Subversion Repositories svnkaklik

Compare Revisions

No changes between revisions

Ignore whitespace Rev 554 → Rev 555

/programy/C/ix86/sound/sonar
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Property changes:
Deleted: svn:executable
-*
\ No newline at end of property
Deleted: svn:mime-type
-application/octet-stream
\ No newline at end of property
/programy/C/ix86/sound/sonar.c
File deleted
/programy/C/ix86/sound/DOC/chirp.nb
File deleted
/programy/C/ix86/sound/DOC/foto/sonar_transceiver_system.JPG
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Property changes:
Deleted: svn:executable
-*
\ No newline at end of property
Deleted: svn:mime-type
-application/octet-stream
\ No newline at end of property
/programy/C/ix86/sound/DOC/foto/sonar_system_configuration.JPG
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Property changes:
Deleted: svn:executable
-*
\ No newline at end of property
Deleted: svn:mime-type
-application/octet-stream
\ No newline at end of property
/programy/C/ix86/sound/plot.gn
File deleted
/programy/C/ix86/echo/sonar
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Property changes:
Added: svn:executable
+*
\ No newline at end of property
Added: svn:mime-type
+application/octet-stream
\ No newline at end of property
/programy/C/ix86/echo/sonar.c
0,0 → 1,456
///////////////////////////////////////////////////////////////////////////////////
// A small demo of sonar.
// Program allow distance measuring.
// Uses cross-correlation algorithm to find echos
//
// Author: kaklik (kaklik@mlab.cz)
//
///////////////////////////////////////////////////////////////////////////////////
 
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sched.h>
#include <errno.h>
#include <getopt.h>
#include <alsa/asoundlib.h>
#include <sys/time.h>
#include <math.h>
 
static char *device = "plughw:0,0"; /* playback device */
static snd_pcm_format_t format = SND_PCM_FORMAT_S16; /* sample format */
static unsigned int rate = 98000; /* stream rate */
static unsigned int buffer_time = 500000; /* ring buffer length in us */
static unsigned int period_time = 100000; /* period time in us */
static int verbose = 0; /* verbose flag */
static int resample = 1; /* enable alsa-lib resampling */
static int period_event = 0; /* produce poll event after each period */
 
#define SOUND_SPEED 340
#define SIGNAL_SAMPLES 100000
#define CHIRP_OFFSET 0
 
unsigned int chirp_size;
 
int period=0;
int cperiod=0;
int chirp[100000];
short signal[1000000]; // record 6s of input samples
 
static snd_pcm_sframes_t buffer_size; // size of buffer at sound card
static snd_pcm_sframes_t period_size; //samples per frame
static snd_output_t *output = NULL;
 
static int set_hwparams(snd_pcm_t *handle, snd_pcm_hw_params_t *params, unsigned int channels)
{
unsigned int rrate;
snd_pcm_uframes_t size;
int err, dir;
 
/* choose all parameters */
err = snd_pcm_hw_params_any(handle, params);
if (err < 0) {
printf("Broken configuration for playback: no configurations available: %s\n", snd_strerror(err));
return err;
}
/* set hardware resampling */
err = snd_pcm_hw_params_set_rate_resample(handle, params, resample);
if (err < 0) {
printf("Resampling setup failed for playback: %s\n", snd_strerror(err));
return err;
}
/* set the interleaved read/write format */
err = snd_pcm_hw_params_set_access(handle, params, SND_PCM_ACCESS_RW_INTERLEAVED);
if (err < 0) {
printf("Access type not available for playback: %s\n", snd_strerror(err));
return err;
}
/* set the sample format */
err = snd_pcm_hw_params_set_format(handle, params, format);
if (err < 0) {
printf("Sample format not available for playback: %s\n", snd_strerror(err));
return err;
}
/* set the count of channels */
err = snd_pcm_hw_params_set_channels(handle, params, channels);
if (err < 0) {
printf("Channels count (%i) not available for playbacks: %s\n", channels, snd_strerror(err));
return err;
}
/* set the stream rate */
rrate = rate;
err = snd_pcm_hw_params_set_rate_near(handle, params, &rrate, 0);
if (err < 0) {
printf("Rate %iHz not available for playback: %s\n", rate, snd_strerror(err));
return err;
}
if (rrate != rate) {
printf("Rate doesn't match (requested %iHz, get %iHz)\n", rate, err);
return -EINVAL;
}
else printf("Rate set to %i Hz\n", rate, err);
/* set the buffer time */
err = snd_pcm_hw_params_set_buffer_time_near(handle, params, &buffer_time, &dir);
if (err < 0) {
printf("Unable to set buffer time %i for playback: %s\n", buffer_time, snd_strerror(err));
return err;
}
err = snd_pcm_hw_params_get_buffer_size(params, &size);
if (err < 0) {
printf("Unable to get buffer size for playback: %s\n", snd_strerror(err));
return err;
}
buffer_size = size;
/* set the period time */
err = snd_pcm_hw_params_set_period_time_near(handle, params, &period_time, &dir);
if (err < 0) {
printf("Unable to set period time %i for playback: %s\n", period_time, snd_strerror(err));
return err;
}
err = snd_pcm_hw_params_get_period_size(params, &size, &dir);
if (err < 0) {
printf("Unable to get period size for playback: %s\n", snd_strerror(err));
return err;
}
period_size = size;
/* write the parameters to device */
err = snd_pcm_hw_params(handle, params);
if (err < 0) {
printf("Unable to set hw params for playback: %s\n", snd_strerror(err));
return err;
}
return 0;
}
 
static int set_swparams(snd_pcm_t *handle, snd_pcm_sw_params_t *swparams)
{
int err;
 
/* get the current swparams */
err = snd_pcm_sw_params_current(handle, swparams);
if (err < 0) {
printf("Unable to determine current swparams for playback: %s\n", snd_strerror(err));
return err;
}
/* start the transfer when the buffer is almost full: */
/* (buffer_size / avail_min) * avail_min */
err = snd_pcm_sw_params_set_start_threshold(handle, swparams, (buffer_size / period_size) * period_size);
if (err < 0) {
printf("Unable to set start threshold mode for playback: %s\n", snd_strerror(err));
return err;
}
/* allow the transfer when at least period_size samples can be processed */
/* or disable this mechanism when period event is enabled (aka interrupt like style processing) */
err = snd_pcm_sw_params_set_avail_min(handle, swparams, period_event ? buffer_size : period_size);
if (err < 0) {
printf("Unable to set avail min for playback: %s\n", snd_strerror(err));
return err;
}
/* enable period events when requested */
if (period_event) {
err = snd_pcm_sw_params_set_period_event(handle, swparams, 1);
if (err < 0) {
printf("Unable to set period event: %s\n", snd_strerror(err));
return err;
}
}
/* write the parameters to the playback device */
err = snd_pcm_sw_params(handle, swparams);
if (err < 0) {
printf("Unable to set sw params for playback: %s\n", snd_strerror(err));
return err;
}
return 0;
}
 
struct async_private_data {
signed short *samples;
snd_pcm_channel_area_t *areas;
unsigned int period;
};
 
