Subversion Repositories svnkaklik

Compare Revisions

Ignore whitespace Rev 969 → Rev 970

/dokumenty/skolni/BP/DOC/SRC/laserovy_vysilac.tex
93,7 → 93,7
 
\section{Laserové metody měření vzdálenosti}
 
Laserový dálkoměr je zařízení, které je schopno měřit vzdálenost objektu odrážejícího záření optických vlnových délek. Tyto objekty mohou být velmi různorodého charakteru a dálkoměr je pak v principu schopen měřit pevné, kapalné nebo i plynné struktury, případně i jejich kombinace.
Laserový dálkoměr je zařízení, které je schopno měřit vzdálenost objektu odrážejícího záření optických vlnových délek. Tyto objekty mohou být velmi různého charakteru a dálkoměr je pak v principu schopen měřit pevné, kapalné nebo i plynné struktury, případně i jejich kombinace.
 
Možnosti jeho aplikace jsou proto velmi rozsáhlé od zaměřování a mapování topografie terénu přes vytváření přesných tvarových modelů malých předmětů až po jeho použití v meteorologii, nebo pro vojenské aplikace.
 
109,11 → 109,10
 
\subsubsection{Triangulační metoda}
 
Tato metoda měření je založena na geometrické vlastnosti světelného paprsku - světlo se v homogenním prostředí šíří přímočaře. Toho lze využít tak, že použijeme li zdroj světla, který vydává málo rozbíhavý světelný paprsek (LASER) a pod určitým úhlem vůči ose pozorovatele jej budeme promítat na předmět, tak pozorovatel bude mít světelnou stopu v různých bodech zorného pole podle vzdálenosti pozorovaného předmětu.
Tato metoda měření je založena na geometrické vlastnosti světelného paprsku - světlo se v homogenním prostředí šíří přímočaře. Toho lze využít tak, že použijeme-li zdroj světla, který vydává málo rozbíhavý světelný paprsek (LASER) a pod určitým úhlem vůči ose pozorovatele jej budeme promítat na předmět, tak pozorovatel bude mít světelnou stopu v různých bodech zorného pole podle vzdálenosti pozorovaného předmětu.
 
Tato metoda, je velice snadná a proto existuje mnoho realizací od amatérských konstrukcí až po profesionální výrobky. Obvykle jsou tímto způsobem řešeny 3D skenery malých předmětů, jako jsou historické vázy, sochy, nebo jiná umělecká díla, která je vhodné tvarově zdokumentovat. Skener pak pro urychlení procesu nepoužívá pouze jeden světelný bod, který laser obvykle produkuje ale využívá se cylindrické čočky, která svazek rozšíří do roviny ve směru řezu předmětu (laser-sheet). V tomto uspořádání totiž pak stačí s LASERem, nebo promítacím zrcátkem hýbat pouze v jedné ose, pro kompletní 3D scan.
Tato metoda, je velice snadná a proto existuje mnoho realizací od amatérských konstrukcí až po profesionální výrobky. Obvykle jsou tímto způsobem řešeny 3D skenery malých předmětů, jako jsou historické vázy, sochy, nebo jiná umělecká díla, která je vhodné tvarově zdokumentovat. Skener pak pro urychlení procesu nepoužívá pouze jeden světelný bod, který laser obvykle produkuje, ale použita cylindrická čočka, která svazek rozšíří do roviny ve směru řezu předmětu (laser-sheet). V tomto uspořádání pak stačí s LASERem, nebo promítacím zrcátkem hýbat pouze v jedné ose, pro kompletní 3D scan objektu.
 
 
Ke snímání obrazu je v tomto případě obvykle využíván maticový snímač - CCD, nebo CMOS. A metoda funguje pouze v rozsahu vzdáleností daných úhlem ve kterém se laser na předmět promítá a také úhlovou velikostí zorného pole snímače.
 
Z praktických důvodů a požadavků na přesnost měření je tato metoda využívána pouze v rozsahu několika centimetrů až několika metrů.
122,7 → 121,7
 
U této metody je již vyžívána samotná vlastnost světla, že se prostorem šíří pouze omezenou rychlostí. A měření je prováděno tak, že vysílač vysílá určitým způsobem periodicky modulovaný signál, který se odráží od předmětu a dopadá na intenzitní detektor, který umožňuje jeho časovou korelaci s modulovaným odchozím signálem.
 
