V
3 5 V
3 5 V
2 5 V
3 5 V
3 5 V
2 6 V
3 5 V
3 6 V
3 5 V
2 6 V
3 6 V
3 6 V
3 6 V
2 6 V
3 6 V
3 6 V
2 7 V
3 6 V
3 7 V
3 6 V
2 7 V
3 7 V
3 7 V
2 7 V
3 7 V
3 7 V
3 7 V
2 7 V
3 8 V
3 7 V
3 8 V
2 8 V
3 8 V
3 7 V
2 8 V
3 8 V
3 8 V
3 9 V
2 8 V
3 8 V
3 9 V
3 8 V
2 9 V
3 8 V
3 9 V
2 9 V
3 9 V
3 9 V
3 9 V
2 9 V
3 9 V
3 10 V
3 9 V
2 9 V
3 10 V
3 9 V
2 10 V
3 10 V
3 10 V
3 9 V
2 10 V
3 10 V
3 10 V
stroke 3772 1630 M
2 10 V
3 11 V
3 10 V
3 10 V
2 10 V
3 11 V
3 10 V
3 11 V
2 11 V
3 10 V
3 11 V
2 11 V
3 11 V
3 10 V
3 11 V
2 11 V
3 11 V
3 12 V
3 11 V
2 11 V
3 11 V
3 12 V
2 11 V
3 11 V
3 12 V
3 11 V
2 12 V
3 12 V
3 11 V
2 12 V
3 12 V
3 11 V
3 12 V
2 12 V
3 12 V
3 12 V
3 12 V
2 12 V
3 12 V
3 12 V
2 12 V
3 13 V
3 12 V
3 12 V
2 12 V
3 13 V
3 12 V
3 12 V
2 13 V
3 12 V
3 13 V
2 12 V
3 13 V
3 12 V
3 13 V
2 12 V
3 13 V
3 13 V
3 12 V
2 13 V
3 13 V
3 12 V
2 13 V
3 13 V
3 13 V
3 12 V
2 13 V
3 13 V
3 13 V
2 13 V
3 13 V
3 12 V
3 13 V
2 13 V
3 13 V
3 13 V
3 13 V
2 13 V
3 13 V
3 13 V
2 13 V
3 12 V
3 13 V
3 13 V
2 13 V
3 13 V
3 13 V
3 13 V
2 13 V
3 13 V
3 13 V
2 13 V
3 13 V
3 13 V
3 12 V
2 13 V
3 13 V
3 13 V
3 13 V
2 13 V
3 13 V
3 12 V
2 13 V
3 13 V
stroke 4055 2893 M
3 13 V
3 13 V
2 12 V
3 13 V
3 13 V
2 12 V
3 13 V
3 13 V
3 12 V
2 13 V
3 12 V
3 13 V
3 13 V
2 12 V
3 12 V
3 13 V
2 12 V
3 13 V
3 12 V
3 12 V
2 13 V
3 12 V
3 12 V
3 12 V
2 13 V
3 12 V
3 12 V
2 12 V
3 12 V
3 12 V
3 12 V
2 12 V
3 11 V
3 12 V
2 12 V
3 12 V
3 11 V
3 12 V
2 12 V
3 11 V
3 12 V
3 11 V
2 12 V
3 11 V
3 11 V
2 12 V
3 11 V
3 11 V
3 11 V
2 11 V
3 11 V
3 11 V
3 11 V
2 11 V
3 11 V
3 10 V
2 11 V
3 11 V
3 10 V
3 11 V
2 10 V
3 11 V
3 10 V
3 10 V
2 10 V
3 10 V
3 11 V
2 10 V
3 9 V
3 10 V
3 10 V
2 10 V
3 10 V
3 9 V
2 10 V
3 9 V
3 10 V
3 9 V
2 9 V
3 9 V
3 10 V
3 9 V
2 9 V
3 9 V
3 8 V
2 9 V
3 9 V
3 8 V
3 9 V
2 8 V
3 9 V
3 8 V
3 8 V
2 9 V
3 8 V
3 8 V
2 8 V
3 7 V
3 8 V
3 8 V
2 7 V
3 8 V
3 7 V
3 8 V
stroke 4339 3999 M
2 7 V
3 7 V
3 7 V
2 7 V
3 7 V
3 7 V
3 7 V
2 7 V
3 6 V
3 7 V
2 6 V
3 6 V
3 7 V
3 6 V
2 6 V
3 6 V
3 6 V
3 6 V
2 5 V
3 6 V
3 5 V
2 6 V
3 5 V
3 6 V
3 5 V
2 5 V
3 5 V
3 5 V
3 5 V
2 4 V
3 5 V
3 4 V
2 5 V
3 4 V
3 4 V
3 5 V
2 4 V
3 4 V
3 4 V
2 3 V
3 4 V
3 4 V
3 3 V
2 4 V
3 3 V
3 3 V
3 3 V
2 3 V
3 3 V
3 3 V
2 3 V
3 2 V
3 3 V
3 2 V
2 3 V
3 2 V
3 2 V
3 2 V
2 2 V
3 2 V
3 2 V
2 1 V
3 2 V
3 1 V
3 2 V
2 1 V
3 1 V
3 1 V
3 1 V
2 1 V
3 1 V
3 1 V
2 0 V
3 1 V
3 0 V
3 1 V
2 0 V
3 0 V
3 0 V
2 0 V
3 0 V
3 -1 V
3 0 V
2 0 V
3 -1 V
3 -1 V
3 0 V
2 -1 V
3 -1 V
3 -1 V
2 -1 V
3 -2 V
3 -1 V
3 -1 V
2 -2 V
3 -2 V
3 -1 V
3 -2 V
2 -2 V
3 -2 V
3 -2 V
2 -2 V
3 -3 V
3 -2 V
stroke 4622 4263 M
3 -2 V
2 -3 V
3 -3 V
3 -2 V
3 -3 V
2 -3 V
3 -3 V
3 -3 V
2 -3 V
3 -4 V
3 -3 V
3 -4 V
2 -3 V
3 -4 V
3 -4 V
2 -4 V
3 -3 V
3 -4 V
3 -5 V
2 -4 V
3 -4 V
3 -4 V
3 -5 V
2 -4 V
3 -5 V
3 -5 V
2 -5 V
3 -5 V
3 -5 V
3 -5 V
2 -5 V
3 -5 V
3 -5 V
3 -6 V
2 -5 V
3 -6 V
3 -6 V
2 -5 V
3 -6 V
3 -6 V
3 -6 V
2 -6 V
3 -6 V
3 -6 V
2 -7 V
3 -6 V
3 -7 V
3 -6 V
2 -7 V
3 -6 V
3 -7 V
3 -7 V
2 -7 V
3 -7 V
3 -7 V
2 -7 V
3 -7 V
3 -8 V
3 -7 V
2 -7 V
3 -8 V
3 -8 V
3 -7 V
2 -8 V
3 -8 V
3 -8 V
2 -8 V
3 -8 V
3 -8 V
3 -8 V
2 -8 V
3 -8 V
3 -9 V
3 -8 V
2 -8 V
3 -9 V
3 -8 V
2 -9 V
3 -9 V
3 -9 V
3 -8 V
2 -9 V
3 -9 V
3 -9 V
2 -9 V
3 -9 V
3 -10 V
3 -9 V
2 -9 V
3 -9 V
3 -10 V
3 -9 V
2 -10 V
3 -9 V
3 -10 V
2 -10 V
3 -9 V
3 -10 V
3 -10 V
2 -10 V
3 -10 V
3 -10 V
3 -10 V
2 -10 V
stroke 4905 3569 M
3 -10 V
3 -10 V
2 -10 V
3 -10 V
3 -11 V
3 -10 V
2 -10 V
3 -11 V
3 -10 V
3 -11 V
2 -10 V
3 -11 V
3 -10 V
2 -11 V
3 -11 V
3 -10 V
3 -11 V
2 -11 V
3 -11 V
3 -10 V
2 -11 V
3 -11 V
3 -11 V
3 -11 V
2 -11 V
3 -11 V
3 -11 V
3 -11 V
2 -11 V
3 -11 V
3 -11 V
2 -12 V
3 -11 V
3 -11 V
3 -11 V
2 -11 V
3 -12 V
3 -11 V
3 -11 V
2 -12 V
3 -11 V
3 -11 V
2 -12 V
3 -11 V
3 -11 V
3 -12 V
2 -11 V
3 -12 V
3 -11 V
2 -12 V
3 -11 V
3 -12 V
3 -11 V
2 -12 V
3 -11 V
3 -12 V
3 -11 V
2 -12 V
3 -11 V
3 -12 V
2 -11 V
3 -12 V
3 -11 V
3 -12 V
2 -12 V
3 -11 V
3 -12 V
3 -11 V
2 -12 V
3 -11 V
3 -12 V
2 -11 V
3 -12 V
3 -11 V
3 -12 V
2 -11 V
3 -12 V
3 -11 V
3 -12 V
2 -11 V
3 -12 V
3 -11 V
2 -11 V
3 -12 V
3 -11 V
3 -12 V
2 -11 V
3 -11 V
3 -12 V
2 -11 V
3 -11 V
3 -11 V
3 -12 V
2 -11 V
3 -11 V
3 -11 V
3 -11 V
2 -12 V
3 -11 V
3 -11 V
2 -11 V
3 -11 V
3 -11 V
3 -11 V
stroke 5189 2408 M
2 -11 V
3 -11 V
3 -10 V
3 -11 V
2 -11 V
3 -11 V
3 -11 V
2 -10 V
3 -11 V
3 -11 V
3 -10 V
2 -11 V
3 -11 V
3 -10 V
3 -11 V
2 -10 V
3 -10 V
3 -11 V
2 -10 V
3 -10 V
3 -11 V
3 -10 V
2 -10 V
3 -10 V
3 -10 V
2 -10 V
3 -10 V
3 -10 V
3 -10 V
2 -10 V
3 -9 V
3 -10 V
3 -10 V
2 -10 V
3 -9 V
3 -10 V
2 -9 V
3 -10 V
3 -9 V
3 -9 V
2 -10 V
3 -9 V
3 -9 V
3 -9 V
2 -9 V
3 -9 V
3 -9 V
2 -9 V
3 -9 V
3 -9 V
3 -8 V
2 -9 V
3 -8 V
3 -9 V
2 -8 V
3 -9 V
3 -8 V
3 -9 V
2 -8 V
3 -8 V
3 -8 V
3 -8 V
2 -8 V
3 -8 V
3 -8 V
2 -7 V
3 -8 V
3 -8 V
3 -7 V
2 -8 V
3 -7 V
3 -8 V
3 -7 V
2 -7 V
3 -7 V
3 -7 V
2 -7 V
3 -7 V
3 -7 V
3 -7 V
2 -7 V
3 -6 V
3 -7 V
3 -6 V
2 -7 V
3 -6 V
3 -7 V
2 -6 V
3 -6 V
3 -6 V
3 -6 V
2 -6 V
3 -6 V
3 -5 V
2 -6 V
3 -6 V
3 -5 V
3 -6 V
2 -5 V
3 -5 V
3 -5 V
3 -6 V
2 -5 V
3 -5 V
stroke 5472 1535 M
3 -4 V
2 -5 V
3 -5 V
3 -5 V
3 -4 V
2 -5 V
3 -4 V
3 -4 V
3 -5 V
2 -4 V
3 -4 V
3 -4 V
2 -4 V
3 -3 V
3 -4 V
3 -4 V
2 -3 V
3 -4 V
3 -3 V
2 -4 V
3 -3 V
3 -3 V
3 -3 V
2 -3 V
3 -3 V
3 -3 V
3 -2 V
2 -3 V
3 -3 V
3 -2 V
2 -2 V
3 -3 V
3 -2 V
3 -2 V
2 -2 V
3 -2 V
3 -2 V
3 -2 V
2 -1 V
3 -2 V
3 -1 V
2 -2 V
3 -1 V
3 -1 V
3 -2 V
2 -1 V
3 -1 V
3 0 V
3 -1 V
2 -1 V
3 -1 V
3 0 V
2 -1 V
3 0 V
3 0 V
3 -1 V
2 0 V
3 0 V
3 0 V
2 0 V
3 1 V
3 0 V
3 0 V
2 1 V
3 0 V
3 1 V
3 1 V
2 1 V
3 1 V
3 1 V
2 1 V
3 1 V
3 1 V
3 1 V
2 2 V
3 1 V
3 2 V
3 2 V
2 1 V
3 2 V
3 2 V
2 2 V
3 2 V
3 3 V
3 2 V
2 2 V
3 3 V
3 2 V
3 3 V
2 2 V
3 3 V
3 3 V
2 3 V
3 3 V
3 3 V
3 3 V
2 3 V
3 4 V
3 3 V
2 4 V
3 3 V
3 4 V
3 4 V
2 3 V
stroke 5755 1481 M
3 4 V
3 4 V
3 4 V
2 5 V
3 4 V
3 4 V
2 4 V
3 5 V
3 4 V
3 5 V
2 5 V
3 4 V
3 5 V
3 5 V
2 5 V
3 5 V
3 5 V
2 5 V
3 6 V
3 5 V
3 5 V
2 6 V
3 5 V
3 6 V
2 6 V
3 5 V
3 6 V
3 6 V
2 6 V
3 6 V
3 6 V
3 6 V
2 6 V
3 7 V
3 6 V
2 7 V
3 6 V
3 7 V
3 6 V
2 7 V
3 7 V
3 7 V
3 6 V
2 7 V
3 7 V
3 7 V
2 8 V
3 7 V
3 7 V
3 7 V
2 8 V
3 7 V
3 7 V
3 8 V
2 8 V
3 7 V
3 8 V
2 8 V
3 8 V
3 7 V
3 8 V
2 8 V
3 8 V
3 8 V
2 9 V
3 8 V
3 8 V
3 8 V
2 9 V
3 8 V
3 8 V
3 9 V
2 8 V
3 9 V
3 8 V
2 9 V
3 9 V
3 9 V
3 8 V
2 9 V
3 9 V
3 9 V
3 9 V
2 9 V
3 9 V
3 9 V
2 9 V
3 9 V
3 10 V
3 9 V
2 9 V
3 9 V
3 10 V
3 9 V
2 9 V
3 10 V
3 9 V
2 10 V
3 9 V
3 10 V
3 10 V
2 9 V
3 10 V
3 10 V
stroke 6039 2233 M
2 9 V
3 10 V
3 10 V
3 10 V
2 9 V
3 10 V