 
////// SIGNAL GENERATION STUFF
/*int linear_chirp(int *pole, int delka_pole){ // vygeneruje linearni chirp a vzorky ulozi do pole
 
static const float f0 = 0.0001;
static const float k = 0.00001;
 
int t;
 
// if((spozdeni+delka) < delka_pole)
for(t=0;t < delka_pole;t++) pole[t] = round ( 10000*sin(2*M_PI*(t+faze)*(f0+(k/2)*(t+faze))) );
faze +=t;
// else return 0;
 
}*/
 
// vygeneruje linearni chirp a vzorky ulozi do pole
unsigned int linear_windowed_chirp(unsigned int *pole, unsigned int delka_pole,unsigned int offset)
{
unsigned int maxval = (1 << (snd_pcm_format_width(format) - 1)) - 1;
 
static const float f0 = 1000;
static const float fmax = 7000;
static const float Tw = 0.002;
static float k;
 
unsigned int n=0;
double t;
unsigned int perioda;
 
k=2*(fmax-f0)/Tw;
perioda = rate*Tw;
 
for(n=0;n<=perioda;n++){
t = (double) n/ (double)rate;
pole[n+offset] = (short) floor( (0.35875 - 0.48829*cos(2*M_PI*t*1/Tw) + 0.14128*cos(2*M_PI*2*t*1/Tw) - 0.01168*cos(2*M_PI*3*t*1/Tw))*maxval*sin(2*M_PI*(t)*(f0+(k/2)*(t))) );
}
return (perioda+offset);
}
 
// generate sine samples and store
int sine(unsigned int *pole, unsigned int delka_pole)
{
unsigned int maxval = (1 << (snd_pcm_format_width(format) - 1)) - 1;
unsigned int n;
double t;
 
for(n=0;n < delka_pole;n++){
t = 440.0 * (double) n/ (double)rate;
pole[n] = (short) floor(maxval*sin(2*M_PI*t));
}
}
//// generate simple sine ping
unsigned int sine_ping(unsigned int *pole, unsigned int delka_pole,unsigned int offset, double frequency)
{
unsigned int maxval = (1 << (snd_pcm_format_width(format) - 1)) - 1;
unsigned int n;
double t;
 
for(n=0;n < delka_pole;n++){
t = frequency * (double) n/ (double)rate;
pole[n] = (short) floor(maxval*sin(2*M_PI*t));
}
}
 
/////////// CALL BACK STUFF ///////////////////
static void async_playback_callback(snd_async_handler_t *ahandler)
{
snd_pcm_t *handle = snd_async_handler_get_pcm(ahandler);
/* struct async_private_data *data = snd_async_handler_get_callback_private(ahandler);
signed short *samples = data->samples;
snd_pcm_channel_area_t *areas = data->areas;*/
snd_pcm_sframes_t avail;
int err;
avail = snd_pcm_avail_update(handle);
while ((avail >= period_size) && ((period*period_size) < chirp_size) ) {
 
err = snd_pcm_writei(handle, (chirp+period*period_size), period_size);
if (err < 0) {
printf("Write error: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
if (err != period_size) {
printf("Write error: written %i expected %li\n", err, period_size);
exit(EXIT_FAILURE);
}
avail = snd_pcm_avail_update(handle);
period++;
}
}
 
static void async_capture_callback(snd_async_handler_t *ahandler)
{
snd_pcm_t *handle = snd_async_handler_get_pcm(ahandler);
/* struct async_private_data *data = snd_async_handler_get_callback_private(ahandler);
signed short *samples = data->samples;
snd_pcm_channel_area_t *areas = data->areas;*/
snd_pcm_sframes_t avail;
int err;
avail = snd_pcm_avail_update(handle);
while ((avail >= period_size) /*&& ((period*period_size) < (CHIRP_SIZE-100))*/ ) { // segmentation fault checking disabled
 
err = snd_pcm_readi(handle, (signal+cperiod*period_size), period_size);
if (err < 0) {
printf("Read error: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
if (err != period_size) {
printf("Read error: red %i expected %li\n", err, period_size);
exit(EXIT_FAILURE);
}
avail = snd_pcm_avail_update(handle);
cperiod++;
}
}
 
 
int main(int argc, char *argv[])
{
snd_pcm_t *playback_handle, *capture_handle;
int err;
snd_pcm_hw_params_t *hwparams;
snd_pcm_sw_params_t *swparams;
signed short *frame; // pointer to array of samples
unsigned int chn;
snd_pcm_channel_area_t *areas;
 
struct async_private_data data;
snd_async_handler_t *chandler, *phandler;
int count;
unsigned int i,j,m,n;
unsigned int delay[10]; //store delay of signifed correlation
long int l,r; // store correlation at strict time
long int correlationl[SIGNAL_SAMPLES]; //array to store correlation curve
long int correlationr[SIGNAL_SAMPLES]; //array to store correlation curve
int L_signal[SIGNAL_SAMPLES];
int R_signal[SIGNAL_SAMPLES];
 
FILE *out;
 
snd_pcm_hw_params_alloca(&hwparams);
snd_pcm_sw_params_alloca(&swparams);
 
printf("Simple PC sonar ver. 000000001 starting work.. \n");
 
//open and set playback device
if ((err = snd_pcm_open(&playback_handle, device, SND_PCM_STREAM_PLAYBACK, 0)) < 0) {
printf("Playback open error: %s\n", snd_strerror(err));
return 0;
}
if ((err = set_hwparams(playback_handle, hwparams, 1)) < 0) {
printf("Setting of hwparams failed: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
if ((err = set_swparams(playback_handle, swparams)) < 0) {
printf("Setting of swparams failed: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
 
//open and set capture device
if ((err = snd_pcm_open(&capture_handle, device, SND_PCM_STREAM_CAPTURE, 0)) < 0) {
printf("Playback open error: %s\n", snd_strerror(err));
return 0;
}
if ((err = set_hwparams(capture_handle, hwparams, 2)) < 0) {
printf("Setting of hwparams failed: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
if ((err = set_swparams(capture_handle, swparams)) < 0) {
printf("Setting of swparams failed: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
 