Výsledkem měření tedy je fázové zpoždění odpovídající určité vzdálenosti. Předpokládatelným problémem této metody ale je fakt, že způsob modulace přímo ovlivňuje měřený rozsah tj. měření vzdálenosti je možné pouze na rozsahu jedné periody modulace. A vzhledem k tomu, že měřená vzdálenost není dopředu známa, tak je potřeba aby vysílač umožňoval mnoho způsobů modulace vysílaného svazku.
Výsledkem měření tedy je fázové zpoždění odpovídající určité vzdálenosti. Předpokládatelným problémem této metody ale je fakt, že způsob modulace přímo ovlivňuje měřený rozsah tj. měření vzdálenosti je možné pouze na rozsahu jedné periody modulace. A vzhledem k tomu, že měřená vzdálenost není obvykle dopředu známa, tak je potřeba aby vysílač umožňoval mnoho způsobů modulace vysílaného svazku.
 
Další komplikací pak je požadavek na dobrou reflexivitu měřeného předmětu, protože fázový detektor potřebuje ke své správné funkci dostatečný odstup signálu od šumu.
 
166,11 → 165,11
 
Dále vzhledem k tomu, že pro větší vzdálenosti je pravděpodobnost zachycení zpětně odraženého fotonu malá, tak jsou využívány různé techniky pro zlepšení poměru S/N. Často jde o metody statického zpracování nebo o lock-in měření.
 
Tato metoda má vzhledem k předchozím podstatnou výhodou především v tom, že její princip umožňuje změřit vzdálenosti v obrovském rozsahu a přitom neklade (díky způsobu zpracování) vysoké nároky na odstup signálu od šumu. Běžně se proto využívá například pro měření a následné výpočty korekcí drah družic, nebo i měření podélných parametrů optických komunikačních vláken, kde je metoda známa, jako TDR (Time domain refractometry)
Tato metoda má vzhledem k předchozím podstatnou výhodou především v tom, že její princip umožňuje změřit vzdálenosti v obrovském rozsahu a přitom neklade (díky pokročilým možnostem zpracování) vysoké nároky na odstup signálu od šumu. Běžně se proto využívá například pro měření a následné výpočty korekcí drah družic, nebo i měření podélných parametrů optických komunikačních vláken, kde je metoda známa, jako TDR (Time domain refractometry)
Možnosti použití navíc nejsou omezeny pouze na klasické světelné vlnové délky, ale stejný princip lze uplatnit například i při použití rádiových vlnových délek, což by u předchozích metod nebylo možné vzhledem k problematické konstrukci elementů, jako jsou čočky, zrcadla, nebo maticové detektory pro rádiové vlny.
Možnosti aplikace metody měření doby letu jsou tak rozsáhlé, že z ní vychází i další přistroje, jako radiolokátory nebo echolokátory.
 
Tato práce je proto zaměřena právě na tento princip měření, protože jeho parametry (dosah a přesnost) jsou zajímavé například i pro meteorologické aplikace a tedy využitelná i pro zatím nedořešené oblasti jako je měření parametrů oblačnosti například nad moderními robotickými astronomickými teleskopy. Což bude modelový případ využití výsledků práce.
Tato práce je proto zaměřena právě na tento princip měření, protože jeho parametry (dosah a přesnost) jsou zajímavé například i pro meteorologické aplikace a tedy využitelné i pro zatím nedořešené oblasti jako je měření parametrů oblačnosti například nad moderními robotickými astronomickými teleskopy. Což bude modelový případ využití výsledků práce.
 
\subsection{Požadavky na laserový vysílač}
 
183,7 → 182,7
\caption{Závislost transmisivity suché atmosféry na vlnové délce záření}
\end{figure}
 
Ovšem vzhledem k tomu, že na krátkých vlnových délkách směrem k UV oblasti poměrně strmě stoupá vliv nežádoucího Rayleighova rozptylu, který omezuje použitelný dosah měření. Tak je vhodné použít střední vlnovou délku optického záření, ze zelené oblasti spektra.
Ovšem vzhledem k tomu, že na krátkých vlnových délkách směrem k UV oblasti poměrně strmě stoupá vliv nežádoucího Rayleighova rozptylu, který omezuje použitelný dosah měření. Tak je vhodné použít střední vlnovou délku optického záření, ze zelené oblasti spektra. Která relativně dobře prochází čistou atmosférou.
\subsubsection{Délka výstupního světelného impulzu}
 