3 10 V
3 10 V
2 10 V
3 10 V
3 10 V
2 10 V
3 10 V
3 10 V
3 10 V
2 10 V
3 10 V
3 10 V
3 10 V
2 10 V
3 10 V
3 10 V
2 11 V
3 10 V
3 10 V
3 10 V
2 10 V
3 11 V
3 10 V
2 10 V
3 10 V
3 11 V
3 10 V
2 10 V
3 10 V
3 11 V
3 10 V
2 10 V
3 11 V
3 10 V
2 10 V
3 10 V
3 11 V
3 10 V
2 10 V
3 11 V
3 10 V
3 10 V
2 10 V
3 11 V
3 10 V
2 10 V
3 11 V
3 10 V
3 10 V
2 10 V
3 11 V
3 10 V
3 10 V
2 10 V
3 10 V
3 11 V
2 10 V
3 10 V
3 10 V
3 10 V
2 10 V
3 10 V
3 11 V
2 10 V
3 10 V
3 10 V
3 10 V
2 10 V
3 10 V
3 10 V
3 10 V
2 10 V
3 9 V
3 10 V
2 10 V
3 10 V
3 10 V
3 9 V
2 10 V
3 10 V
3 10 V
3 9 V
2 10 V
3 10 V
3 9 V
2 10 V
3 9 V
3 10 V
3 9 V
2 10 V
3 9 V
3 9 V
3 10 V
2 9 V
3 9 V
3 9 V
2 10 V
3 9 V
stroke 6322 3271 M
3 9 V
3 9 V
2 9 V
3 9 V
3 9 V
2 9 V
3 9 V
3 8 V
3 9 V
2 9 V
3 9 V
3 8 V
3 9 V
2 8 V
3 9 V
3 8 V
2 9 V
3 8 V
3 9 V
3 8 V
2 8 V
3 8 V
3 8 V
stroke
LTb
938 4872 N
938 448 L
6052 0 V
0 4424 V
-6052 0 V
Z stroke
1.000 UP
1.000 UL
LTb
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica
%%Pages: 1
/dokumenty/PRA1/1-Cavendish/poloha2.pdf
0,0 → 1,194
%PDF-1.4
%Ç쏢
5 0 obj
<</Length 6 0 R/Filter /FlateDecode>>
stream
xœ•}Ë®&;oÝü<Å&wJ"u&@à±ÝÿÌðÈv §ØNà××Eõõl iô YÜúªXºPäҒꟿžoíëÁ?ÿÿw?~û/½¾þñ_kÏ׿ýö|ýåoã9ý«e쯖ÇÓ¾~—¼ò<W¿²¯«o1²ôßëÿøÛ?ãføçÿþîÇ×ûS=g×m¿þô?ªLûú <´øVÊgkc~ýéÇoÿék=ÏþÓÿüí¿ÿé·¿ú-Gœk‰dYBٖX¦%*s-ùÿ¶"Çþ6þ܊ý“qö¼VH–”m…eZ¡2¿nÅßúŸ[q~¶"#^+(Û
È×
+RÓieƒÔ¿lC®ñí\ömk¶keÙ`5l°–6XýË6 Ìa{þ›FÌÙÇ5‚²Œ°FXK#¬þe#fæ·óñïzå;tÏÞæ`„µ4Âê_6¢îó-_#þC•Ù³:Ëè_ÿò Yðï¯ÿÒ¿ü¿˜¿PðTÿEÔ8,º1_á‘ÿõÇÿúýŸþ÷ÿùûøú›?þÏþؗ½¥·oU,ü§úQåþõo?õä,óŒ7òÉñz-ëŸE=åy¨gë)S‡ñ[OÆ(1%_}ž žeÆ e®žå¥Ï§ž5úf½r“|õc+ú`™Ä˜VëUžú¾[ùåy`g_3%¿ú9>@^ïë2ÒS¶¾ªÖµñ^½ã¹_ýê!ï6¨gë!K_ªšÓöÒDÝBò«¯pò‡å㉝e¬‡l=Æ^;ïÕF½*åWß'õ”÷¦že¬§,ýSÕݟ„í©*¦üê[§žòJêYÆzÊԟ¶jŠ¼Ö®Š¡hís`¼
+Ðﰀ´*KíÁÍJ†¶|EkÛ¼
+z•‘ž²ôÕ±ëžááN“üꙮYÞôÜ*#½dé³Fm¥ô¸YŽ…ò«g|oyÑs«Œõ”¥U£|=wuAÊWߏ[–™´Ÿe®žå¥ŸUÝ#휨·d\.}0¾w™äû²ÌÕ³¼ô£òôLDÇEŠ¡Ï%¤˜eèáTæêY^ú½È¥ig”³¥üê‡ò+ȳñ}UFzÊÖW W2=SVð(ùÕ3¾—¼èá\FzÊÒ×-ÏÅb—Ë0V`}{¦|8#©Œô’¥âMÏ£Ü
+åWÏ0ß2=œËXOYú
+l¿*ÖSL ã0Fÿ~ÿÂhßòTÊRÒK¦¾"˜]9x`ÜR²õã0Úw™!€¹Ê¼z–—¾¢¯Ù˜ùV@ß$_ý³èÉT†´ÊX¯òÒcª©Æ£'C
+DùÕ+ڧܙA»Œô”¥ç¼8;3ßJðŽäWŸçΝ3˜A»Œõ­ßõ•uÐã6¦üêí[>/´|õ’­/Ç8“™oÍÁ[ò«ïœû%3ƒvë)[_ÎmŽ›ùɯþNÙ4ËXOYú]!ª&Ù/àIúÁXßeÆç}¯žåǼ3Õ\­ß‰òÕÏÝî V/î f½Ë§Ú·Â½J¤cÁÑQ~õŒõ%oz8—±²õp s3 îYΖò«g¬/ù0“vé)Kÿ‘p~û ýÉv¯ø×\Xzæ7úL]Íómhž3PúE|ú½Ò_ ÔÇßꪜ×ýmEaß~ByF»Wükl¬9­£ßòªº‰[Qk°ôEvž{Å¿Â Uø1ø[]­¾ïo»Öߌæ4½ðü+7Õ±ô[^ívmn•º¢ôEpž¸Wúkà*ö7
+oj¬-ÙŸÖô[]­ôokºGa£3sß þ­fûþ̋j€û»ŽW½˜ÌŒ{¿íƒ›ìäïxQ¾í¶^$F¶
+‹¹¶öõ³­•FÞßF×o¾Ìv¯ø׎¬?ÆÒoyU³ÚýíÜ´ñ".üƒ1üµ|E¯¹T¿åÕ`¯f«7UÒEYTKÂYðWÔ̈G}BW'îogc鋬°ƒ[©¿ÖLEãÇWë?­ó¹MaÏ4žR}j†ïêd?îÕ¼6ÇL6ÐEPôöÂPðW Tk{üðj;~²uˆ/j2ν>R\ßËcžW'®ÍåÏióÅITWBJ¾+¯î5áè·Ì²Ÿ~ÇOnV⋍Ìu¯ø×Uiw<)›uÕÚµ¹",<éÅCXÏFDê·g7 _ýþöð¹éë^鯕;U
+}]­vÇ~UK_ì‚s‰Ñ Äl5{ÄJ#]íçG›nàÅ+X‰F,ð×¥»löÕ¹6÷|Ðx/FÁÎj”¢þ
+Xùb¹ï•=x{ÚçàªåG-é?_üžÀþZaSÖ¢ßòª2Û×OžÉÒÆ"î•þ:q54Žt½¿Ï¥G~qNWFðۚÌ*ã°Í¼*ðÎa /²À±`lwÆhF·Í¼:Ÿ¹“&¼hÍ3ž€º*ãs4ϝºÚímtµ‘0„ÛF ÿÔFs¾ó}0\yQ:}ãø+èêqîÁõÕ;ŽúbTò"œà¯HÒͺÚymŽÆÛ\tà9í^Ùó#^þŽ#®¯¾ˆ€*јþZ¤t²™WÈÿïo؋¬u¯ôWdoOhéª=we§ y36€süµœOeù²ÙWûÚ\±!jöÍö9ܜï㯉«¦qä«uÇQºê7çwŽ¿–“¯lÞþŠW1_›'C›ÕŽ*çõøk…,•Áké*s¾Ï¥ùo&ÏWs.OŒÒÓó¯¶ùø†7{ßϽÒ_‘“ÖOü¾¸ªï­goÆNOïœý»°æ¡h×È3òó·}énß,½Ìyúw£8«{Þ×Õ¹6W”@+of®;)7ÿn„IÑîśöºã¨<{ÃÍÆÙC?ùxqÇúºš×æ¾9Ù¼ù7g gàôü¹¶Ç®mßßÊ)¼97ç}gÝߝË<˱>¯Z|b}‹7ÏæMi#®«5ñþðUïo,ª)âٟͭ]㯉«´¿âU´7Ößôuo>M_猞°¼ÛTÔûã^7~^zCçГç,š^4‘/;~ÖÕ~mVxøæ͜\9;?©Ùñ³®Ö?o=×¹²:³e¾Q"/ö|Ä«9þ0‡¾ù1ý³3dûçrÈ?͡Ȇß6¢|sbÎNΊñ×ʦ^뇯v¿ã¨"8Üô̓éëœ ã¯åÝ*çõ¼Ï«Ó®ÍSSs%?_ûõ|ý=â«üäÀ Ì "¼D'K:™`
+Lr»Rlˆ†ŒY«‘•C&ú Ò%3¼Dãc¤ ¦@r-#±è\2Q¹h¸?‘îŒ÷×zYß(#$´²ÈBcɼXByŸM:ﳍâYFi‘E‹óRQ™ZAMØ|„ ’§v¼‚:^le‰iÃ#"&mÀ’ — 'ZÓ|:Ê•N¬®—,¶êAyŽ|. µÁµŠ‚Q¾ …Lܟ̋8åÃ($ì "ã{ƒ…Éõ—Ø\]öòò‡x–X!›¼U®ñÀŒµîÆwZ³ã»h…y‘E"
+àš’iÃêx®Ðõà¹l»
+Šñ\¯f/üVh;²Ë6´f7Ñ.ƒž=&mXBBi½Ie´¸Ï6rJ& m´a !í¸#¼@Õ7­êG²´ê¬Fù•HÔ{ÍËÙòІjlÈ´!ÚPQ:d±iГ3(’iC€É9µJ„¾d­?¢ÎN:úÕäÌ fTvÁò ÉÉÙ¢nƒ{†VDÙ:´¡­x=ÕV…邤Œ:\WðÈ{‚ER2m@لÕUˆ‡÷eæP =*vœŒVãA;Nfd˜J$‰cݼdb{X`)™¸ÚA_šŒ’+ÎÆ}´²µî³µÞ
+¿¡L©f<Ügk½Œ›yT¾“…DLw£ÍHZhÇõh
+ 6¬GL%Ø°´j…[p2úÒæ‡×&
+¿UK‚³Õ­—=W`Ã9¸%&pM’ K„-Èölhé1Ï¢–eî@‰…¯þÐ]¾½åxð ÖÅ98x±FWyPÿžòà§<ø®r¢|0葍nór‰,,Àw܁>òt܁.òt<‚턱ùÒTq3úGp–z‹õ”3ÆzotŽp%òÁ~Æ‚“èâU\"#ÜHoô‹ZZaã샛Ñ+ÂçôF§ˆ(¢7úDx¥Þ8i™…QâyÞçó3Vªnvö}DÚ}pòšÓU©0²?çšÞ›ìå
+FiÆ68ÇÛ`€hlƒ#ÀØ£PaÁ˜UØq.l#8s
+XÄíB3jÇoé5#ї„fœa÷ž¬:v¡Ä)»ÐŒh;¡1PçیexD¡bwšœ„f†MšA µ ÍnhšèŽ]hFp6š ¡»ÐŒ`?7C{¡
+ͨ ˜zaÀ‹z•G;z—ц·šñý§+¬¥5–¢Eœ„mn҅mۅm÷¦ ۈÍýJË(6ôB„zŠ°8|{µ$“!ak¶HŸ»°@:܅mTcãžGè<ïy„Σ×ÛHÎÇh>춑Ì@…m˜ë#4¿Á;
+~ÐŒŽB3ȗ¡‰ 7„fTTG™÷œ2mÀ„B3*ÚÃýé5sò¹j;L^!4#11…Ќď9õ‹,/Ú07vÍÑk&&‹š‘«<DÍHŒìšAÚFÍHž+ 4#á¨ChFr‡•ÐŒ
+ƒq­œa?oÎHP’BxFr§“wè-Ú£•38ä‘ä Ó ý#j$ZÕH‘›çh/Å… •³ÝhB6'm$ÜJÛàö¸‘p!t#·vʆ]]6ìôóÎCØ,„#1ÔCGbx‡0ŽÄ‰aír}ß+0ÙPÓ=ƒ7„z$¢ÖìQ2õ´ówøHD³!䃛TBÐGb0†°Ä yøÆjI ºü‘@’¢Ý½„¸§v5` •,XZëOk \ѶîyPFk \! e<÷H†d<‹-90¸Þ½“ö?úD¢j š20¸BpJÉ`Òk–\÷ïÞ¿ÙÀ$lº'F­ 0
+¬7yÁú’<¬Í`›ub/Èz°Ä~Ø°\ä±Úcá·ö‚{uíñŽi/8À‚Õ †l:Ò^3IÚ ÊhCi/È}Áö‚˜„–|ÿé
+a'‰Ì"„dr§µæ3`W1¼Ãs¶°“D&ÂN*®ßYm&N;aÂNŸ…°“Ä:òÝíxGa'çÁǎ|–Y<|–f°ànï;âþŽ1[³xø^S¬xa' |1†Y<hÇá}y˜ï…–T/Åo·÷]â·fñÓ­ Œ‰ðÞÀ†>#´äî\cîZ’˜dß]ìh#¡%5ž°ã\q?‡ZR±~ՕВª60¼ÍâAŒ(´$yB€Ð’DhBK«P!´$93-I„™!´$é}Í¡75Kƒa&=¢™ ÈÂLFf‚Г™ ‚åˆ0„^ÊLÆFf‚lÚ<Ì Â{‰ BOc&6T…Ð’À1-!´¤r?Ü_,$Ï!´$„‡Ðf”!´¤RòäicÓ»ûý_hIùcüV,¨BhI€úBKʔ²Yh öx@vvÜ!;3}¯¸»cAV®Œ';©s +__<_@ù:Ÿ ü›ç#;a6a섣ÖØ ØaìJ;Iòù…$jÂØ 1 c'p¶aì̎0v‚i!Œ`z c'dç; ô2c'ÀöXÝÄE v‚é=Œ`Ão;AèÆN„±¬
+^ÐØ G˜±ú÷¼¬‡±$!aìYy;ypn‚±$Zaìho;
+f‚pT ;aRÂN°§d±x— ;!Ÿ)„tÆÂN
+„w½3³vÒ7¼²°â|!ì„pJ;éÌz„ôÑ/´|ߒ§Ï˜À³„8/ÞSˆóâ=ÅâY¼'½&9O!´„p_-á2!´¤šv
+cžðèÞ 9ùî˜á4îy“õéSqO-!tBKA‡Ð’~^-!vÇ{~ÑîBK*’ÞØc"|}IhI{O„1£
+-á‚FcÌܑbŒ}^h 
+󴰮Ї°“Ê¿p'­´8)ì¤ÓJa'•¯qgÖP6Nâ F
+;!‰"…€‘ÂNHÞHa'ès
+˜Y
+-i83"›×XÏçä™AۼƊýJBKHÎv×XqO¯±NÜÓk¬eÔv]Sh ‰Î)´¤!O¡%$O§Ð¬ShI_3…–´A›ÅnhS¡%mðcîڄ¬µæƒçú옍{¯5?Øæµæz|
+-áñ€)´¤!¦O¡%$ħВ|4…–4°—Sh ÷Ù͟Kœ¨cþÞQhIæšÝü9´K7®ãYæÏ¡îI>è?ýòç°·îòç`§ø ‰“ˆ|¶\¢ºùse̟CˆŽÒpRvóçP?Ýü¹g™?‡¶%¥aw@
+]© ÷ôëçŠ;ððkµdð,"1!q(mú¬îÒÖÒ°”æ©
+—]Òñ,³KºO…ú] ”¼ì’ÀoÍ.Á(¼ìŒN³K8jÍ.áh6»„£Üì’ä™U#_¯`v ½…Ù%ô"BH¸Õ%Í.Aü”f—Й]ð"Í.`‘f— ÖÃõ|ؙz=êY³öX¤Ù%ƒï+Ïp!Í. pOLjÌ.è“f— H³K€œ¤Ù%ÈÁÒ쌕f—uI³KpôHš]‚¤=Í.›&Í.Á>’4»‰wš]‚cèÒ찝Óì$Ïiv ’ä4»™fš]ƒŠ‡g-D
+BHjnÉ÷Ô/¤•BH4ӎq÷Ý+Ÿâ’ÂK4O /Ñü=ÌG怣F‡9à˜w‡9àèÃpZg8<¢ð’Š3`©Z X
+ž%χ„'…—ÛžÂKH_Oá%¤©§ðRÐSxIÅX”Íû¡lÞv·—÷“ÂKà /Ql'¼D1ßt¼ˆwŸæ ñ¹šÃŸëx½Þì Øiv V)Ò섨iv ÂÏ<*˜Æ섍yO¹™”µÏÞËì„riv ´4»¤ñÅ.Ax•f—€)f—4´¯Ù%ˆ×Óì’Æg9òG3»¡Gλßâpwö³žñæý¸§b}ì L³K0u§Ù%3€Ù%˜fÓìLšiv 8iv &¸ôΝ§ýöBB
+dz¯ g-ï•áŒá½2ÀÓ{eàüÓ{e£Ù{eè}½W†^öî•áþsï•A?¼{e0;ݽ2h—»Wuå½28k#…¶–Þ+ØÏ{ez¯ cG¿öÊ Þ_{e0„Ò{e荼W†1®÷Ê û¦÷ÊÌÀûªí&ëG{e&ëG{e&Ư÷Ê sOï•6–Þ+ƒfHï•Y<M]Y¶Ïí2€~ë½28 )½Wë¹é½2 1™Ü.àÏi„dó,vµÝæ¹}BH^¤€¹½ösŏOä{J PÈ4^žS/9Ü믖Ã9—pÄ/áù–ÆK2§ñ$½ivÉ£Ó…!Ó^XkK³Kx2³K8²Í.yXCº֐Ø%kHì’ÆÚÞgÇ3ì…]é´zñŸeÜS1¶±.Ä ÂKûLSx ñ³^Â%Ò^BŽT
+/ 0xSxI€ ˜ÂKGd¦ðž’çî7Ä=½ßBxI€©›ÂK¸Œ—ÂK¸,—ÂKŒ^Â%´<>Au.¼${ñ„W /árT
+káŒÐô¾ÌtOb†EZWm´H몀†Ù%'3š](`˜]Òy®©ÖU;ZÞìx”avIÇf— %í®ÍÁ6¯ÍÑï°§=Það[­Í¥9Ì.ÁŠ÷¼S$ºCxI‚<0„—$ö
+á%8³çÇh}™ï¥¶C5„à0¡’µ®:ÐO„pmz!Iœ8„0ABH*ùáù±º'ú³’l/sòª;Ž0'ýJI‚;œ<ÔC˜“ÇskÌÉ[8“¶yedÚ×l¬: ³Qâ ³QàÝ?çߖ=f£ Åf£ Åf£ Åf£ƒf£ žf£`Õp˜¢3oÍÉÃغ’˜=†Ù(8¦q˜‚Xp˜2Qÿf£èäi!î#6