/// generate ping pattern
 
chirp_size=linear_windowed_chirp(chirp,1000000, CHIRP_OFFSET);
 
/// register playback callback
err = snd_async_add_pcm_handler(&phandler, playback_handle, async_playback_callback, &data); // fill by dummy &data
if (err < 0) {
printf("Unable to register async handler\n");
exit(EXIT_FAILURE);
}
for (period = 0; period < 2; period++) {
 
err = snd_pcm_writei(playback_handle, (chirp+period*period_size), period_size);
if (err < 0) {
printf("Initial write error: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
if (err != period_size) {
printf("Initial write error: written %i expected %li\n", err, period_size);
exit(EXIT_FAILURE);
}
}
 
// register capture callback
err = snd_async_add_pcm_handler(&chandler, capture_handle, async_capture_callback, &data); // fill by dummy &data
if (err < 0) {
printf("Unable to register async handler\n");
exit(EXIT_FAILURE);
}
 
snd_pcm_link(capture_handle,playback_handle); //link capture and playback together
 
//start sream
if ((err = snd_pcm_prepare (capture_handle)) < 0) {
fprintf (stderr, "cannot prepare audio interface for use (%s)\n",
snd_strerror (err));
exit (1);
}
 
err = snd_pcm_start(capture_handle);
if (err < 0) {
printf("Start error: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
//wait until all samples aren't transmitted
printf("Waiting for transmitt all samples\n");
while(cperiod<10) {
sleep(1);
printf(".");
}
 
//// stop audio??
 
 
j=0;
for(i=0;i < SIGNAL_SAMPLES;i++){
L_signal[i]=signal[j];
R_signal[i]=signal[j+1];
j+=2;
}
 
// linear_windowed_chirp(L_signal,1000000, 1000);
 
printf("\nData transmitted... \ncorrelating...\n");
for(n=0; n < (SIGNAL_SAMPLES - chirp_size);n++){
l=0;
r=0;
for(m=CHIRP_OFFSET;m < chirp_size;m++)
{
l += chirp[m]*L_signal[m+n]; // correlate with left channel
r += chirp[m]*R_signal[m+n]; // correlate with right channel
}
correlationl[n]=l;
correlationr[n]=r;
}
 
printf("\nSearching echos...\n");
r=0;
l=0;
for(n=0; n < (SIGNAL_SAMPLES - chirp_size);n++){ //najde nejvetsi korelace
if (l < correlationl[n]){
delay[1] = n;
l = correlationl[n];
}
if (r < correlationr[n]){
delay[2] = n;
r = correlationr[n];
}
}
 
out=fopen("./output.txt","w");
j=0;
for(i=0;i<=100000;i++){
fprintf(out,"%6d %6d %6d %6d %9ld %9ld\n",i,chirp[i],L_signal[i],R_signal[i],correlationl[i], correlationr[i]);
j+=2;
}
fclose(out);
 
printf("\nEcho zacina na: %d vzorku.\n", delay[1]);
printf("Casove na: %f s\n", ((float)delay[1]/rate));
printf("vzdalenost: %f m\n", (SOUND_SPEED*(float)delay[1]/rate));
 
snd_pcm_close(playback_handle);
snd_pcm_close(capture_handle);
return 0;
}
 
/programy/C/ix86/echo/plot.gn
0,0 → 1,21
!./sonar
set size 1,1
set origin 0,0
set multiplot
 
set size 1,0.2
set origin 0,0.8
set xrange [0:1000]
plot "./output.txt" using 1:($2/2) with lines title 'chirp'
set size 1,0.4
set origin 0,0.4
set xrange [0:10000]
plot "" using 1:($3*5-1000) with lines title 'L echo', "" using 1:($4*5+1000) with lines title 'R echo'
set size 1,0.4
set origin 0,0.0
set xrange [0:10000]
#set yrange [-200000:200000]
set autoscale y
plot "" using 1:($5/1000) with lines title 'L correlation', "" using 1:($6/1000) with lines title 'R correlation'
pause 1
reread
/programy/C/ix86/echo/DOC/foto/sonar_system_configuration.JPG
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Property changes:
Added: svn:executable
+*
\ No newline at end of property
Added: svn:mime-type
+application/octet-stream
\ No newline at end of property
/programy/C/ix86/echo/DOC/foto/sonar_transceiver_system.JPG
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Property changes:
Added: svn:executable
+*
\ No newline at end of property
Added: svn:mime-type
+application/octet-stream
\ No newline at end of property
/programy/C/ix86/echo/DOC/chirp.nb
0,0 → 1,2664
(* Content-type: application/mathematica *)
 
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
 
(* CreatedBy='Mathematica 6.0' *)
 
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 158058, 2654]
NotebookOptionsPosition[ 157533, 2632]
NotebookOutlinePosition[ 157867, 2647]
CellTagsIndexPosition[ 157824, 2644]
WindowFrame->Normal
ContainsDynamic->False*)
 
(* Beginning of Notebook Content *)
Notebook[{
 
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Sin", " ", "[",
RowBox[{"2", "\[Pi]",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
FractionBox["2", "5"], "x"}]}], ")"}], "x"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", " ", ",",
RowBox[{"-", "1"}], ",", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.4517493846035767`*^9, 3.451749464015339*^9}, {
3.451749540350273*^9, 3.451749615871673*^9}, {3.451749664237117*^9,
3.45174978114639*^9}, {3.451749812398685*^9, 3.4517498129608593`*^9}, {
3.4517498435900583`*^9, 3.4517498933916903`*^9}, {3.4517500305849447`*^9,
3.451750084155809*^9}, {3.4517505204706583`*^9, 3.451750527457696*^9}}],
 
