Subversion Repositories svnkaklik

Compare Revisions

Ignore whitespace Rev 814 → Rev 965

/dokumenty/skolni/PRA2/termalni_emise/emise.tex
37,9 → 37,9
\begin{tabular}{|l|l|}
\hline
\multicolumn{ 2}{|c|}{\Large \bfseries FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE \huge\strut} \\ \hline
\textbf{Datum měření:} {15.4.2011} & \textbf{Jméno:} {Jakub Kákona} \\ \hline
\textbf{Pracovní skupina:} {4} & \textbf{Ročník a kroužek:} {Pa 9:30} \\ \hline
\textbf{Spolupracovníci:} {Jana Navrátilová} & \textbf{Hodnocení:} \\ \hline
\textbf{Datum měření:} {23.4.2012} & \textbf{Jméno:} {Jakub Kákona} \\ \hline
\textbf{Pracovní skupina:} {2} & \textbf{Hodina:} {Po 7:30} \\ \hline
\textbf{Spolupracovníci: Viktor Polák} {} & \textbf{Hodnocení:} \\ \hline
\end{tabular}
\end {center}
\end {table}
93,125 → 93,27
 
Nejdříve jsme prozkoumali konstrukci vakuové aparatury a začali čerpat rotační vývěvou, po dosažení mezního tlaku této vývěvy, jsme Byla zapnuta ještě turbomolekulární vývěva. Mezitím jsme zapojili měřící sestavu dle přiloženého schématu. Po dosažení mezního tlaku skoro $10^-4 Pa$ jsme vyzkoušeli funkčnost celé aparatury, nejdříve žhavení, tedy zvýšením žhavícího proudu a následně i tok náboje k anodám. Nakonec jsme otestovali radiační pyrometr.
 
Zvyšovali jsme postupně tuto teplotu katody a vždy změřili emisní charakteristiku až do oblasti nasycení, všechny hodnoty jsou uvedeny v tabulce 1. Pro každou teplotu jsme sestavili graf. Po extrapolaci hodnot $I_0$ jsme následně jsme daty proložili přímku a vyfitovali hodnoty $A=(101 \pm 28) 10^4 Am^{-2}K^{-2}$ a $\varphi _{v}=(1.8\pm0.9)V$.
Zvyšovali jsme postupně tuto teplotu katody a vždy změřili emisní charakteristiku až do oblasti nasycení, všechny hodnoty jsou uvedeny v tabulce 1. Pro každou teplotu jsme sestavili graf. Po extrapolaci hodnot $I_0$ jsme následně jsme daty proložili přímku a vyfitovali hodnoty $A=(5,4 \pm 1,6) 10^4 Am^{-2}K^{-2}$ a $\varphi _{v}=(10,7 \pm 0,6)V$.
 
\begin{table}[htbp]
\caption{Naměřené hodnoty emisního proudu v závislosti na napětí.}
\begin{center}
\begin{tabular}{|c|c|}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
2061 [K] & \\ \hline
U[V] & I [mA] \\ \hline
100 & 1,04 \\ \hline
150 & 1,12 \\ \hline
200 & 1,16 \\ \hline
250 & 1,18 \\ \hline
300 & 1,22 \\ \hline
350 & 1,24 \\ \hline
400 & 1,26 \\ \hline
450 & 1,30 \\ \hline
500 & 1,32 \\ \hline
550 & 1,35 \\ \hline
600 & 1,36 \\ \hline
\end{tabular}
\end{center}
\label{}
\end{table}
 
\begin{table}[htbp]
\caption{Naměřené hodnoty emisního proudu v závislosti na napětí.}
\begin{center}
\begin{tabular}{|c|c|}
& \multicolumn{5}{|c|}{I [mA]} \\ \hline
U[V] & 2276 [K] & 2486 [K] & 2153 [K] & 2071 [K] & 1975 [K] \\ \hline
100 & 0,15 & 1,52 & 0,04 & 0,0140 & 0,0030 \\
200 & 0,16 & 1,58 & 0,04 & 0,0145 & 0,0035 \\
300 & 0,16 & 1,64 & 0,04 & 0,0150 & 0,0035 \\
400 & 0,17 & 1,68 & 0,04 & 0,0155 & 0,0038 \\
500 & 0,17 & 1,72 & 0,04 & 0,0160 & 0,0040 \\
555 & 0,18 & 1,72 & 0,05 & 0,0160 & \\
\hline
2233 [K] & \\ \hline
U[V] & I [mA] \\ \hline
100 & 2,80 \\ \hline
150 & 2,78 \\ \hline
200 & 2,81 \\ \hline
250 & 2,90 \\ \hline
300 & 2,98 \\ \hline
350 & 3,05 \\ \hline
400 & 3,14 \\ \hline
450 & 3,18 \\ \hline
500 & 3,15 \\ \hline
550 & 3,20 \\ \hline
600 & 3,23 \\ \hline
\end{tabular}
\end{center}
\label{}
\end{table}
 