+Ž¬f£7f£`Ff£ÌŽ÷©Ò0evÜ_lp†Ù(’9x®Úβl๾òš–•½~®ÞÓÛ|m®‰äþ²*†Ù%–×kÙ%´Ú쾍Ù%|K³Køöf—°VÌ.AÒøž@¬‹\ÓxÖèo­›]‚äs˜]‚¤t\vɃû¸ežeäֆf—<<±Ø­ßúÄex_³K°«g˜]20ߛ]N÷0»Æ0»ˆö¸ì’÷5»sÏË.Á=Í.¹§)s”ð4e3Wy“l˜,㑇/™]¯yÙ%ðFf—¾f—€Ÿ>Ì.ÑéËÝ£¿íýø­¼ =„Ù%øÙ0»„Åì æc¨íèÞo àäæ|¼Ãìz2³KèáÌ.¡ç3»„ÑìzJ³K’ub/2îWx`ÚÝb˜]‚®3Ì.A÷ã2“yB•l@ avI¢¯Þ“§1RÍ.´8Ì.Áðf—€M3Ì.Á f—Ï­ò †w1»Xõ0»çà ³Kà@†Ù%Ȧ‡Ù%pJÃìœÈ6Ì. ´‘Ù%pŒÃ윛3„–$>71„–¾Ó¬rԿВÄ~‹1Í*§—UŽòù‰„–(jZ¢hbú4tÌBK’_ÓZB6ûZ‚“¾ ËŒG¡%<—g-щéBKxFÏZÂœ!´„çõ ¡%\ BK¸ 4¦OHý\ñËx‚yB¬¹óò~†°~e;©8çwk>CÐyÏ
+£%§ò -Á·.†Ñ$ºÃh ý‰Ñ’Îh õa´Iþ0ZBrîy²ïÕñ¢†±𾇹&€;†¹&ó“¹&‡µ(ÄØÛvÒkQˆóa-
+L³K€L³Kà9¦Ù%›ß⌎:Í.A'Ÿf—`€L³KvÇ ˆBœÁHœf—l~c@<! ›SØI_ÕbÓßҁSšÂN:ÚvÒ±+f
+;é+pf¢çÅg q^|–V ÖóùæÁä{ qž|/ïE]xî݋ŠwâŒis
+àSØI‡ç˜ÂNjŠ§,¤~AâŒØk
+;á¾àÙ|¶~RR
+…tÄUSh ÿ)´„‡ÌæÕ>Wˆ3س©í°í~+ ÕZÒáQ¦Ð¼0…–tìBKÈåšBK:b£)´¤¾¯ ´„PL¡%%?µçzó;Z5á÷*´Z€“²¦Ð’åZ—Ù|²mðÉZ´áîûÆs½ï»áY>Yëáw/´Äz8æáþ>Y íÞ|²Vu£)´¤c·áZ‚s=!kõm!´¤£*§Ðû2…–p¥j
+-á2Sh OŸ™BK¸3~
+÷3çÌM3Sø3SVãWld¼©™)–]Ï3…³¨™)’Íg@03Eòù©üù”¿g”àž÷ŒÉ/÷qšEBÛÌ"ÑWoÄ"ỘEÂw4‹„ïn öÒN³HXWf‘°Í"aݚE‚uØi Ûâ§s…ÛçÌa´Øp­c6§Ê4§‰Ü¼_’ãwx\ëè)ÂEvSÌË"I¼±Y$µ—EÂïÿ˜E‚‘ý²HPÞµŽxëe‘àþf‘LØcÉě™E‚˜Æ,ðÓ§Y$8cšEÂxË,ì"›f‘ y›f‘,~Û- ¯vY$¾5d‡ùæ²Hø­!³H0'™EÂøÏ,$fsú´žÀl×ùmmy}P[Þ£Ê,$]s^{ìáPŸÓu(\„Ì—9íá&õ/+\DÞwŽW¾ßPÚÔËÄÂEäݧg'~7IŽ³p¦8§g'ôná"íð}åáøݪéÙ ÞbÞىßb2›÷ÜfÓ ž=;a6˜žø^òp81s
+¸áÓ»n0½Lïº6óž»þ7>S½zØ¿ý^!ÏU'Ù´²Åþõ/ÿP…þê·ÿ ´xOendstream
+endobj
+6 0 obj
+13328
+endobj
+4 0 obj
+<</Type/Page/MediaBox [0 0 612 792]
+/Rotate 90/Parent 3 0 R
+/Resources<</ProcSet[/PDF /Text]
+/ExtGState 9 0 R
+/Font 10 0 R
+>>
+/Contents 5 0 R
+>>
+endobj
+3 0 obj
+<< /Type /Pages /Kids [
+4 0 R
+] /Count 1
+>>
+endobj
+1 0 obj
+<</Type /Catalog /Pages 3 0 R
+/Metadata 11 0 R
+>>
+endobj
+7 0 obj
+<</Type/ExtGState
+/OPM 1>>endobj
+9 0 obj
+<</R7
+7 0 R>>
+endobj
+10 0 obj
+<</R8
+8 0 R>>
+endobj
+8 0 obj
+<</BaseFont/Helvetica/Type/Font
+/Subtype/Type1>>
+endobj
+11 0 obj
+<</Type/Metadata
+/Subtype/XML/Length 1485>>stream
+<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
+<?adobe-xap-filters esc="CRLF"?>
+<x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='XMP toolkit 2.9.1-13, framework 1.6'>
+<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' xmlns:iX='http://ns.adobe.com/iX/1.0/'>
+<rdf:Description rdf:about='afff30ec-0bc0-11ea-0000-e48a0d1d8ece' xmlns:pdf='http://ns.adobe.com/pdf/1.3/' pdf:Producer='GPL Ghostscript 8.70'/>
+<rdf:Description rdf:about='afff30ec-0bc0-11ea-0000-e48a0d1d8ece' xmlns:xmp='http://ns.adobe.com/xap/1.0/'><xmp:ModifyDate>Tue -No-v T17: 1:9:07::9 </xmp:ModifyDate>
+<xmp:CreateDate>Tue -No-v T17: 1:9:07::9 </xmp:CreateDate>
+<xmp:CreatorTool>gnuplot 4.2 patchlevel 5 </xmp:CreatorTool></rdf:Description>
+<rdf:Description rdf:about='afff30ec-0bc0-11ea-0000-e48a0d1d8ece' xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/' xapMM:DocumentID='afff30ec-0bc0-11ea-0000-e48a0d1d8ece'/>
+<rdf:Description rdf:about='afff30ec-0bc0-11ea-0000-e48a0d1d8ece' xmlns:dc='http://purl.org/dc/elements/1.1/' dc:format='application/pdf'><dc:title><rdf:Alt><rdf:li xml:lang='x-default'>poloha2.ps</rdf:li></rdf:Alt></dc:title><dc:creator><rdf:Seq><rdf:li>Jakub Kakona,,,</rdf:li></rdf:Seq></dc:creator><dc:description><rdf:Seq><rdf:li>gnuplot plot</rdf:li></rdf:Seq></dc:description></rdf:Description>
+</rdf:RDF>
+</x:xmpmeta>
+
+
+<?xpacket end='w'?>
+endstream
+endobj
+2 0 obj
+<</Producer(GPL Ghostscript 8.70)
+/CreationDate(Tue Nov 17 19:07:59 2009)
+/ModDate(D:20091117190759+01'00')
+/Title(poloha2.ps)
+/Creator(gnuplot 4.2 patchlevel 5 )
+/Subject(gnuplot plot)
+/Author(Jakub Kakona,,,)>>endobj
+xref
+0 12
+0000000000 65535 f
+0000013653 00000 n
+0000015444 00000 n
+0000013594 00000 n
+0000013434 00000 n
+0000000015 00000 n
+0000013413 00000 n
+0000013718 00000 n
+0000013818 00000 n
+0000013759 00000 n
+0000013788 00000 n
+0000013882 00000 n
+trailer
+<< /Size 12 /Root 1 0 R /Info 2 0 R
+/ID [<FC4F559263B9863E2CD66C26AD321659><FC4F559263B9863E2CD66C26AD321659>]
+>>
+startxref
+15671
+%%EOF
/dokumenty/PRA1/1-Cavendish/poloha2.ps
0,0 → 1,3090
%!PS-Adobe-2.0
%%Title: poloha2.ps
%%Creator: gnuplot 4.2 patchlevel 5
%%CreationDate: Tue Nov 17 19:07:59 2009
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 554 770
%%Orientation: Landscape
%%Pages: (atend)
%%EndComments
%%BeginProlog
/gnudict 256 dict def
gnudict begin
%
% The following 6 true/false flags may be edited by hand if required
% The unit line width may also be changed
%
/Color false def
/Blacktext false def
/Solid false def
/Dashlength 1 def
/Landscape true def
/Level1 false def
/Rounded false def
/TransparentPatterns false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
%
/vshift -46 def
/dl1 {
10.0 Dashlength mul mul
Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if
} def
/dl2 {
10.0 Dashlength mul mul
Rounded { currentlinewidth 0.75 mul add } if
} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
Level1 {} {
/SDict 10 dict def
systemdict /pdfmark known not {
userdict /pdfmark systemdict /cleartomark get put
} if
SDict begin [
/Title (poloha2.ps)
/Subject (gnuplot plot)
/Creator (gnuplot 4.2 patchlevel 5 )
/Author (Jakub Kakona,,,)
% /Producer (gnuplot)
% /Keywords ()
/CreationDate (Tue Nov 17 19:07:59 2009)
/DOCINFO pdfmark
end
} ifelse
%
% Gnuplot Prolog Version 4.2 (August 2006)
%
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/N {newpath moveto} bind def
/Z {closepath} bind def
/C {setrgbcolor} bind def
/f {rlineto fill} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow {currentpoint stroke M 0 vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/Rshow {currentpoint stroke M dup stringwidth pop neg vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R
Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
/UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
/hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def
/DL {Color {setrgbcolor Solid {pop []} if 0 setdash}
{pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def
/BL {stroke userlinewidth 2 mul setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
/AL {stroke userlinewidth 2 div setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
/UL {dup gnulinewidth mul /userlinewidth exch def
dup 1 lt {pop 1} if 10 mul /udl exch def} def
/PL {stroke userlinewidth setlinewidth
Rounded {1 setlinejoin 1 setlinecap} if} def
% Default Line colors
/LCw {1 1 1} def
/LCb {0 0 0} def
/LCa {0 0 0} def