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwUmHk8VV8Xxi+uISRTplCphESkJLKOWYpKKoRKivCTJFQypIREJRIRMidT
iiQ7hcg8z/N03emY5+G971/3sz77rH3WWvue83yfs9v2tukNZgKBoMdOIPz/
N+SndunmJo7ctiSUSTUMgwnVKZo6haO7muGJP9Ew8O2IdOsawtGF8D2TKrnD
EO01If3lD46yif6KRS+HIfVwaPjNZzh6fFlTjOfsMJRltF2t48HR0kaye8/f
IXjSuXG8eJOOxt2FOw5+GwJDdpntaVN0dCdw/0fL5CGot3tQ7ddMR2dTyMva
fkPQu3OnskoUHWnK1iifOjoES5EOLLESdER/zJ4hGTsIJeWv+p7x0NGcjivX
lmeD4DtbXOi+SUM3UtTJNW6DwHZuq7PJEA1l3rVO7T45CILc+a1MKTQEGzur
lagDcOjxaoqDPA2dGsklbL7oB3uXMMOj6lQ0Fl7V6R7RA+m/7QL75ajI+g57
ww+rHiAJqZcHilFRMMFDJ35fDzigCehYpqCMqbQOlW/d4MirpepVREGOaVf0
PjZ3gXP+7L7iIxQkjer22Cx1gNuCOYvmITKyVODmvbLQAvlGilrjO8mo9dNl
2Zr8FpiNZ/UN20ZGI7uXiA0uLeBukL/ST59ExWknCPFjzXAvmmvG9/MkOkPI
crCobwKv46WDZXKTKD4r70WCSAP4+Owp1dtHQisv9K3EPSog8OAuDRYhEtr5
RW2WNFAOL3rFi3+xkVDX3vhA9pPl8P640Dd10gQSurrni4boHyhe4MhW+jSB
Ur///BCV9wvmXehxEkoTqKhQx1P2aSE4X/n+aF5jHCVrDcfE5AeCJXbmRIrZ
KAJ9gtoCuRzt0THmO/h2EM00FKUWrw2iT1eN3swEDqLnjcUTmOIQOuxjIFzk
MYguNkQufb42hHS+a0noXBxEwdKn61Urh9B1xaOyFtsH0Ym/limkF8PIQFXz
Mef+AVTwIvVsptAoMiQNDRXv7EPqLuMrb4gTyHxP74TeZi9KfdTA6ceo08Gm
ndbY34s+n3o/st9mAgW1/lsej+tFxXcy5NO/TaCqX1/4BMR7USTF2VnbjoRO
vnuq5STSg6KCs7QicieRZauvwcJiN7pYR+mL6ZxEjtseGPt3dKP+JGqoAYGM
Qp66WLyN6kbBKvNbQkzI6N+dS3f+CHajl2lz74LGycjISDZxB18XWjx3F/hZ
qIh03HV/00wn+qyp6eEpRUWBBwo/B7Z2ooJsT1YvLSr6w61XPP22E00hJRF9
HyrSaLja8leyE0X9cvOYmaGibpRm8YjQiR49oHTxbKMhr1z6gPJwB1LTSXMs
kaOhr6+8qXEpHcgJz9+suEpDCmbRrO7yHWh8UeL+7b80VKs78FyWpwNNP+ur
nB6gIccj0vwDeDtKaojYvbpIQ2lCBZJGX9oRz2ORhThpOtrV1aC663g74ueg
cDD50FFptVBp2452JGZtkR79mo6siq11n6+3odb+a5c+p9LRu1jK2YVfbahC
4tm8YR0d8duwO9YatKGFpzbj0oI4yjUxmfKXbUPMPJG5T/biyAQiPVS52tAZ
nd3/Lqjg6PmuPQFJ9a2IVVZrj7EpjuT4HLeY57aiUq9A5jtXcVTFlBe+9XUr
ijVNcmVxwRFxRPO914VWJBKrYnSb8Z5JankqpaDaivjjLW31I3CEldemj4i0
ovCeVttn8TjqLxBQfLfSgr6JPpFWysDRoxTLrya9LUjm6pEQ7S84Eo9KVCeW
tiD/uDzn4hIcFQeSyr5/aEHr9nXZbytwtGDvUb/3eguy828YeNSGozfmP826
dVuQ70OZ2Ce9OFI+SewJl25Bd19Jn6EO46hR7dQ1PY4WZO1XNfGFhKPbcq8n
Viab0XPT++e7aTji2dH1X25NM+Jq3hVgM4OjLK5dczc+N6NufhVHWMCR0drN
BzvCm5GGYOXGw2UckaifCU2uzajYK1pNYA1HgX1zgYGmzQjM5IWIGzjaW6++
VUOlGQ1sa3ltzHhv/y59HDG9vRll26JcOiO+mlMtmrbYhPZfEXIfZ8QbH3gT
rLqaUNgbwuhhRvz+5SVp/h9NqFLnB2f7Oo6O+8dn/X3fhBZTM+ZrVnHUdWdM
+ZFPE7p/6uZXQUY9dz4H+mVYNyGV2n3pNvM42jK5v75Nowmpe6SsdTN0InFv
9Q5m8SbE7vUiPIiCI7WrjrcUVhvR3BVL7ZtjOGqK5Sq07G5EO557rrr14+hW
Rxbx2fdGZPrJIvVzO46YBExMv0Q3Ivbr7w5vr8fROxP8w4BnI/ozv/VdejmO
lEJe0rguMfK5SU03i3FUXaGkfuxoIyoJru03ycHRNaaWILvtjei0O15x5SOO
Zu6TsnZPNqCaSYWI6CgcSU3LGT5Ia0DC+xTMl4JwZOrw30jzjQZ0LNxV3ucB
jr5cnBF9MlyPsg41+ixZ4mi0TuVrb0I9IpmeNKKcxJGgnufZI1fqEaV/FhGO
4cj98FrgeE8dMoQzIS/5cJScqSkFMXXIIO39lS3rdNS62//nW/M6tG/f88HE
CTpS4WWbM2yrRRcqaIcUi+nI7plheGJELcKU0gqlkujozUaI3Mq5WtRc+Nv8
cDBD16jbrn2qr0H0+bK0DDM6KqgWrd9a9Q8Fqrwz6h2koVHM6tbNwH9o18st
upllNCRYFE9Euv+QRrFP9KtEGnJP3aPuWlaNPr635fhkQ0NHAg6mNxdXodtB