193,7 → 192,7
 
\subsubsection{Energie impulzu}
 
Energie výstupního impulzu je ideálně co největší, aby bylo dosaženo vysoké pravděpodobnosti zachycení některého zpětně odraženého fotonu. Ale vzhledem k tomu, že je třeba brát ohled i na bezpečnostní rizika takového systému, tak je potřeba se držet povolených norem pro intenzity elektromagnetického záření.
Energie výstupního impulzu je ideálně co největší, aby bylo dosaženo vysoké pravděpodobnosti zachycení některého zpětně odraženého fotonu. Ale vzhledem k tomu, že je třeba brát ohled i na bezpečnostní rizika takového systému, tak je potřeba se držet povolených norem pro intenzity elektromagnetického záření. Dalším limitem pak mohou být fyzikální vlastnosti prostředí a materiálů ve kterém se svazek má šířit neboť zvláště v případě použité Q-spínaného laseru existuje riziko, že by mohlo dojít k průrazu v materiálu.
 
\section{Druhy modulovatelných laserů}
 
201,12 → 200,12
 
\subsection{Polovodičový diodový LASER}
 
Polovodičové laserové diody, jsou nejrozšířenějšími typy LASERů, které dosahují dobrých parametrů avšak zatím pouze na vlnových délkách větších než cca 600nm, což je pro použití v modelovém laserovém atmosférickém dálkoměru nevhodné. Generování kratších vlnových délek pomocí laserových diod je ale v současné době v intenzivním vývoji vzhledem k potenciální možnosti použití modrých, zelených a červených LASERových diod v barevných skenovacích projektorech s vysokým kontrastem a rozlišením.
Polovodičové laserové diody, jsou nejrozšířenějšími typy LASERů, které dosahují dobrých parametrů avšak zatím pouze na vlnových délkách větších než cca 600nm, což je pro použití v modelovém laserovém atmosférickém dálkoměru nevhodné. Generování kratších vlnových délek pomocí laserových diod je ale v současné době v intenzivním vývoji vzhledem k potenciální možnosti použití modrých, zelených a červených LASERových diod v barevných skenovacích projektorech s vysokým kontrastem a rozlišením. Zatím ale nedosahují potřebných energií a navíc jejich pořizovací cena je stále dosti vysoká.
 
 
\subsection{Pevnolátkový diodově čerpaný LASER s generací druhé harmonické}
 
Jde o konstrukční LASERu, který jako aktivního prostředí využívá pevnolátkový krystal čerpaný polovodičovou diodou. Ve rezonátoru LASERu je zároveň umístěn konverzní krystal, který díky nelineárním optickým jevům umožňuje generovat druhou harmonickou frekvenci základní generované vlnové délky. Toto konstrukční uspořádání je známo jako DPSSFD (Diode Pumped Solid State Frequency Doubled) LASER.
Jde o konstrukční LASERu, který jako aktivního prostředí využívá pevnolátkový krystal čerpaný polovodičovou diodou. V rezonátoru LASERu je zároveň umístěn konverzní krystal, který díky nelineárním optickým jevům umožňuje generovat druhou harmonickou frekvenci základní generované vlnové délky. Toto konstrukční uspořádání je známo jako DPSSFD (Diode Pumped Solid State Frequency Doubled) LASER.
 
\subsection{Metody generace krátkých impulzů}
Protože pro měření vzdálenosti metodou ToF je klíčové aby vysílač mohl generovat krátké světelné impulzy. Obvykle se toho dosahuje několika metodami.
220,7 → 219,9
 
\subsubsection{Volně běžící pulzní režim (PCW)}
 
\subsubsection{Spínání ziskem (gain switching)}
 
 
\subsection{Měření krátkých světelných impulzů}
 
K tomu aby bylo možné kvantifikovat dosažené parametry LASERového vysílače, je potřeba umět změřit výstupní časový průběh intenzity záření v impulzu. K tomuto účelu se obvykle využívá zapojení předepjaté PIN fotodiody, která pak díky svojí nízké parazitní kapacitě pracuje jako vhodný snímač pro velmi rychlé děje. Pro účely měření byl proto jeden takový snímač zkonstruován. Jeho zapojení je znázorněno na obrázku \ref{schema_detektoru}.