/LC0 {1 0 0} def
/LC1 {0 1 0} def
/LC2 {0 0 1} def
/LC3 {1 0 1} def
/LC4 {0 1 1} def
/LC5 {1 1 0} def
/LC6 {0 0 0} def
/LC7 {1 0.3 0} def
/LC8 {0.5 0.5 0.5} def
% Default Line Types
/LTw {PL [] 1 setgray} def
/LTb {BL [] LCb DL} def
/LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def
/LT0 {PL [] LC0 DL} def
/LT1 {PL [4 dl1 2 dl2] LC1 DL} def
/LT2 {PL [2 dl1 3 dl2] LC2 DL} def
/LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def
/LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def
/LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def
/LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def
/LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def
/LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def
/Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def
/Dia {stroke [] 0 setdash 2 copy vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath stroke
Pnt} def
/Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V
currentpoint stroke M
hpt neg vpt neg R hpt2 0 V stroke
} def
/Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath stroke
Pnt} def
/Crs {stroke [] 0 setdash exch hpt sub exch vpt add M
hpt2 vpt2 neg V currentpoint stroke M
hpt2 neg 0 R hpt2 vpt2 V stroke} def
/TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath stroke
Pnt} def
/Star {2 copy Pls Crs} def
/BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath fill} def
/TriUF {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath fill} def
/TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath stroke
Pnt} def
/TriDF {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath fill} def
/DiaF {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath fill} def
/Pent {stroke [] 0 setdash 2 copy gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath stroke grestore Pnt} def
/PentF {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath fill grestore} def
/Circle {stroke [] 0 setdash 2 copy
hpt 0 360 arc stroke Pnt} def
/CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def
/C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def
/C1 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc closepath fill
vpt 0 360 arc closepath} bind def
/C2 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C3 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C4 {BL [] 0 setdash 2 copy moveto
2 copy vpt 180 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C5 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc
2 copy moveto
2 copy vpt 180 270 arc closepath fill
vpt 0 360 arc} bind def
/C6 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C7 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 270 arc closepath fill
vpt 0 360 arc closepath} bind def
/C8 {BL [] 0 setdash 2 copy moveto
2 copy vpt 270 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C9 {BL [] 0 setdash 2 copy moveto
2 copy vpt 270 450 arc closepath fill
vpt 0 360 arc closepath} bind def
/C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
2 copy moveto
2 copy vpt 90 180 arc closepath fill
vpt 0 360 arc closepath} bind def
/C11 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 180 arc closepath fill
2 copy moveto
2 copy vpt 270 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C12 {BL [] 0 setdash 2 copy moveto
2 copy vpt 180 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C13 {BL [] 0 setdash 2 copy moveto
2 copy vpt 0 90 arc closepath fill
2 copy moveto
2 copy vpt 180 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/C14 {BL [] 0 setdash 2 copy moveto
2 copy vpt 90 360 arc closepath fill
vpt 0 360 arc} bind def
/C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
vpt 0 360 arc closepath} bind def
/Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
neg 0 rlineto closepath} bind def
/Square {dup Rec} bind def
/Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def
/S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def
/S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def
/S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
/S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def
/S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
/S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill
exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
/S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def
/S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
2 copy vpt Square fill Bsquare} bind def
/S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def
/S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def
/S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
Bsquare} bind def
/S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
Bsquare} bind def
/S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def
/S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
2 copy vpt Square fill Bsquare} bind def
/S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
/S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def
/D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def
/D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def
/D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def
/D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def
/D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def
/D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def
/D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def
/D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def
/D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def
/D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def
/D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def
/D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def
/D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def
/D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def
/D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def
/D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def
/DiaE {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V closepath stroke} def
/BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V closepath stroke} def
/TriUE {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V closepath stroke} def
/TriDE {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V closepath stroke} def
/PentE {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
closepath stroke grestore} def
