Subversion Repositories svnkaklik

Compare Revisions

Ignore whitespace Rev 1010 → Rev 1011

/dokumenty/skolni/BP/DOC/SRC/laserovy_vysilac.bib
41,7 → 41,7
journal={datasheet},
}
 
@article{LD_cerpaci,
@article{fast_LRF,
author={A. Kilpelä},
year={2004},
title={Pulsed time-of-flight laser range finder techniques for fast,high
52,7 → 52,7
5/isbn9514272625.pdf},
}
 
@techreport{diskretni_integrovane,
@techreport{Omnipulse_pulser,
author={},
year={2011},
institution={Omipulse},
60,7 → 60,7
SHORT PULSE LASER DIODE DRIVER},
}
 
@article{LD_cerpaci,
@article{LRF_NIR,
author={J,.Kölbla, M. Fröschla, A. Seedsmana, P. Sperberb},
year={2008},
title={Near-Infrared Laser Range Finder,
69,7 → 69,7
institution={University of Oulu, Finland,},
}
 
@article{LD_cerpaci,
@article{LRF_USA,
author={John Nettleton, Dallas Barr, Brad Schilling & Jonathan Lei},
year={1999},
title={Micro-Laser Range Finder Development:
95,7 → 95,7
url={http://www.centronic.co.uk/downloads/general_purpose_silicon_sensors_(series_5T).pdf},
}
 
@manual{LRF_laser_pulsers,
@manual{LRF_laser_pulsers_osram,
author={},
year={2004},
organization={OSRAM opto semiconductors},
/dokumenty/skolni/BP/DOC/SRC/laserovy_vysilac.glo
35,23 → 35,23
\glossaryentry{Nd:YVO$_4$?\glossaryentryfield{Nd:YVO}{\glsnamefont{Nd:YVO$_4$}}{Neodymium-doped yttrium orthovanadate (Nd:YVO$_4$)}{\relax }|setentrycounter{page}\glsnumberformat}{16}
\glossaryentry{Nd:YVO$_4$?\glossaryentryfield{Nd:YVO}{\glsnamefont{Nd:YVO$_4$}}{Neodymium-doped yttrium orthovanadate (Nd:YVO$_4$)}{\relax }|setentrycounter{page}\glsnumberformat}{17}
\glossaryentry{SMA?\glossaryentryfield{SMA}{\glsnamefont{SMA}}{SubMiniature version A}{\relax }|setentrycounter{page}\glsnumberformat}{20}
\glossaryentry{ToF?\glossaryentryfield{TOF}{\glsnamefont{ToF}}{Time of flight}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{LRF?\glossaryentryfield{LRF}{\glsnamefont{LRF}}{Laser rangefinder}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{AFM?\glossaryentryfield{AFM}{\glsnamefont{AFM}}{Atomic force microscopy}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{DPSS?\glossaryentryfield{DPSS}{\glsnamefont{DPSS}}{Diode-pumped solid-state LASER}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{DPSSFD?\glossaryentryfield{DPSSFD}{\glsnamefont{DPSSFD}}{Diode pumped solid state frequency-doubled LASER}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{LASER?\glossaryentryfield{LASER}{\glsnamefont{LASER}}{Light Amplification by Stimulated Emission of Radiation}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{CCD?\glossaryentryfield{CCD}{\glsnamefont{CCD}}{Charge-coupled device}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{CMOS?\glossaryentryfield{CMOS}{\glsnamefont{CMOS}}{Complementary metal–oxide–semiconductor}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{S/N?\glossaryentryfield{SNR}{\glsnamefont{S/N}}{Signal-to-noise ratio}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{TDR?\glossaryentryfield{TDR}{\glsnamefont{TDR}}{Time-domain reflectometry}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{UV?\glossaryentryfield{UV}{\glsnamefont{UV}}{Ultraviolet (10 nm to 400 nm)}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{FOV?\glossaryentryfield{FOV}{\glsnamefont{FOV}}{field of view}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{PCW?\glossaryentryfield{PCW}{\glsnamefont{PCW}}{Pulsed Continuous Wave}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{MD?\glossaryentryfield{MD}{\glsnamefont{MD}}{Monitor Diode}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{LD?\glossaryentryfield{LD}{\glsnamefont{LD}}{LASER Diode}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{KTP?\glossaryentryfield{KTP}{\glsnamefont{KTP}}{Potassium titanyl phosphate ($KTiOPO_4$)}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{Nd:YVO$_4$?\glossaryentryfield{Nd:YVO}{\glsnamefont{Nd:YVO$_4$}}{Neodymium-doped yttrium orthovanadate (Nd:YVO$_4$)}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{Nd:YAG?\glossaryentryfield{Nd:YAG}{\glsnamefont{Nd:YAG}}{Neodymium-doped yttrium aluminum garnet ($Nd:Y_3Al_5O_12$)}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{Nd:YLF?\glossaryentryfield{Nd:YLF}{\glsnamefont{Nd:YLF}}{Neodymium-doped yttrium lithium fluoride (LiYF$_4$)}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{SMA?\glossaryentryfield{SMA}{\glsnamefont{SMA}}{SubMiniature version A}{\relax }|setentrycounter{page}\glsnumberformat}{31}
\glossaryentry{ToF?\glossaryentryfield{TOF}{\glsnamefont{ToF}}{Time of flight}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{LRF?\glossaryentryfield{LRF}{\glsnamefont{LRF}}{Laser rangefinder}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{AFM?\glossaryentryfield{AFM}{\glsnamefont{AFM}}{Atomic force microscopy}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{DPSS?\glossaryentryfield{DPSS}{\glsnamefont{DPSS}}{Diode-pumped solid-state LASER}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{DPSSFD?\glossaryentryfield{DPSSFD}{\glsnamefont{DPSSFD}}{Diode pumped solid state frequency-doubled LASER}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{LASER?\glossaryentryfield{LASER}{\glsnamefont{LASER}}{Light Amplification by Stimulated Emission of Radiation}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{CCD?\glossaryentryfield{CCD}{\glsnamefont{CCD}}{Charge-coupled device}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{CMOS?\glossaryentryfield{CMOS}{\glsnamefont{CMOS}}{Complementary metal–oxide–semiconductor}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{S/N?\glossaryentryfield{SNR}{\glsnamefont{S/N}}{Signal-to-noise ratio}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{TDR?\glossaryentryfield{TDR}{\glsnamefont{TDR}}{Time-domain reflectometry}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{UV?\glossaryentryfield{UV}{\glsnamefont{UV}}{Ultraviolet (10 nm to 400 nm)}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{FOV?\glossaryentryfield{FOV}{\glsnamefont{FOV}}{field of view}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{PCW?\glossaryentryfield{PCW}{\glsnamefont{PCW}}{Pulsed Continuous Wave}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{MD?\glossaryentryfield{MD}{\glsnamefont{MD}}{Monitor Diode}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{LD?\glossaryentryfield{LD}{\glsnamefont{LD}}{LASER Diode}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{KTP?\glossaryentryfield{KTP}{\glsnamefont{KTP}}{Potassium titanyl phosphate ($KTiOPO_4$)}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{Nd:YVO$_4$?\glossaryentryfield{Nd:YVO}{\glsnamefont{Nd:YVO$_4$}}{Neodymium-doped yttrium orthovanadate (Nd:YVO$_4$)}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{Nd:YAG?\glossaryentryfield{Nd:YAG}{\glsnamefont{Nd:YAG}}{Neodymium-doped yttrium aluminum garnet ($Nd:Y_3Al_5O_12$)}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{Nd:YLF?\glossaryentryfield{Nd:YLF}{\glsnamefont{Nd:YLF}}{Neodymium-doped yttrium lithium fluoride (LiYF$_4$)}{\relax }|setentrycounter{page}\glsnumberformat}{33}
\glossaryentry{SMA?\glossaryentryfield{SMA}{\glsnamefont{SMA}}{SubMiniature version A}{\relax }|setentrycounter{page}\glsnumberformat}{33}
/dokumenty/skolni/BP/DOC/SRC/laserovy_vysilac.pdf
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
/dokumenty/skolni/BP/DOC/SRC/laserovy_vysilac.tex
36,12 → 36,12
\thispagestyle{empty}
 