ufVM9VR0c+W2zoH7Veg3D1k5Io2Kou7k9weoViFPpm1qGn5UtHBFdfuRgr9I
arNrtlWBir5paD1++7kShXZrftjtT0HjXwIkppwqkRlT71nX8xQkdKCyyFCu
EiUnDuzr2EtBHqKn8OXUCvT9yQFFejkZHV0ws7JKKEeOni2xRiuTqDDH4eju
iN9IQvWz9L7jJLRgtHQxy/Q3ylTIrNDanEAq4888Vfl/I9NJ263P/kygfPG0
IuNXZegjV/Ni2MkJlB08dvxB+C/keP/ZvuxT4+jk33KfVOGfSN9kQ0pcdhTt
ZVAJ55avaCW9KGdbSj9KutHRtCuoAPlUiZmc3ehDu94v8KuyF6Ae9exxrYt9
aMeWI5HXWb8gjbcp1JPMvYh/JO9dCVMemgg0yb59qgttHLyk1zeXgbpTDzrc
SW1BDqsPm41yIpC/VukI5/tSpK1Q3nOq/hWyJT9xu1X0Ax39LfLvXXc46lUI
WP/dXITev1DD4y4GoXszcdEVTF9Qo+GC2+k4N/R3+i09TyEOEbKZlE+WPQGx
iz1PdlzOhYJWTWajY8mQ4S/NIUttAIMfMY+qZVLA5CwuE5/fCN2JC0uGoqnA
N5Yh2uTSBEy3s3GDlTRwkcj9JTjeDCZbJPv0Sj7BwLKrlWZDG8zFb/TsSsgD
p4Tww5ZPeyCspe+b+N7vsI87+d33vSMwFSN1yT/1O6QLvj7Z7T0C523tF8dk
iqGlmaR8uHUERKanVHMO/oBiP+qR+36jkMhD/K6l+hPulNCZ/taPAbHd0ILB
DrBHI+Wh2K5xuBn3YplToxSEDLjvPHIdBzl54eOtGIJrdW6frHkmoHtvpPXh
lF+woRBst3qCBM+DCj/fGP8FPkoaGZrPSKBB7Vp/u78MtFfVPt5qIMGHL5Lx
axll8PgJSee61STYaaf3V2T/Bt3m+RwbBzJsT/2nsIT/hgNO3WTzdDJUbqH5
yCn9gSBh9l+CE2SQbVLaGf7lD2hhJ1tKr1KAfuXHFfOicjjOd13URpcKH/70
5YQsl8M28bpr4/epcHY/gfDzeAUc+rntNXc2Fb7QdRN2/6wACV7p/N38NLAz
tZ86v1EBvd08BhzaNBD6FowFQiVwbSvj8Xalgdej+kFyWSVYu4aJrVbRQHZo
6pAEy1/4tDv53sYMDbp1BfzP6P4F2yhQ9t1BhxPc5rsLKv/CmuJG+qQ9Hei3
H9wZZ6+CtoP3lmqe0yGh5X2ZyMkqEMoZbBXPpgNz7NC1RzWM9XTLHWs0OnzZ
YMnP4a6GBdrTlAAuHOxspZmHjavBRyRl3Wk/DkKVhqaC4dXwWf3EcJ4WDn9l
nZL0G6sh5rrYPlNLHLxevJjx4vsHAY/yPp28g4PcdI72J9N/IDrqfzsyEIce
s+bXfRH/YCPQw0c5BofQornhbW3/4Hay/qpEFg4nxIUPawvVABt3u8SFEhzo
vmoB7pdqwGXozeG2fzh8GLnckhpdA3Vt/R9iO3A4a+Czp6urBoLrLXpThnFg
+pRwl2tHLfBMnb8/TcEhn+fPnxNWtUBk2S3pPcvox21MwDWuFh7KeQbrLOOw
vZ3dLqm/FmyG/r3SW8chs/7lF98ddeCt8PqmwyYOmn9FWazN6+BW2dacNUbc
gpJMj0fWAYU7cJjAiB2KDiQJN9dBfa/Z87trOKznFkzP8dTDy697DM4v4fA6
44RW86l6WIuQ/Rs/g8P+pMqXOUH1YM7m0GjGqK8k5sxgaEU9bERPqLsz6j8X
0anoyNwA21/OLqwy+ht/fs3XABpgC8mMhVKDw4Mn5Pq93g0QGBXqiZXisO3R
XUnm7w0QwrrVdzUbh+R7a/8NzDeA8m83yx3xOIgX/raxEW2EHvOSKx+e45CX
cypb/WIjPHeXyWq6hsPaAd6Lme6NUFYhzu1rhIN+euu6SEQj4MLMVWFKOHQn
WBsvNDTCubxHD1pX6LBXQmrejt4I2X7YCc4+Otx+N/6+hbsJUvbmzCX+pAPx
9W1q7skmsItO6Vi8TwcTHpU3Ox2a4GBfQ9C3C3R4F7KkHhbYBB84dI93KtJB
IcD/udOfJlC52pKtP0ADc/cIOekTzfDF7tSHETkaJE1dan5zuRnmYvT+q1um
As1Z/AHLg2a4Nv6vfddfKjy+kVI9+K0Z2pidE7ZYUyHrYqFD7KEW2Eb89Irb
gwILzQ95Oc+0QEQImdf5GAW0zmBFXv+1QIf4EQ7tZTK0G1SzX8xsAaI9vcDC
gwybx3pSefe2Ak0km8/LZhKMvn4w8dVuhdM2Smn/BCfhjZLdAu1qK2QK1rOl
VZNARo6mVxPXCq5hFxCHIglMd2yOPhVug5RjDtv/ksYhdV1qzypnO3yj7Ck8
sWMUJiewoEaZdrCwUAj/+HME5JttaCn67WBX/Bx12YxAfmpM4dnH7TCsVwVV
ccNQeob/dOpyOyQGGwXJ8QxBRyLTvXOkDmAzFxz870EPcOgPVqZVdEERs8eq
HbkaTh3aOPBopAtsvl9VXmGpgjAx8VemTN3A435EIW5HJQjily6va3RDjqrJ
zAO937ArugE3LeiG0KuV585v/Qpq5FKRjaQeeDu5+Zf4IRk5hsU5mvn1wf0Y
/ru9x5rRl4PXOL4k9IGmgcvqIZ0WtFa7N5WvrA8u+4jm3TzN4GaurKF6pn6I
5jBCuy+3o4KgYvOTAf3ArektFGLfjTYfd+hrBg6A4OnDvUOCQ8hQKnb0feoA
pMWuh8uFDqHXZTaPVysHINjOx1+DeRjxE2ZtelkGQdTKVCCCPIxSNB/EvNMd