 
\begin{table}[htbp]
\caption{Naměřené hodnoty emisního proudu v závislosti na napětí.}
\begin{center}
\begin{tabular}{|c|c|}
\hline
2343 [K] & \\ \hline
U[V] & I [mA] \\ \hline
100 & 4,23 \\ \hline
150 & 4,5 \\ \hline
200 & 4,68 \\ \hline
250 & 4,84 \\ \hline
300 & 4,95 \\ \hline
350 & 5,04 \\ \hline
400 & 5,07 \\ \hline
450 & 5,19 \\ \hline
500 & 5,26 \\ \hline
550 & 5,33 \\ \hline
600 & 5,47 \\ \hline
\end{tabular}
\end{center}
\label{}
\end{table}
 
\begin{table}[htbp]
\caption{Naměřené hodnoty emisního proudu v závislosti na napětí.}
\begin{center}
\begin{tabular}{|c|c|}
\hline
2449 [K] & \\ \hline
U[V] & I [mA] \\ \hline
100 & 7,39 \\ \hline
150 & 7,91 \\ \hline
200 & 8,3 \\ \hline
250 & 8,7 \\ \hline
300 & 8,93 \\ \hline
350 & 9,12 \\ \hline
400 & 9,35 \\ \hline
450 & 9,52 \\ \hline
500 & 9,63 \\ \hline
550 & 9,8 \\ \hline
575 & 10,2 \\ \hline
\end{tabular}
\end{center}
\label{}
\end{table}
 
\begin{table}[htbp]
\caption{Naměřené hodnoty emisního proudu v závislosti na napětí.}
\begin{center}
\begin{tabular}{|c|c|}
\hline
1992 [K] & \\ \hline
U[V] & I [mA] \\ \hline
100 & 0,56 \\ \hline
150 & 0,59 \\ \hline
200 & 0,62 \\ \hline
250 & 0,64 \\ \hline
300 & 0,66 \\ \hline
350 & 0,67 \\ \hline
400 & 0,68 \\ \hline
450 & 0,68 \\ \hline
500 & 0,69 \\ \hline
550 & 0,7 \\ \hline
600 & 0,71 \\ \hline
\end{tabular}
\end{center}
\label{}
\end{table}
 
 
\begin{figure}
\begin{center}
\label{amplituda}
228,123 → 130,16
\end{center}
\end{figure}
 
\subsection{Měření emisního proudu pro záporné anodové napětí}
Pro měření při záporném anodovém napětí jsme otočit polarizaci zdroje vysokého napětí a přepnuli jej na nižší rozsah 0-30V, místo miliampérmetru jsme také zapojili galvanometr. Opět jsme měnili teplotu katody a tentokrát zapisovali i žhavící proud, z charakteristiky jsme se snažili měřit exponenciální oblast. (Jiná část není v této konfiguraci měření dostupná a je zatížena silnými nelinearitami a parazitními jevy). Naměřené a vypočtené hodnoty jsou uvedeny v tabulce~2.
 
\begin{figure}
\begin{center}
\label{amplituda}
\includegraphics [width=150mm] {zhaveni.png}
\caption{Závislost teploty katody na žhavícím příkonu}
\end{center}
\end{figure}
 
\begin{table}[htbp]
\caption{Teploty katody v závislosti na žhavícím výkonu}
\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
Příkon [W] & Teplota katody [K] & Vypoctena [K] & Chyba \% \\ \hline
19,14 & 1961 & 2334 & 19 \\ \hline
20,06 & 2062 & 2514 & 22 \\ \hline
21,35 & 2108 & 2880 & 37 \\ \hline
24,57 & 2156 & 2456 & 14 \\ \hline
\end{tabular}
\end{center}
\label{}
\end{table}
 
\begin{table}[htbp]
\caption{Náběhový proud pro teplotu 1960 K}
\begin{center}
\begin{tabular}{|c|c|}
\hline
U [V] & I [A] \\ \hline
3,7 & -0,00000003 \\ \hline
4 & -0,00000041 \\ \hline
5 & -0,00000082 \\ \hline
6 & -0,00000094 \\ \hline
7 & -0,00000103 \\ \hline
8 & -0,00000108 \\ \hline
9 & -0,00000112 \\ \hline
10 & -0,00000114 \\ \hline
\end{tabular}
\end{center}
\label{}
\end{table}
 
\begin{table}[htbp]
\caption{Náběhový proud pro teplotu 2061 K}
\begin{center}
\begin{tabular}{|c|c|}
\hline
U [V] & I [A] \\ \hline
3,8 & -0,00000006 \\ \hline
4 & -0,00000033 \\ \hline
5 & -0,00000081 \\ \hline
6 & -0,00000095 \\ \hline
7 & -0,00000103 \\ \hline
8 & -0,00000108 \\ \hline
9 & -0,00000112 \\ \hline
10 & -0,00000115 \\ \hline
11 & -0,00000117 \\ \hline
12 & -0,0000012 \\ \hline
\end{tabular}
\end{center}
\label{}
\end{table}
 
