37,9 → 37,9 |
\begin{tabular}{|l|l|} |
\hline |
\multicolumn{ 2}{|c|}{\Large \bfseries FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE \huge\strut} \\ \hline |
\textbf{Datum měření:} {4.3.2011} & \textbf{Jméno:} {Jakub Kákona} \\ \hline |
\textbf{Pracovní skupina:} {4} & \textbf{Ročník a kroužek:} {Pa 9:30} \\ \hline |
\textbf{Spolupracovníci:} {Jana Navrátilová} & \textbf{Hodnocení:} \\ \hline |
\textbf{Datum měření:} {12.3.2011} & \textbf{Jméno:} {Jakub Kákona} \\ \hline |
\textbf{Pracovní skupina:} {2} & \textbf{Hodina:} {Po 7:30} \\ \hline |
\textbf{Spolupracovníci: Viktor Polák} {} & \textbf{Hodnocení:} \\ \hline |
\end{tabular} |
\end {center} |
\end {table} |
55,7 → 55,7 |
|
\item V domácí přípravě vytvořte graf závislosti energie a vlnové délky záření na úhlu rozptylu na krystalu LiF. Vycházejte z tabulkových hodnot $h$ a $c$, mřížkovou konstantu krystalu berte jako $d = 201 pm$. Položte $n=1$\footnote{Pro pozorování maxim vyšších řádů než $n = 2$ by bylo třeba vzít krystal s menší mřížkovou konstantou, např. KBr.}. |
\item Pomocí ručního ovládání rentgenové aparatury PHYWE změřte spektrum rentgenového záření měděné nebo molybdenové anody při napětí 35 kV. Volte skoky poloh G.-M. počítače po 1 stupni (otáčení krystalu spřažené s goniometrem), proud $0.8 - 1.0 \quad mA$. Počet fotonů zaznamenaných G.-M. počítačem v závislosti na energii nebo vlnové délce vyneste do grafu. |
\item Pomocí softwarového ovládání a odečítání dat změřte spektra měděné a molybdenové anody pro urychlovací napětí 15 kV, 19 kV, 22 kV a 30 kV. Volte skoky poloh G.-M. počítače po $0.25 ^0$ nebo jemněji, nastavte nejvyšší možný proud. Označte maxima charakteristického záření pro oba materiály, spočítejte jejich energii a srovnejte je s tabulkovými hodnotami. Měření pro všechna napětí na dané anodě vynášejte do jednoho\footnote{Tj. získáte dva grafy - jeden pro molybdenovou a druhý pro měděnou anodu.} grafu v~závislosti na energii nebo vlnové délce. |
\item Pomocí softwarového ovládání a odečítání dat změřte spektra měděné a molybdenové anody pro urychlovací napětí 15 kV, 19 kV, 22 kV a 30 kV. Volte skoky poloh G.-M. počítače po $0.25 ^\circ$ nebo jemněji, nastavte nejvyšší možný proud. Označte maxima charakteristického záření pro oba materiály, spočítejte jejich energii a srovnejte je s tabulkovými hodnotami. Měření pro všechna napětí na dané anodě vynášejte do jednoho\footnote{Tj. získáte dva grafy - jeden pro molybdenovou a druhý pro měděnou anodu.} grafu v~závislosti na energii nebo vlnové délce. |
|
\item Za použití dříve naměřených spekter určete přibližně hodnotu Planckovy konstanty. Z~Braggovy rovnice plyne |
\begin{equation} \sin \vartheta \quad = \quad \frac{hc}{2dE} \end{equation} |
83,8 → 83,19 |
|
|
\section{Výsledky a postup měření} |
Pro automatické měření spektra byly nastaveny parametry měření, proud rentgenkou 1mA, počáteční úhel 8$^\circ$, krok 0.2$^\circ$, konečný úhel detektoru 120$^\circ$, měřící interval 1s a provedli jsme čtyři měření pro několik urychlovacích napětí 15, 19, 22, 30kV. Pro oba typy materiálu Cu i Mo. Z naměřených hodnot jsme pro oba materiály vybraly charakteristické špičky a přiřadili jim tabulkové hodnoty energií. Dále jsme pro tyto špičky určili $sin\theta$, které jsme v závislosti na $1/U$ fitovali přímkou. Z fitu jsme určili hodnotu Planckovy konstanty $h=(6,2\pm0.4)10^{-34}Js$. |
|
\subsection{Manuální měření spektra Cu anody} |
Spektrum měděné anody jsme změřili nejdříve manuálně (ručním nastavováním úhlu detektoru a krystalu) |
|
\begin{figure}[htbp] |
\includegraphics[width=150mm]{Cu_manual.png} |
\caption{Počet detekovaných fotonů za 1s vzhledem k vlnové délce pro Molybdenovou anodu} |
\end{figure} |
|
|
\subsection{Automatické měření spekter} |
Pro automatické měření spektra byly nastaveny parametry měření, proud rentgenkou 1mA, počáteční úhel 8$^\circ$, krok 0.2$^\circ$, konečný úhel detektoru 120$^\circ$, měřící interval 1,5s a provedli jsme čtyři měření pro několik urychlovacích napětí 15, 19, 22, 30kV. Pro oba typy materiálu Cu i Mo. Z naměřených hodnot jsme pro oba materiály vybraly charakteristické špičky a přiřadili jim tabulkové hodnoty energií. Dále jsme pro tyto špičky určili $sin\theta$, které jsme v závislosti na $1/U$ fitovali přímkou. Z fitu jsme určili hodnotu Planckovy konstanty $h=(6,2\pm0.4)10^{-34}Js$. |
|
Naměřené hodnoty charakteristických peaků pro bylo 9,3346 keV pro měděnou anodu a 18,268keV pro molybdenovou anodu. Jim odpovídající tabulkové hodnoty pravděpodobně jsou $E_cu$ =8,905 keV a $E_mo$=19,608 keV |
|
\begin{figure}[htbp] |
98,12 → 109,11 |
\end{figure} |
|
\section{Závěr} |
Pomocí aparatury, jsme změřili charakteristické spektrum rentgenového záření molybdenové a měděné anody. Z naměřených hodnot jsme určili maxima a pomocí fitu zjistili hodnotu Planckovy konstanty $h=(6,2\pm0.4)10^{-34}Js$, tabulková hodnota je $h=(6.626)10^{-34}Js$. Což tedy je poměrně dobrá shoda. |
Pomocí aparatury jsme změřili charakteristické spektrum rentgenového záření molybdenové a měděné anody. Z naměřených hodnot jsme určili maxima a pomocí fitu zjistili hodnotu Planckovy konstanty $h=(6,2\pm0.4)10^{-34}Js$, tabulková hodnota je $h=(6.626)10^{-34}Js$. Což tedy je poměrně dobrá shoda. |
|
\begin{thebibliography}{10} %REFERENCE |
%\bibitem{3} doc. Ing. Ivan Štoll, CSc., \emph{Mechanika}, Vydavatelství ČVUT Praha, 1994 |
%\bibitem{3} $<$http://fyzika.fjfi.cvut.cz$>$ |
|
\bibitem{zadani}{Zadání úlohy 5 - Rentgenová spektra} |
{http://praktikum.fjfi.cvut.cz/mod/resource/view.php?id=194} |
\end{thebibliography} |
|
\end{document} |