BKRZfomeOYr+/QjiE6wchLqK66uZQxPI5bnjVZ32QUj64hPbjpGQwOXTOW7j
g7DF4mG4QjwJWa1sM25iG4JP/7x2w/lJhB97GxRmMARR8vs6yClk9IbjfsfP
S0NAqtU+6zdPRsc6LaVp9kNwwVLLbU2bgh57SpafChqCLZW/1II6KEjwW8om
R/UQuB5cuMc/TkVFT5+ZHOsagot5sTTCXhqyvnArzn5yCGTYQ8air9BQ6py8
euWWYVgiUAoyGmjoVDlPyLzoMGgn++zfTqSjqYipzr1yjHP/et9021E6Ujtc
4BFgNAyO3OoLUQz/1M8cVZFvycjfe9JD5CcdPW72FBx2HIYCcVHEO0ZH+5Ms
rvM9HIYhwbPGDzhxVHtHPR97PgxZtBcNZw7iyFVLgsk1dhh+mp3cH2qMo+18
m2c+fBoGfDj9lpwTw78MDsbX/xgGfTmLwX2BOLLJ/U1brxmG3MgrnA8Yfkhj
n8+acM8wXP+syVqRjyPRGDUuZfIwNFjoBnxn8PUCz7zo6eVhGDeVsDZrxVFr
QK7MTY4RcNQ9FvV6CEf5S06qfsIjMDpsYn2HiqPw//brx0iPwJ07VG76HI6c
h4fNCo6MwO2U6QNsDP9gdCn+er3uCGi2bXcpZPgVmVoLN9L5EdC4cqPg/9+Z
WLW2+zNfHwHjoz+39jHWh782hou7jYCqv06hMSP/l1xo/FH/EZA73id+luE3
4j8YfD77cgQ4ShK6hhn39xZkKXH8MAJtcnpFRIb/sgwu/fckm8EpKWFfChj1
q27c74pnPKe9BwoXphn9Cd49QiqqHQEFxda+H4z+ZyamFpp7RmDH52MLfIz5
NFplsdLII2De1LIxy5hfdpO9IPvKCPxgCSVd+w9Hofp79uzeMgpbzaLaL59j
+Jcf/UrqIqOQp/RPcliZ4cdSLpy5fXQUgtkFBaPodMQsxmcTrDcK4Zu/nCuq
6GggrNb5o9konJg/5/kkgY5ivHRCOtxGIZ5r5XChIR150Taip/1HwWM/SUlB
lI4u2Bancb0ahaPDLffVJ2iI97RSBeSMQsap/D+7vWmI/ovaYlE6Cjby7kWb
2jRUcyR9+G7dKHRviPU9YqehwJ07CemUUfgQ0zp+M5iK1ma41XllxqCkcpPL
+A4FddtXnZRTHQN3w1zR0H0UVNgbYK6rPwbiKSflgzvIyK1y5Z6X3RjQnUIN
GlXIiPSOlDuYMAb6Tz7YSrWRUCVPMlrJGYNtG8lyg54k9DHgSr0gGoOKA3oq
z0RIyOa/doph3xjc6fSLzTw/gVqxcuk80XFYnPUQZM0fQ2UTH977vx4H/WE1
3uTtw0hKNdtgMGkcWq06t8+GD6HHgSUzml/GQeb0HS5bjiGku6/LcK1lHGpf
C5ckTAygSlv+eY/tE/C+c5k90bkH1fY9MXaOngB7wbvMdpQm1N5ya+NiPAmU
jxTLEUI+wtE9Xhlfs0lwY/beZg75M7x1CzQTRCRoblilOe0rAHO+j5lNA4z4
g9ODl49Locek9+Lp3QzOvB3IHvmyGgarTXK0kidh5Nbu5+a97YCJWlsmFEwC
V1DB8RChTkh0cGLdLJ+E01sUXR1NusCWPehyydgksHp/CUj91gNjumXsqvvJ
kKDSZfBaeRDI6PBV+UwyPIhzXSh7MQoGlfRbmsVkkJqoJWZvHYPk2oy7Z/+R
4bycoNGd52Ng07XzmTuZDFUD496Y3zg0z3Bll8hRQMOheeiqMQkUlysL649T
IDv+1oRdMQlCN/3LBo0oEBh8Wr5m7yTocy+1Ep0o8OvEBFvQ9CR83ze6evoT
BdxbVyrO36KAkPwH1is/KHD6RsfaEqKAm7Lltjs1FPAijhyJEaCCPDRKRVIo
sOh0rzIpjwrBes/l01Yp8M1JnDy7SoXxU/pHv3NRYZGn/pOgDg0SzEtO9h1g
5NX/3v7+Lw3WbTzP4+pUENwtJoQT6WB5Q9ma6TQVlLu4HciadCh0ot0UsKKC
b5ck39N7dBB0S3fd50yFSNtq12/pdLjjdf2BqjcV3M9t1/bopEO9j+STk6FU
SD53MK6EiMOBp10vLr+ngvGPiSX/gzgEPX/z9r8sKtS2GcgjUxzGXp1J9C2h
QrPqwu3/3HHQjub89KqWCoUbOVcCXzP4NL6i4GMvYz0qa5XlM4Ovkv1Kv1Kp
cLphOWPwDw4Wn9Sr/q4xuGWuTlWYwXff8haaurhp8CSroTtpHAeBorweijgN
Bs6dV/Zl8KJrqfPYujwN8oNfGKav4FBXvh/fdoIGic3FEWIM/pSrGV7abUwD
qRr1xWZG/KwpjlnFmgb69JTyegaPjnaYc+v/RwP1Z1UlXAs4aPULCJk/osH1
9ym8QQz+jB+t3+n4ggZ73tjYavfhsEoOlvWOo4HWRcFKNQZvmk/rHg77TIPR
z8W///uKw9fFTY2EnzS4k9dv2h+LA/9GsX5+HQ3OLVwZe+6Dw22ix9nyPhrY
movbeFrjUMupZNlOY/gYiTChpGM4yPJRr5PWaaACVv1beXEIFE77b2UrHXRS
e1dLRuiA7ZXwl1SgQ87ilZQpXzrEyXWGHGKcq3ueroC3IR1WDkW80TahA4NA
Ys0ZeQUntqTfdKHD53exE8KhNODTLc/z8qFDy9vgs6z6NHAx8v0REkaH5FuV
4haMue+/NF+fzfA94n5hl0xsqFDCHBL9icGtTe8EKFXbqGCaLWmbXkuHzOpY
v+OlFPBhNZxPJNMh3RTbLslPgfYvMTsipRnn8qbzcnHUJDhfURx7dQSHPomU