\begin{table}[htbp]
\caption{Náběhový proud pro teplotu 2108 K}
\begin{center}
\begin{tabular}{|c|c|}
\hline
U [V] & I [A] \\ \hline
4 & -0,00000004 \\ \hline
5 & -0,00000128 \\ \hline
6 & -0,00000091 \\ \hline
7 & -0,000001 \\ \hline
8 & -0,00000106 \\ \hline
9 & -0,00000111 \\ \hline
10 & -0,00000113 \\ \hline
11 & -0,00000116 \\ \hline
12 & -0,00000118 \\ \hline
\end{tabular}
\end{center}
\label{}
\end{table}
 
\begin{table}[htbp]
\caption{Náběhový proud pro teplotu 2156 K}
\begin{center}
\begin{tabular}{|c|c|}
\hline
U [V] & I [A] \\ \hline
4,1 & -0,00000004 \\ \hline
5 & -0,00000071 \\ \hline
6 & -0,00000077 \\ \hline
7 & -0,00000097 \\ \hline
8 & -0,00000103 \\ \hline
9 & -0,00000108 \\ \hline
10 & -0,00000111 \\ \hline
11 & -0,00000113 \\ \hline
12 & -0,00000116 \\ \hline
\end{tabular}
\end{center}
\label{}
\end{table}
 
 
\section{Diskuse}
 
\begin{itemize}
\item Změřili jsme závislost nasyceného proudu na teplotě. Měřený rozsah vyšel dobře do nasycené oblasti a naměřené hodnoty jsou proto téměř lineární.
\item Naměřené hodnoty jsme pro porovnání zobrazili do jednoho grafu. Lineární extrapolací jsme určili hodnoty proudu pro nulové napětí. Hodnotami jsme následně proložili přímku a Vypočetli Richardsonovu konstantu $A=(101 \pm 28) 10^4 Am^{-2}K^{-2}$ která se příliš neliší od předpokládané hodnoty $A=(80) 10^4 Am^{-2}K^{-2}$ bohužel výstupní práce vyšla $\varphi _{v}=(1.8\pm0.9)V$ což nelze považovat za příliš reálnou hodnotu.
\item Naměřené hodnoty jsme pro porovnání zobrazili do jednoho grafu. Lineární extrapolací jsme určili hodnoty proudu pro nulové napětí. Hodnotami jsme následně proložili přímku a Vypočetli Richardsonovu konstantu $A=(5,4 \pm 1,6) 10^4 Am^{-2}K^{-2}$ která se ovšem řádově liší od předpokládané hodnoty $A=(80) 10^4 Am^{-2}K^{-2}$ výstupní práce pak vyšla $\varphi _{v}=(10,7 \pm 0,6)V$.
 
\item Chyby při určování konstant z fitu naměřených hodnot budou pravděpodobně způsobeny nějakou systematickou chybou.
 
\item Závislost náběhového proudu pro záporné anodové napětí jsme změřili a uvedli v tabulce, ale pro nedostatek času jsme nepořídili příliš mnoho přesných hodnot což se projevilo při fitování průběhů a výpočtu teplot katody ze vzorce 5.
\item V důsledku poruchy aparatury se nepodařilo získat hodnoty pro záporná anodová napětí.
 
\item Z naměřených hodnot jsme se pokusili spočítat předpokládanou teplotu katody, kterou jsme v tabulce porovnali s teplotou změřenou Pyrometrem.
 
353,7 → 148,7
 
\section{Závěr}
 
Při měření jsme si prakticky vyzkoušeli práci se sestavou vakuové techniky a zjistili komplikace při měření malých proudů v obvodu vakuové diody. Richardsonovu konstantu jsme určili fitováním grafu $A=(101 \pm 28) 10^4 Am^{-2}K^{-2}$. Výstupní práci elektronů pro wolfram jsme opět určili $\varphi _{v}=(1.8\pm0.9)V$, která se od skutečné hodnoty $\varphi _{v} \approx 4.5V$ výrazně liší.
Při měření jsme si prakticky vyzkoušeli práci se sestavou vakuové techniky a zjistili komplikace při měření malých proudů v obvodu vakuové diody. Richardsonovu konstantu jsme určili fitováním grafu $A=(5,4 \pm 1,6) 10^4 Am^{-2}K^{-2}$. Výstupní práci elektronů pro wolfram jsme určili $\varphi _{v}=(10,7 \pm 0,6)V$, která se od skutečné hodnoty $\varphi _{v} \approx 4.5V$ příliš výrazně neliší.
 
\begin{thebibliography}{10} %REFERENCE
%\bibitem{3} doc. Ing. Ivan Štoll, CSc., \emph{Mechanika}, Vydavatelství ČVUT Praha, 1994