/CircE {stroke [] 0 setdash
hpt 0 360 arc stroke} def
/Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def
/DiaW {stroke [] 0 setdash vpt add M
hpt neg vpt neg V hpt vpt neg V
hpt vpt V hpt neg vpt V Opaque stroke} def
/BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M
0 vpt2 neg V hpt2 0 V 0 vpt2 V
hpt2 neg 0 V Opaque stroke} def
/TriUW {stroke [] 0 setdash vpt 1.12 mul add M
hpt neg vpt -1.62 mul V
hpt 2 mul 0 V
hpt neg vpt 1.62 mul V Opaque stroke} def
/TriDW {stroke [] 0 setdash vpt 1.12 mul sub M
hpt neg vpt 1.62 mul V
hpt 2 mul 0 V
hpt neg vpt -1.62 mul V Opaque stroke} def
/PentW {stroke [] 0 setdash gsave
translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
Opaque stroke grestore} def
/CircW {stroke [] 0 setdash
hpt 0 360 arc Opaque stroke} def
/BoxFill {gsave Rec 1 setgray fill grestore} def
/Density {
/Fillden exch def
currentrgbcolor
/ColB exch def /ColG exch def /ColR exch def
/ColR ColR Fillden mul Fillden sub 1 add def
/ColG ColG Fillden mul Fillden sub 1 add def
/ColB ColB Fillden mul Fillden sub 1 add def
ColR ColG ColB setrgbcolor} def
/BoxColFill {gsave Rec PolyFill} def
/PolyFill {gsave Density fill grestore grestore} def
/h {rlineto rlineto rlineto gsave closepath fill grestore} bind def
%
% PostScript Level 1 Pattern Fill routine for rectangles
% Usage: x y w h s a XX PatternFill
% x,y = lower left corner of box to be filled
% w,h = width and height of box
% a = angle in degrees between lines and x-axis
% XX = 0/1 for no/yes cross-hatch
%
/PatternFill {gsave /PFa [ 9 2 roll ] def
PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
gsave 1 setgray fill grestore clip
currentlinewidth 0.5 mul setlinewidth
/PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
0 0 M PFa 5 get rotate PFs -2 div dup translate
0 1 PFs PFa 4 get div 1 add floor cvi
{PFa 4 get mul 0 M 0 PFs V} for
0 PFa 6 get ne {
0 1 PFs PFa 4 get div 1 add floor cvi
{PFa 4 get mul 0 2 1 roll M PFs 0 V} for
} if
stroke grestore} def
%
/languagelevel where
{pop languagelevel} {1} ifelse
2 lt
{/InterpretLevel1 true def}
{/InterpretLevel1 Level1 def}
ifelse
%
% PostScript level 2 pattern fill definitions
%
/Level2PatternFill {
/Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8}
bind def
/KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke}
>> matrix makepattern
/Pat1 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke
0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke}
>> matrix makepattern
/Pat2 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L
8 8 L 8 0 L 0 0 L fill}
>> matrix makepattern
/Pat3 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L
0 12 M 12 0 L stroke}
>> matrix makepattern
/Pat4 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L
0 -4 M 12 8 L stroke}
>> matrix makepattern
/Pat5 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L
0 12 M 8 -4 L 4 12 M 10 0 L stroke}
>> matrix makepattern
/Pat6 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L
0 -4 M 8 12 L 4 -4 M 10 8 L stroke}
>> matrix makepattern
/Pat7 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L
12 0 M -4 8 L 12 4 M 0 10 L stroke}
>> matrix makepattern
/Pat8 exch def
<< Tile8x8
/PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L
-4 0 M 12 8 L -4 4 M 8 10 L stroke}
>> matrix makepattern
/Pat9 exch def
/Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def
/Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def
/Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def
/Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def
/Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def
/Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def
/Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def
} def
%
%
%End of PostScript Level 2 code
%
/PatternBgnd {
TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse
} def
%
% Substitute for Level 2 pattern fill codes with
% grayscale if Level 2 support is not selected.
%
/Level1PatternFill {
/Pattern1 {0.250 Density} bind def
/Pattern2 {0.500 Density} bind def
/Pattern3 {0.750 Density} bind def
/Pattern4 {0.125 Density} bind def
/Pattern5 {0.375 Density} bind def
/Pattern6 {0.625 Density} bind def
/Pattern7 {0.875 Density} bind def
} def
%
% Now test for support of Level 2 code
%
Level1 {Level1PatternFill} {Level2PatternFill} ifelse
%
/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
currentdict end definefont pop
end
%%EndProlog
%%Page: 1 1
gnudict begin
gsave
50 50 translate
0.100 0.100 scale
90 rotate
0 -5040 translate
0 setgray
newpath
(Helvetica) findfont 140 scalefont setfont
1.000 UL
LTb
938 448 M
63 0 V
5989 0 R
-63 0 V
854 448 M
( 700) Rshow
1.000 UL
LTb
938 1001 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 800) Rshow
1.000 UL
LTb
938 1554 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 900) Rshow
1.000 UL
LTb
938 2107 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 1000) Rshow
1.000 UL
LTb
938 2660 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 1100) Rshow
1.000 UL
LTb
938 3213 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 1200) Rshow
1.000 UL
LTb
938 3766 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 1300) Rshow
1.000 UL
LTb
938 4319 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 1400) Rshow
1.000 UL
LTb
938 4872 M
63 0 V
5989 0 R
-63 0 V
-6073 0 R
( 1500) Rshow
1.000 UL
LTb
938 448 M
0 63 V
0 4361 R
0 -63 V
938 308 M
( 0) Cshow
1.000 UL
LTb
1803 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 200) Cshow
1.000 UL
LTb
2667 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 400) Cshow
1.000 UL
LTb
3532 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 600) Cshow
1.000 UL
LTb
4396 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 800) Cshow
1.000 UL
LTb
5261 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 1000) Cshow
1.000 UL
LTb
6125 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 1200) Cshow
1.000 UL
LTb
6990 448 M
0 63 V
0 4361 R
0 -63 V
0 -4501 R
( 1400) Cshow
1.000 UL
LTb
1.000 UL
LTb
938 4872 N
938 448 L
6052 0 V
0 4424 V
-6052 0 V
Z stroke
LCb setrgbcolor
280 2660 M
currentpoint gsave translate 90 rotate 0 0 M
(Amplitude [mm]) Cshow
grestore
LTb
LCb setrgbcolor
3964 98 M
(Time [s]) Cshow
LTb
1.000 UP
1.000 UL
LTb
1.000 UP
1.000 UL
LT0
/Helvetica findfont 140 scalefont setfont
938 1045 M
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 459 R