xZ+HJoGZqzw7TJfhQxZeei/9JcFBW5pWkC0O31O8a47RJ+AJL+bwkMHlJXMk
RfYd4yBW0qrkxfifrJ4asBz8MAa59rdW3Rm+Z+sOH1V9qTHoLX0d5tLN4H5+
3V2TO0ch5ptb9yGuKbgxYE2d2xyCabsKwl6DKSA89dVsKe2GkuLwG0kmU6Bl
n3qhP7ALAnkt/+26OAU1Fr0nGk91gngJPULixhSwXNXJp9e2gaGAyH7hgClQ
zJdU78lphIQyR2NONAVvBLl7h68UwRlJ3pipo9Pw8ffuBjWWBmQ1xGLMB9PA
WvFMw3W6ETkkL24qGUzDyVduGxpXmpGf3MCNu5em4cSQ3vWZw20o/2i20oLn
NCSlfvuxq6QblS4njgr5TYOsSfFJAaFeVFMS+VY1aBqKX66F2Dr3oVHtR+te
0dPQdG1nWirbIBI6c7p6tWgaiE+MU+68YLzf+TFv8bJp6OWI99krO4IU2w4r
nqieBi3jBQ6t3yPI8PKOSJ+uaeCTOediQR1FD+zJV5lWpsFVgU02SGICBcr1
C0gxz8Ah3bsO7EkTKILWVKnNOQM49bzciT0klHX3u/wTsRlQ1hbyvL9jEvX7
Bi2xqc+A6+GgF1uGyIis7f1pv84M7PMTj+A5SUGLrK42hqdmIKKpe0nxMwXx
hl4qD748Axtavc0Bt6hI/Mwpz8zrM/BW1vl5ZBkVyfIzHlmnGdgs0jj8eDsN
aUdLv+T2ngF3aZGu3FwaMrkspnPwyQw022JB7Ys0dFmSZ8E4dAbodoNh8cfp
yGGIKcPlzQx0TP6CNS86ck+evxz+fgZkMNGQkXw68rOf5MlNngHd9dNrhiQ6
eiHXV9aYNQOC/ZGVu0VxFENrdJ8uYNxP7d3P63o4Ss0t38//cwbeOZGsWBl8
kn+3qFu5YgbYkp2q18NxhI5mvThfNwOS/t9adLMZPLn8AXNvmwHPCb2V5r84
6iyJmH3TNwM9T1KdEntxNOr7LPXr2AzI3QngyGTw1bT2Q4t22gycs31/Y2IR
Rxust7kX52dglpxUZ8bgNc5qWyS8MQMmmhva///eLBR60e0Y2yx8XnD3z13D
0Z4zRvsseGZh1qZkM5rBh4f4NTvvC83CxG/qVMoEg0fblJ7HSM6ClHG3Xnsb
jgyj92n+kJ6FtbVz2bIIRxcui073KMyCg/bxmISPOLKV3Jq8dnQWNJqijmsE
4MhliHBJAmYBtG4/3rDGkbDn0K0v+rOweCDZuP8ogx+5f3ufNJkFn23R9cFc
DF5LSgofuDALGfO99sReOuI/FpB0z3oW/tYJ8pmm09GPuutfuW7MAhvx4CVP
Vzqyu65bleg8C8Y3n1rdV6Gjb2Gs9LqHsxBbySF2gHHeV/aOE+wCZiGl3Z6Z
ZE9DHMWVAishsxCjIcv5fgcNWY49U5OOmYUPjg8wTk8qYnnocLokcRbCzzzS
b5ekoizek1dMM2Yh1bdN9OdvClpX53zqUzQLYdieg6ybZJTaRH4r+GsW7ni/
7vV+S0Ym9jWZmX9n4ed/qUc15Mko4XVoY3s7Y/9dJevlRpNId5JHXHF+Fjaq
xS8EWE8gmg+uULE2C3QP1FfUNY6iBBu1LhPnQPTQ9TuZpuMM8nll/0xgDlzE
09nZ1MdQaJTAlwGlOQCfcdt3E8PoiPxcxT21OaBZGLCknhpG/WWtnVxac2DZ
ka9C/DyEDtEiN1TPzoFCYyT/FodB1KojYvTSZQ4caxfOKQb0oB3T4kPYJ0bs
+DHKTqERZZ6S3pa0dx4yONslapYQvDE55NotPw+f0m9KxOj/Ad9zx5v4j8xD
pvw55T1hlWB2ySQiQG8ekkq8H43z18GGrYfwjZvzINriNB8+3QqkG35ecS7z
EFnWojEX0A4tDiFdbR7z8E/Aau93/k5Id4mP1X82D8NXo7/q7u0B0weVO2XS
5yGMjZur/tkgaDxq9LuaOw8BiplH4zWHYL9f91B00Tw8WxC59XRmCNae0j9u
qWZcr/f3Nf+5EUh9JSRDmZyH5+ann74ZG4OXb3YF75mZB+/q4bFA/3F4+FaO
fHllHmT/NFHDRSfgbJxmVi3nAlT3Dq3cPkGClfSbh7IPLECh4oiN6TkyjH5y
fTV+eAF6Th9SH2RwXkP2gxlJjQX4T2tWLRMokFwQVhB+egF4xTg1I8SoEFYY
vb3KbAGsrOnRT/yocL84yYNgvQA1VyRqLw5RweTXt2N3/lsA/sfV6FQEDY79
+fUu494CnNuqUWIwyuCEyn8rQ48WIMzsJX+HIh14qlsviwUuwMZzllwSg7eW
avpLTMMWwKTvmYfzNzoM15MknkctgBGnsNb5aTrUNc34/IlfAI/G3okwho4W
ta4NrKYuwMVJVV3+izgkdbBpqeQsACnopUqTLw6h3bxJzoULYKfFkvDrIw6e
fWIsKWgBNNQG7reX4WA7uNeu7+8CXE1bKN/C0MnTIwoV2xsXICj8V5QpFYej
48ekTToXQOiXkVjmEg67J7WfBQ4ugL/o6mtOBi9xU0+TSkkLcFtx55XbjHiB
fvHk4tQCsFw+udK6jMPg9NVMxeUFGLV+sHmMjkPNnCOXA9MicJYKHYjpZfDb
ortzwpZFqOdMs1oqxyFhxaeuk28R7uraRpul4RCyHqTAJ7YIGen+HHkBOLgT
IsJPSi3CN0XrDV5LHGxY4qb85Rbh5bazs15yOJxkSztXrLwIasl2wfQ5OuTb