\begin{center}
\extrarowheight 1.5ex
\begin{tabular}{c}
\extrarowheight 1.5ex
\begin{tabular}{c}
\textbf{\Large České vysoké učení technické v Praze} \\
\textbf{\Large Fakulta jaderná a fyzikálně inženýrská} \\
\textbf{\Large Katedra fyzikální elektroniky}
\end{tabular}
\end{tabular}
\vsp{60}
 
\textbf{\Large Bakalářská práce}
224,7 → 224,7
d = \frac{ct}{2n}
\end{equation}
 
Kde $c$ je rychlost šíření elektromagnetického záření ve vakuu, $n$ je index lomu prostředí a $t$ je změřená doba šíření. Veličina $d$ je pak vzdálenost předmětu, kterou potřebujeme změřit.
Kde $c$ je rychlost šíření elektromagnetického záření ve vakuu, $n$ je index lomu prostředí (pro atmosférická měření většinou zanedbáván jako $n \approx 1$) a $t$ je změřená doba šíření. Veličina $d$ je pak vzdálenost předmětu, kterou potřebujeme změřit.
 
Při měření se tak předpokládá homogenní prostředí ve kterém se světlo šíří, nebo alespoň prostředí o nějaké známé efektivní hodnotě indexu lomu. Pokud dále předpokládáme prostředí bez rozptylu a absorpce. S tím, že celý laserový signál zasáhne kompaktní měřený objekt, tak zpětně odražený počet fotonů může být přibližně vyjádřen vztahem (\ref{radarova_rovnice}).