0 56 V
-31 -56 R
62 0 V
-62 56 R
62 0 V
56 531 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 542 R
0 55 V
-31 -55 R
62 0 V
-62 55 R
62 0 V
56 514 R
0 45 V
-31 -45 R
62 0 V
-62 45 R
62 0 V
55 448 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 127 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 487 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 94 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
55 -27 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
56 -177 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 -304 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 -398 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
56 -486 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 -531 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 -547 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 -570 R
0 45 V
-31 -45 R
62 0 V
-62 45 R
62 0 V
56 -520 R
0 44 V
-31 -44 R
62 0 V
stroke 2439 1427 M
-62 44 R
62 0 V
55 -453 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 -343 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 -227 R
0 34 V
-31 -34 R
62 0 V
-62 34 R
62 0 V
56 -100 R
0 22 V
-31 -22 R
62 0 V
-62 22 R
62 0 V
55 39 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
56 155 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 232 R
0 45 V
-31 -45 R
62 0 V
-62 45 R
62 0 V
55 315 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 393 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 409 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 426 R
0 45 V
-31 -45 R
62 0 V
-62 45 R
62 0 V
55 387 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 343 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 260 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 183 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 50 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
56 -33 R
0 22 V
-31 -22 R
62 0 V
-62 22 R
62 0 V
stroke 3909 4181 M
55 -150 R
0 34 V
-31 -34 R
62 0 V
-62 34 R
62 0 V
55 -238 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 -332 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
55 -392 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 -426 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 -447 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 -448 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 -426 R
0 45 V
-31 -45 R
62 0 V
-62 45 R
62 0 V
56 -349 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 -271 R
0 34 V
-31 -34 R
62 0 V
-62 34 R
62 0 V
56 -155 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
55 -77 R
0 22 V
-31 -22 R
62 0 V
-62 22 R
62 0 V
55 33 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
56 105 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 183 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 254 R
0 45 V
-31 -45 R
62 0 V
-62 45 R
62 0 V
55 298 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
56 321 R
0 44 V
stroke 5434 2372 M
-31 -44 R
62 0 V
-62 44 R
62 0 V
55 310 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 310 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
55 266 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 199 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
55 122 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
56 33 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
55 -44 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
55 -121 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
56 -194 R
0 33 V
-31 -33 R
62 0 V
-62 33 R
62 0 V
55 -287 R
0 44 V
-31 -44 R
62 0 V
-62 44 R
62 0 V
56 -321 R
0 45 V
-31 -45 R
62 0 V
-62 45 R
62 0 V
938 1067 Pls
1024 1576 Pls
1111 2157 Pls
1197 2748 Pls
1284 3313 Pls
1370 3805 Pls
1457 3976 Pls
1543 4507 Pls
1630 4640 Pls
1716 4645 Pls
1803 4507 Pls
1889 4247 Pls
1975 3888 Pls
2062 3440 Pls
2148 2953 Pls
2235 2450 Pls
2321 1925 Pls
2408 1449 Pls
2494 1040 Pls
2581 741 Pls
2667 553 Pls
2754 481 Pls
2840 548 Pls
2927 741 Pls
3013 1018 Pls
3099 1377 Pls
3186 1814 Pls
3272 2267 Pls
3359 2737 Pls
3445 3169 Pls
3532 3556 Pls
3618 3860 Pls
3705 4087 Pls
3791 4175 Pls
3878 4170 Pls
3964 4048 Pls
4050 3849 Pls
4137 3556 Pls
4223 3202 Pls
4310 2820 Pls
4396 2417 Pls
4483 2013 Pls
4569 1631 Pls
4656 1327 Pls
4742 1095 Pls
4829 973 Pls
4915 924 Pls
5001 984 Pls
5088 1128 Pls
5174 1355 Pls
5261 1654 Pls
5347 1991 Pls
5434 2350 Pls
5520 2704 Pls
5607 3053 Pls
5693 3357 Pls
5780 3595 Pls
5866 3749 Pls
5953 3816 Pls
6039 3805 Pls
6125 3716 Pls
6212 3556 Pls
6298 3307 Pls
6385 3031 Pls
1.000 UL
LT1
/Helvetica findfont 140 scalefont setfont
938 1046 M
3 16 V
2 16 V
3 15 V
3 16 V
3 16 V
2 16 V
3 17 V
3 16 V
3 16 V
2 16 V
3 17 V
3 16 V
2 17 V
3 17 V
3 16 V
3 17 V
2 17 V
3 17 V
3 17 V
2 17 V
3 17 V
3 17 V
3 17 V
2 17 V
3 18 V
3 17 V
3 17 V
2 18 V
3 17 V
3 18 V
2 17 V
3 18 V
3 18 V
3 17 V
2 18 V
3 18 V
3 18 V
3 18 V
2 18 V
3 17 V
3 18 V
2 18 V
3 19 V
3 18 V
3 18 V
2 18 V
3 18 V
3 18 V
3 19 V
2 18 V
3 18 V
3 18 V
2 19 V
3 18 V
3 18 V
3 19 V
2 18 V
3 19 V
3 18 V
2 19 V
3 18 V
3 18 V
3 19 V
2 18 V
3 19 V
3 18 V
3 19 V
2 18 V
3 19 V
3 18 V
2 19 V
3 18 V
3 19 V
3 19 V
2 18 V
3 19 V
3 18 V
3 18 V
2 19 V
3 18 V
3 19 V
2 18 V
3 19 V
3 18 V
3 19 V
2 18 V
3 18 V
3 19 V
3 18 V
2 18 V
3 19 V
3 18 V
2 18 V
3 18 V
3 18 V
3 19 V
2 18 V
3 18 V
3 18 V
2 18 V
3 18 V
3 18 V
3 18 V
2 18 V
stroke 1221 2897 M
3 17 V
3 18 V
3 18 V
2 18 V
3 17 V
3 18 V
2 18 V
3 17 V
3 18 V
3 17 V
2 18 V
3 17 V
3 17 V
3 17 V
2 18 V
3 17 V
3 17 V
2 17 V
3 17 V
3 17 V
3 17 V
2 16 V
3 17 V
3 17 V
2 16 V
3 17 V
3 16 V
3 17 V
2 16 V
3 16 V
3 16 V
3 17 V
2 16 V
3 16 V
3 15 V
2 16 V
3 16 V
3 16 V
3 15 V
2 16 V
3 15 V
3 16 V
3 15 V
2 15 V
3 15 V
3 15 V
2 15 V
3 15 V
3 15 V
3 14 V
2 15 V
3 14 V
3 15 V
3 14 V
2 14 V
3 14 V
3 15 V
2 13 V
3 14 V
3 14 V
3 14 V
2 13 V
3 14 V
3 13 V
2 13 V
3 13 V
3 13 V
3 13 V
2 13 V
3 13 V
3 13 V
3 12 V
2 13 V
3 12 V
3 12 V
2 12 V
3 12 V
3 12 V
3 12 V
2 11 V
3 12 V
3 11 V
3 12 V
2 11 V
3 11 V
3 11 V
2 11 V
3 11 V
3 10 V
3 11 V
2 10 V
3 10 V
3 11 V
3 10 V
2 9 V
3 10 V
3 10 V
2 9 V
3 10 V
3 9 V
3 9 V
2 9 V
3 9 V
3 9 V
stroke 1505 4359 M
2 9 V
3 8 V
3 9 V
3 8 V
2 8 V
3 8 V
3 8 V
3 8 V
2 8 V
3 7 V
3 7 V
2 8 V
3 7 V
3 7 V
3 7 V
2 6 V
3 7 V
3 7 V
3 6 V
2 6 V
3 6 V
3 6 V
2 6 V
3 5 V
3 6 V
3 5 V
2 6 V
3 5 V
3 5 V
2 5 V
3 4 V
3 5 V
3 4 V
2 5 V
3 4 V
3 4 V
3 4 V
2 3 V
3 4 V
3 4 V
2 3 V
3 3 V
3 3 V
3 3 V
2 3 V
3 3 V
3 2 V
3 2 V
2 3 V
3 2 V
3 2 V
2 1 V
3 2 V
3 2 V
3 1 V
2 1 V
3 1 V
3 1 V
3 1 V
2 1 V
3 1 V
3 0 V
2 0 V
3 0 V
3 0 V
3 0 V
2 0 V
3 0 V
3 -1 V
2 -1 V
3 -1 V
3 -1 V
3 -1 V
2 -1 V
3 -1 V
3 -2 V
3 -1 V
2 -2 V
3 -2 V
3 -2 V
2 -2 V
3 -3 V
3 -2 V
3 -3 V
2 -3 V
3 -2 V
3 -3 V
3 -4 V
2 -3 V
3 -3 V
3 -4 V
2 -4 V
3 -3 V
3 -4 V
3 -4 V
2 -5 V
3 -4 V
3 -5 V
3 -4 V
2 -5 V
3 -5 V
3 -5 V
2 -5 V
3 -5 V
stroke 1788 4539 M
3 -6 V
3 -5 V
2 -6 V
3 -5 V
3 -6 V
2 -6 V
3 -7 V
3 -6 V
3 -6 V
2 -7 V
3 -6 V
3 -7 V
3 -7 V
2 -7 V
3 -7 V
3 -8 V
2 -7 V
3 -8 V
3 -7 V
3 -8 V
2 -8 V
3 -8 V
3 -8 V
3 -8 V
2 -8 V
3 -9 V
3 -9 V
2 -8 V
3 -9 V
3 -9 V
3 -9 V
2 -9 V
3 -9 V
3 -10 V
2 -9 V
3 -10 V
3 -9 V
3 -10 V
2 -10 V
3 -10 V
3 -10 V
3 -11 V
2 -10 V
3 -10 V
3 -11 V
2 -11 V
3 -10 V
3 -11 V
3 -11 V
2 -11 V
3 -11 V
3 -12 V
3 -11 V
2 -11 V
3 -12 V
3 -12 V
2 -11 V
3 -12 V
3 -12 V
3 -12 V
2 -12 V
3 -12 V
3 -13 V
3 -12 V
2 -12 V
3 -13 V
3 -13 V
2 -12 V
3 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
2 -14 V
3 -13 V
3 -13 V
3 -14 V
2 -14 V
3 -13 V
3 -14 V
3 -14 V
2 -14 V
3 -14 V
3 -14 V
2 -14 V
3 -14 V
3 -14 V
3 -14 V
2 -15 V
3 -14 V
3 -15 V
3 -14 V
2 -15 V
3 -15 V
3 -14 V
2 -15 V
3 -15 V
3 -15 V
3 -15 V
2 -15 V
3 -15 V
3 -15 V
3 -15 V
stroke 2072 3400 M
2 -16 V
3 -15 V
3 -15 V
2 -16 V
3 -15 V
3 -15 V
3 -16 V
2 -15 V
3 -16 V
3 -16 V
2 -15 V
3 -16 V
3 -16 V
3 -16 V
2 -16 V
3 -15 V
3 -16 V
3 -16 V
2 -16 V
3 -16 V
3 -16 V
2 -16 V
3 -16 V
3 -17 V
3 -16 V
2 -16 V
3 -16 V
3 -16 V
3 -17 V
2 -16 V
3 -16 V
3 -16 V
2 -17 V
3 -16 V
3 -16 V
3 -17 V
2 -16 V
3 -17 V
3 -16 V
2 -16 V
3 -17 V
3 -16 V
3 -17 V
2 -16 V
3 -17 V
3 -16 V
3 -17 V
2 -16 V
3 -17 V
3 -16 V
2 -16 V
3 -17 V
3 -16 V
3 -17 V
2 -16 V
3 -17 V
3 -16 V
3 -17 V
2 -16 V
3 -16 V
3 -17 V
2 -16 V
3 -17 V
3 -16 V
3 -16 V
2 -17 V
3 -16 V
3 -16 V
3 -17 V
2 -16 V
3 -16 V
3 -16 V
2 -17 V
3 -16 V
3 -16 V
3 -16 V
2 -16 V
3 -16 V
3 -16 V
2 -16 V
3 -16 V
3 -16 V
3 -16 V
2 -16 V
3 -16 V
3 -15 V
3 -16 V
2 -16 V
3 -16 V
3 -15 V
2 -16 V
3 -15 V
3 -16 V
3 -15 V
2 -16 V
3 -15 V
3 -15 V
3 -16 V
2 -15 V
3 -15 V
3 -15 V
2 -15 V
3 -15 V
3 -15 V
stroke 2355 1736 M
3 -15 V
2 -15 V
3 -15 V
3 -15 V
3 -14 V
2 -15 V
3 -15 V
3 -14 V
2 -15 V
3 -14 V
3 -14 V
3 -15 V
2 -14 V
3 -14 V
3 -14 V
2 -14 V
3 -14 V
3 -14 V
3 -14 V
2 -13 V
3 -14 V
3 -14 V
3 -13 V
2 -13 V
3 -14 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
3 -12 V
2 -13 V
3 -12 V
3 -13 V
2 -12 V
3 -12 V
3 -13 V
3 -12 V
2 -12 V
3 -11 V
3 -12 V
2 -12 V
3 -11 V
3 -12 V
3 -11 V
2 -12 V
3 -11 V
3 -11 V
3 -11 V
2 -11 V
3 -11 V
3 -11 V
2 -10 V
3 -11 V
3 -10 V
3 -11 V
2 -10 V
3 -10 V
3 -10 V
3 -10 V
2 -10 V
3 -10 V
3 -9 V
2 -10 V
3 -9 V
3 -10 V
3 -9 V
2 -9 V
3 -9 V
3 -9 V
3 -9 V
2 -8 V
3 -9 V
3 -8 V
2 -9 V
3 -8 V
3 -8 V
3 -8 V
2 -8 V
3 -8 V
3 -8 V
2 -7 V
3 -8 V
3 -7 V
3 -7 V
2 -8 V
3 -7 V
3 -6 V
3 -7 V
2 -7 V
3 -6 V
3 -7 V
2 -6 V
3 -6 V
3 -7 V
3 -6 V
2 -5 V
3 -6 V
3 -6 V
3 -5 V
2 -6 V
stroke 2638 622 M
3 -5 V
3 -5 V
2 -5 V
3 -5 V
3 -5 V
3 -4 V
2 -5 V
3 -4 V
3 -5 V
2 -4 V
3 -4 V
3 -4 V
3 -4 V
2 -3 V
3 -4 V
3 -3 V
3 -4 V
2 -3 V
3 -3 V
3 -3 V
2 -3 V
3 -2 V
3 -3 V
3 -3 V
2 -2 V
3 -2 V
3 -2 V
3 -2 V
2 -2 V
3 -2 V
3 -1 V
2 -2 V
3 -1 V
3 -1 V
3 -1 V
2 -1 V
3 -1 V
3 -1 V
3 -1 V
2 0 V
3 0 V
3 -1 V
2 0 V
3 0 V
3 0 V
3 1 V
2 0 V
3 0 V
3 1 V
2 1 V
3 1 V
3 1 V
3 1 V
2 1 V
3 1 V
3 2 V
3 2 V
2 1 V
3 2 V
3 2 V
2 2 V
3 2 V
3 3 V
3 2 V
2 3 V
3 2 V
3 3 V
3 3 V
2 3 V
3 3 V
3 4 V
2 3 V
3 4 V
3 3 V
3 4 V
2 4 V
3 4 V
3 4 V
3 4 V
2 5 V
3 4 V
3 5 V
2 4 V
3 5 V
3 5 V
3 5 V
2 5 V
3 6 V
3 5 V
2 5 V
3 6 V
3 6 V
3 6 V
2 6 V
3 6 V
3 6 V
3 6 V
2 6 V
3 7 V
3 6 V
2 7 V
3 7 V
3 7 V
3 7 V
stroke 2922 726 M
2 7 V
3 7 V
3 8 V
3 7 V
2 8 V
3 7 V
3 8 V
2 8 V
3 8 V
3 8 V
3 8 V
2 8 V
3 8 V
3 9 V
2 8 V
3 9 V
3 9 V
3 9 V
2 9 V
3 9 V
3 9 V
3 9 V
2 9 V
3 10 V
3 9 V
2 10 V
3 9 V
3 10 V
3 10 V
2 10 V
3 10 V
3 10 V
3 10 V
2 10 V
3 11 V
3 10 V
2 11 V
3 10 V
3 11 V
3 11 V
2 11 V
3 11 V
3 11 V
3 11 V
2 11 V
3 11 V
3 11 V
2 12 V
3 11 V
3 12 V
3 11 V
2 12 V
3 12 V
3 12 V
2 12 V
3 12 V
3 12 V
3 12 V
2 12 V
3 12 V
3 12 V
3 13 V
2 12 V
3 13 V
3 12 V
2 13 V
3 13 V
3 12 V
3 13 V
2 13 V
3 13 V
3 13 V
3 13 V
2 13 V
3 13 V
3 13 V
2 13 V
3 14 V
3 13 V
3 13 V
2 14 V
3 13 V
3 14 V
3 13 V
2 14 V
3 13 V
3 14 V
2 14 V
3 14 V
3 13 V
3 14 V
2 14 V
3 14 V
3 14 V
2 14 V
3 14 V
3 14 V
3 14 V
2 14 V
3 14 V
3 15 V
3 14 V
2 14 V
3 14 V
stroke 3205 1908 M
3 15 V
2 14 V
3 14 V
3 15 V
3 14 V
2 15 V
3 14 V
3 14 V
3 15 V
2 14 V
3 15 V
3 14 V
2 15 V
3 14 V
3 15 V
3 15 V
2 14 V
3 15 V
3 14 V
2 15 V
3 15 V
3 14 V
3 15 V
2 15 V
3 14 V
3 15 V
3 15 V
2 14 V
3 15 V
3 14 V
2 15 V
3 15 V
3 14 V
3 15 V
2 15 V
3 14 V
3 15 V
3 15 V
2 14 V
3 15 V
3 14 V
2 15 V
3 14 V
3 15 V
3 14 V
2 15 V
3 15 V
3 14 V
3 14 V
2 15 V
3 14 V
3 15 V
2 14 V
3 14 V
3 15 V
3 14 V
2 14 V
3 15 V
3 14 V
2 14 V
3 14 V
3 14 V
3 14 V
2 15 V
3 14 V
3 14 V
3 14 V
2 14 V
3 13 V
3 14 V
2 14 V
3 14 V
3 14 V
3 13 V
2 14 V
3 14 V
3 13 V
3 14 V
2 13 V
3 14 V
3 13 V
2 14 V
3 13 V
3 13 V
3 13 V
2 14 V
3 13 V
3 13 V
3 13 V
2 13 V
3 13 V
3 12 V
2 13 V
3 13 V
3 13 V
3 12 V
2 13 V
3 12 V
3 13 V
2 12 V
3 13 V
3 12 V
3 12 V
2 12 V
stroke 3488 3363 M
3 12 V
3 12 V
3 12 V
2 12 V
3 12 V
3 12 V
2 11 V
3 12 V
3 11 V
3 12 V
2 11 V
3 11 V
3 12 V
3 11 V
2 11 V
3 11 V
3 11 V
2 11 V
3 11 V
3 10 V
3 11 V
2 10 V
3 11 V
3 10 V
2 11 V
3 10 V
3 10 V
3 10 V
2 10 V
3 10 V
3 10 V
3 9 V
2 10 V
3 10 V
3 9 V
2 9 V
3 10 V
3 9 V
3 9 V
2 9 V
3 9 V
3 9 V
3 9 V
2 8 V
3 9 V
3 8 V
2 9 V
3 8 V
3 8 V
3 8 V
2 8 V
3 8 V
3 8 V
3 8 V
2 7 V
3 8 V
3 7 V
2 8 V
3 7 V
3 7 V
3 7 V
2 7 V
3 7 V
3 7 V
2 6 V
3 7 V
3 6 V
3 7 V
2 6 V
3 6 V
3 6 V
3 6 V
2 6 V
3 5 V
3 6 V
2 6 V
3 5 V
3 5 V
3 6 V
2 5 V
3 5 V
3 4 V
3 5 V
2 5 V
3 4 V
3 5 V
2 4 V
3 5 V
3 4 V
3 4 V
2 4 V
3 3 V
3 4 V
3 4 V
2 3 V
3 4 V
3 3 V
2 3 V
3 3 V
3 3 V
3 3 V
2 3 V
3 2 V
3 3 V
stroke 3772 4161 M
2 2 V
3 2 V
3 3 V
3 2 V
2 2 V
3 1 V
3 2 V
3 2 V
2 1 V
3 2 V
3 1 V
2 1 V
3 1 V
3 1 V
3 1 V
2 1 V
3 1 V
3 0 V
3 1 V
2 0 V
3 0 V
3 0 V
2 0 V
3 0 V
3 0 V
3 -1 V
2 0 V
3 -1 V
3 0 V
2 -1 V
3 -1 V
3 -1 V
3 -1 V
2 -1 V
3 -2 V
3 -1 V
3 -2 V
2 -1 V
3 -2 V
3 -2 V
2 -2 V
3 -2 V
3 -2 V
3 -3 V
2 -2 V
3 -2 V
3 -3 V
3 -3 V
2 -3 V
3 -3 V
3 -3 V
2 -3 V
3 -3 V
3 -3 V
3 -4 V
2 -3 V
3 -4 V
3 -4 V
3 -4 V
2 -4 V
3 -4 V
3 -4 V
2 -4 V
3 -5 V
3 -4 V
3 -5 V
2 -4 V
3 -5 V
3 -5 V
2 -5 V
3 -5 V
3 -5 V
3 -6 V
2 -5 V
3 -6 V
3 -5 V
3 -6 V
2 -6 V
3 -6 V
3 -5 V
2 -7 V
3 -6 V
3 -6 V
3 -6 V
2 -7 V
3 -6 V
3 -7 V
3 -7 V
2 -6 V
3 -7 V
3 -7 V
2 -7 V
3 -8 V
3 -7 V
3 -7 V
2 -8 V
3 -7 V
3 -8 V
3 -7 V
2 -8 V
3 -8 V
3 -8 V
2 -8 V
3 -8 V
stroke 4055 3840 M
3 -8 V
3 -9 V
2 -8 V
3 -8 V
3 -9 V
2 -9 V
3 -8 V
3 -9 V
3 -9 V
2 -9 V
3 -9 V
3 -9 V
3 -9 V
2 -9 V
3 -9 V
3 -10 V
2 -9 V
3 -10 V
3 -9 V
3 -10 V
2 -10 V
3 -10 V
3 -9 V
3 -10 V
2 -10 V
3 -10 V
3 -11 V
2 -10 V
3 -10 V
3 -10 V
3 -11 V
2 -10 V
3 -11 V
3 -10 V
2 -11 V
3 -11 V
3 -11 V
3 -10 V
2 -11 V
3 -11 V
3 -11 V
3 -11 V
2 -11 V
3 -12 V
3 -11 V
2 -11 V
3 -11 V
3 -12 V
3 -11 V
2 -12 V
3 -11 V
3 -12 V
3 -11 V
2 -12 V
3 -12 V
3 -12 V
2 -11 V
3 -12 V
3 -12 V
3 -12 V
2 -12 V
3 -12 V
3 -12 V
3 -12 V
2 -12 V
3 -13 V
3 -12 V
2 -12 V
3 -12 V
3 -13 V
3 -12 V
2 -12 V
3 -13 V
3 -12 V
2 -13 V
3 -12 V
3 -13 V
3 -12 V
2 -13 V
3 -12 V
3 -13 V
3 -13 V
2 -13 V
3 -12 V
3 -13 V
2 -13 V
3 -13 V
3 -12 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -12 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
3 -13 V
stroke 4339 2669 M
2 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -14 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -12 V
2 -13 V
3 -13 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -13 V
3 -13 V
2 -12 V
3 -13 V
3 -13 V
2 -13 V
3 -13 V
3 -12 V
3 -13 V
2 -13 V
3 -12 V
3 -13 V
2 -13 V
3 -12 V
3 -13 V
3 -12 V
2 -13 V
3 -12 V
3 -13 V
3 -12 V
2 -12 V
3 -13 V
3 -12 V
2 -12 V
3 -13 V
3 -12 V
3 -12 V
2 -12 V
3 -12 V
3 -12 V
3 -12 V
2 -12 V
3 -12 V
3 -12 V
2 -12 V
3 -12 V
3 -11 V
3 -12 V
2 -12 V
3 -11 V
3 -12 V
3 -11 V
2 -12 V
3 -11 V
3 -12 V
2 -11 V
3 -11 V
3 -12 V
3 -11 V
2 -11 V
3 -11 V
3 -11 V
2 -11 V
3 -11 V
3 -11 V
3 -10 V
2 -11 V
3 -11 V
3 -10 V
3 -11 V
2 -10 V
3 -11 V
3 -10 V
2 -11 V
3 -10 V
3 -10 V
3 -10 V
2 -10 V
3 -10 V
3 -10 V
3 -10 V
2 -10 V
3 -9 V
3 -10 V
2 -10 V
3 -9 V
3 -10 V
stroke 4622 1433 M
3 -9 V
2 -9 V
3 -9 V
3 -10 V
3 -9 V
2 -9 V
3 -9 V
3 -9 V
2 -8 V
3 -9 V
3 -9 V
3 -8 V
2 -9 V
3 -8 V
3 -9 V
2 -8 V
3 -8 V
3 -8 V
3 -8 V
2 -8 V
3 -8 V
3 -8 V
3 -7 V
2 -8 V
3 -7 V
3 -8 V
2 -7 V
3 -8 V
3 -7 V
3 -7 V
2 -7 V
3 -7 V
3 -7 V
3 -7 V
2 -6 V
3 -7 V
3 -6 V
2 -7 V
3 -6 V
3 -6 V
3 -7 V
2 -6 V
3 -6 V
3 -5 V
2 -6 V
3 -6 V
3 -6 V
3 -5 V
2 -6 V
3 -5 V
3 -5 V
3 -5 V
2 -5 V
3 -5 V
3 -5 V
2 -5 V
3 -5 V
3 -4 V
3 -5 V
2 -4 V
3 -5 V
3 -4 V
3 -4 V
2 -4 V
3 -4 V
3 -4 V
2 -4 V
3 -3 V
3 -4 V
3 -4 V
2 -3 V
3 -3 V
3 -3 V
3 -3 V
2 -3 V
3 -3 V
3 -3 V
2 -3 V
3 -2 V
3 -3 V
3 -2 V
2 -3 V
3 -2 V
3 -2 V
2 -2 V
3 -2 V
3 -2 V
3 -2 V
2 -1 V
3 -2 V
3 -1 V
3 -2 V
2 -1 V
3 -1 V
3 -1 V
2 -1 V
3 -1 V
3 -1 V
3 0 V
2 -1 V
3 0 V
3 -1 V
3 0 V
2 0 V
stroke 4905 913 M
3 0 V
3 0 V
2 0 V
3 0 V
3 1 V
3 0 V
2 1 V
3 0 V
3 1 V
3 1 V
2 1 V
3 1 V
3 1 V
2 1 V
3 1 V
3 2 V
3 1 V
2 2 V
3 1 V
3 2 V
2 2 V
3 2 V
3 2 V
3 2 V
2 2 V
3 3 V
3 2 V
3 3 V
2 2 V
3 3 V
3 3 V
2 3 V
3 3 V
3 3 V
3 3 V
2 3 V
3 4 V
3 3 V
3 4 V
2 3 V
3 4 V
3 4 V
2 4 V
3 4 V
3 4 V
3 4 V
2 4 V
3 5 V
3 4 V
2 5 V
3 4 V
3 5 V
3 5 V
2 5 V
3 5 V
3 5 V
3 5 V
2 5 V
3 5 V
3 6 V
2 5 V
3 6 V
3 6 V
3 5 V
2 6 V
3 6 V
3 6 V
3 6 V
2 6 V
3 6 V
3 7 V
2 6 V
3 7 V
3 6 V
3 7 V
2 6 V
3 7 V
3 7 V
3 7 V
2 7 V
3 7 V
3 7 V
2 7 V
3 8 V
3 7 V
3 8 V
2 7 V
3 8 V
3 7 V
2 8 V
3 8 V
3 8 V
3 8 V
2 8 V
3 8 V
3 8 V
3 8 V
2 8 V
3 9 V
3 8 V
2 9 V
3 8 V
3 9 V
3 8 V
stroke 5189 1391 M
2 9 V
3 9 V
3 9 V
3 9 V
2 9 V
3 9 V
3 9 V
2 9 V
3 9 V
3 9 V
3 10 V
2 9 V
3 9 V
3 10 V
3 9 V
2 10 V
3 10 V
3 9 V
2 10 V
3 10 V
3 10 V
3 10 V
2 10 V
3 10 V
3 10 V
2 10 V
3 10 V
3 10 V
3 10 V
2 10 V
3 11 V
3 10 V
3 11 V
2 10 V
3 10 V
3 11 V
2 10 V
3 11 V
3 11 V
3 10 V
2 11 V
3 11 V
3 11 V
3 10 V
2 11 V
3 11 V
3 11 V
2 11 V
3 11 V
3 11 V
3 11 V
2 11 V
3 11 V
3 11 V
2 11 V
3 11 V
3 12 V
3 11 V
2 11 V
3 11 V
3 12 V
3 11 V
2 11 V
3 11 V
3 12 V
2 11 V
3 12 V
3 11 V
3 11 V
2 12 V
3 11 V
3 12 V
3 11 V
2 12 V
3 11 V
3 12 V
2 11 V
3 12 V
3 11 V
3 12 V
2 11 V
3 12 V
3 12 V
3 11 V
2 12 V
3 11 V
3 12 V
2 12 V
3 11 V
3 12 V
3 11 V
2 12 V
3 12 V
3 11 V
2 12 V
3 11 V
3 12 V
3 11 V
2 12 V
3 12 V
3 11 V
3 12 V
2 11 V
3 12 V
stroke 5472 2509 M
3 11 V
2 12 V
3 11 V
3 12 V
3 11 V
2 12 V
3 11 V
3 11 V
3 12 V
2 11 V
3 12 V
3 11 V
2 11 V
3 12 V
3 11 V
3 11 V
2 11 V
3 12 V
3 11 V
2 11 V
3 11 V
3 11 V
3 12 V
2 11 V
3 11 V
3 11 V
3 11 V
2 11 V
3 11 V
3 10 V
2 11 V
3 11 V
3 11 V
3 11 V
2 11 V
3 10 V
3 11 V
3 11 V
2 10 V
3 11 V
3 10 V
2 11 V
3 10 V
3 11 V
3 10 V
2 10 V
3 11 V
3 10 V
3 10 V
2 10 V
3 10 V
3 10 V
2 10 V
3 10 V
3 10 V
3 10 V
2 10 V
3 10 V
3 10 V
2 9 V
3 10 V
3 10 V
3 9 V
2 10 V
3 9 V
3 9 V
3 10 V
2 9 V
3 9 V
3 9 V
2 9 V
3 10 V
3 9 V
3 8 V
2 9 V
3 9 V
3 9 V
3 9 V
2 8 V
3 9 V
3 8 V
2 9 V
3 8 V
3 9 V
3 8 V
2 8 V
3 8 V
3 8 V
3 8 V
2 8 V
3 8 V
3 8 V
2 8 V
3 7 V
3 8 V
3 7 V
2 8 V
3 7 V
3 8 V
2 7 V
3 7 V
3 7 V
3 7 V
2 7 V
stroke 5755 3525 M
3 7 V
3 7 V
3 7 V
2 7 V
3 6 V
3 7 V
2 6 V
3 7 V
3 6 V
3 6 V
2 6 V
3 6 V
3 6 V
3 6 V
2 6 V
3 6 V
3 6 V
2 5 V
3 6 V
3 5 V
3 6 V
2 5 V
3 5 V
3 5 V
2 6 V
3 5 V
3 4 V
3 5 V
2 5 V
3 5 V
3 4 V
3 5 V
2 4 V
3 5 V
3 4 V
2 4 V
3 4 V
3 4 V
3 4 V
2 4 V
3 4 V
3 3 V
3 4 V
2 3 V
3 4 V
3 3 V
2 4 V
3 3 V
3 3 V
3 3 V
2 3 V
3 3 V
3 2 V
3 3 V
2 2 V
3 3 V
3 2 V
2 3 V
3 2 V
3 2 V
3 2 V
2 2 V
3 2 V
3 2 V
2 1 V
3 2 V
3 2 V
3 1 V
2 1 V
3 2 V
3 1 V
3 1 V
2 1 V
3 1 V
3 1 V
2 0 V
3 1 V
3 1 V
3 0 V
2 1 V
3 0 V
3 0 V
3 0 V
2 0 V
3 0 V
3 0 V
2 0 V
3 0 V
3 -1 V
3 0 V
2 -1 V
3 0 V
3 -1 V
3 -1 V
2 -1 V
3 -1 V
3 -1 V
2 -1 V
3 -1 V
3 -2 V
3 -1 V
2 -2 V
3 -1 V
3 -2 V
stroke 6039 3809 M
2 -2 V
3 -1 V
3 -2 V
3 -2 V
2 -2 V
3 -3 V
3 -2 V
3 -2 V
2 -3 V
3 -2 V
3 -3 V
2 -2 V
3 -3 V
3 -3 V
3 -3 V
2 -3 V
3 -3 V
3 -3 V
3 -3 V
2 -4 V
3 -3 V
3 -4 V
2 -3 V
3 -4 V
3 -4 V
3 -3 V
2 -4 V
3 -4 V
3 -4 V
2 -4 V
3 -5 V
3 -4 V
3 -4 V
2 -5 V
3 -4 V
3 -5 V
3 -4 V
2 -5 V
3 -5 V
3 -5 V
2 -5 V
3 -5 V
3 -5 V
3 -5 V
2 -5 V
3 -6 V
3 -5 V
3 -6 V
2 -5 V
3 -6 V
3 -6 V
2 -5 V
3 -6 V
3 -6 V
3 -6 V
2 -6 V
3 -6 V
3 -6 V
3 -6 V
2 -7 V
3 -6 V
3 -7 V
2 -6 V
3 -7 V
3 -6 V
3 -7 V
2 -7 V
3 -7 V
3 -6 V
2 -7 V
3 -7 V
3 -7 V
3 -8 V
2 -7 V
3 -7 V
3 -7 V
3 -8 V
2 -7 V
3 -8 V
3 -7 V
2 -8 V
3 -7 V
3 -8 V
3 -8 V
2 -8 V
3 -8 V
3 -8 V
3 -7 V
2 -9 V
3 -8 V
3 -8 V
2 -8 V
3 -8 V
3 -8 V
3 -9 V
2 -8 V
3 -9 V
3 -8 V
3 -9 V
2 -8 V
3 -9 V
3 -9 V
2 -8 V
3 -9 V
stroke 6322 3226 M
3 -9 V
3 -9 V
2 -9 V
3 -8 V
3 -9 V
2 -9 V
3 -10 V
3 -9 V
3 -9 V
2 -9 V
3 -9 V
3 -9 V
3 -10 V
2 -9 V
3 -9 V
3 -10 V
2 -9 V
3 -10 V
3 -9 V
3 -10 V
2 -9 V
3 -10 V
3 -9 V
stroke
LTb
938 4872 N
938 448 L
6052 0 V
0 4424 V
-6052 0 V
Z stroke
1.000 UP
1.000 UL
LTb
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica
%%Pages: 1