sdvWHl8Ee9Ma5dhiOoj9sXfr114EIo+id8wDOgTsrno8ZbQItqqRG3MqdKD6
ykQwn1+EGWYh+4JJGpj1B30UvLwIoO3mMRJNg58ak1+kry9C2PBdQpg2DcKW
M1qN7i7CV6mggyFPGdx9iXPM6uEi5I421i9JUuHqN8d5l4BFKOK+Oyr+hQJK
dw8IRUQswnG9HEJNDRlaqVmXer4swrGj3rSBXyTQOLXVgfZjEVxHffMFlEmQ
kvGf1+afRXhVkpiRFD8BHjcV3u1pXYQPUQsUVcdxEB3M6XaaY6xbxT/UqB+B
x5q8lEdri/DlRGkySIwA+b3rajhxCTo7K239HYahxEJJvEBwCf6aLQ9rzw2C
TUu+9ZrKElyOZTOeq+qBSiUBF54TS2CwufXcWeVuUHx512eX3hJMV2dYW0Z1
AsFY5YPuBUa+sO/nT2fa4GPl18HQe0sgWMsV0LGzDkjfi65LfFuCNUfuZR7c
H86KiLorli5BxEK85fS1CPTd4/4TrcoluDLsbGPVn4ZCDh9PudG+BLOHljvn
hYvRwc8/xj8vLIFacNy3UeEa5JZQektTdRn00/6LSt7WgzybuLorNJfh8IJ9
2ZZXvcib2cLIWH8ZEg7tz87d2o8C7WblrC4sQ7nY9fWOh4MoVkaGev/uMsQE
OBUH6YygBIt7VkwPl4EjC6OE0UZQasjv2qDHy2BtESgn/2YU5VKtPr99tQxj
Rvd9c9rHUHnuK5evOcvQLDOw//VBEqoe6u/XKFyG/vZ5XrbvJFTPL3+mvHQZ
euJs7+7HJlGne6ViS90yiAs7c3NqkVFfikCCZdsy7Bv6XR5dTEbD7Vd5h3uX
4dZ2RHRVpCDqsdWpKcoyaA1dfhzLSUXTtwyvec0ugyNr8b0/rlS0EBPZtLmy
DKG88jd7mqhotWZY6xnzCqwt7DRoOEhDhHXFfB7OFXAxl6Y8f0JDrAqPpKL4
VuBYpyfHZhsNcV7591pCdAVSci6eEJaiI96Xwiwpu1bg741TguUOdLS9zO6u
vMwKUOPVORYy6EhsJm/ki+IKhC5bBMWP0dGuPZvn1VVX4MI8bTVnB472mZ0u
/625AqWjMxUSp3Ek9/SdipH+CsRNhxr2euBI8dt4cpPxCnhonScNxuJIZeLw
dosLK3DA2GWb1A8cqYn4Px20WoGjz4IPvW3FkebJ+nl7uxVIdX1bfYyEI50H
O27iTivQr2d/k7DA4JFPDu0edxn5blwfSes4Mu79qr/xYAWeMfEq0Bi8Y7qV
pfDp4xWQPeP3j5PBO5c0z+7fGrIC/1R/nIMZHFndjnv75tUKeElu/xo8jKNr
CWR28Xcr4LzDYHOyFkc3m1S9PiasQFVB5oVreThyYn5KkktfAckQreVpBr+5
Hm42z89ZATW7IIMPDji6Z7ezWq2QMb+923/8p46jB5HOamWlK2Alukmx5cCR
b+X3DMPKFSjB+F4+baCjJ4tsYo11K6ArWvmg7yUdhciYhVxqW4GKGO64u6fp
KNwicaW/dwUm2NqJpsx09CaE7nhzdAXy9J17A/JpKOaHeg+Nwpjvm5e3tlvT
ULJE+4+1lRXwvrxVMyyRijJM9sg/YV4FxxNa4RHqVJTt6/qei3MVor+6pKo0
UlDREOcjMdFV0JOW3/16kow2fP3VdXevQsr4Daee62SkJ7m0/J/sKrA49qkf
6JxEzZZjHmVqqwxfc+/K2RwSorUgVwfLVXjF7nNBfMc4UnE7qvjadhVIcxdg
1WEMPeD9TPvhuAol5Pl9pLxRxGEc47jt4SrkVU3+F3RkBElVutt9i12FY1W8
Mv9xDKJbdhSpwY+r8ONqqsuDm/0ol9l2aEvWKjQesQoYLehFJ+CMjXXJKsSs
3+iOPNGFzItkzYl9q1D9h/LJeEszepHZf8pUcg2cDm5U8iuloVbDC5ze0muQ
e5Z2o0AgHIlN1FSlKKzBr5HUIxHZYZC+57vesuYa3GZ6X9yq9wV+v4+AhCtr
cN/Y2vDRUhVsUefcqLZfA2mbnBDhP7VwtsuvZPb2GsyZN/VX6TRC33YXNQO/
NeBvzTirv94CS2GGh+kJa3Bx1Y+nTbUHNA+iaeGMNUg6jcnvX+qFpzVHcrXy
1uAQ5tA5lNcP/Bx7DkaWrYE8ZzMJZx+Cg/7r0hrDa/CZ1TtG/cgouO90H7tB
XoNUA4u7MD8KxT/JH8Nn1uAve/xPy9wxMFzp2DXCvA4n2K5niAlPgO3dfLGQ
PevA82OAvzVxEvRGt6vJHlgHO6q9CFGeDDIX7l+qUl4HUQkpzV+5ZKAfxd6w
aa/D+6JYnesZFGhK+5ifcnIdQpRuC/JKUKFAhL1J99w6fDrms9AaQoWHK3Vb
A66uQ0VbQiyY0cDGSUleymEdjH/JlhXk0EC7941R2e112Hl9tXqQSId9xksO
Vz3XIRqwl9nn6cBRevnZps863GDJ0+B8TweKAkqJD1wH/gtGp4f66FD/Qar8
RNg69K2gSClRHPJ4A4d7I9eh5tsnk1JjHN74TxK849ZBStODN/Uhg1dmTu/c
kbIOamVLvbVJOFhezz1RnLUOhQFtUvv/4HCiVcDKomAdHggElmUyeGKXnueD
pR/rkFcssfUMjgPLt+7ot3/W4WlHaRP3Kg7j0pqFR2vWoau57GI/g1f+vU1s
a2teB5JP6DW0jsNnDtY59+51WP8qcuzzHA4v7zvwCw4zrt8t+zF1lMEf5JpD
XybX4d7eA1Of6nC4dFnxjOn0OhhRy2dKc3A4Xvv6v+mldfCo52EbCcFB4sTC
85eEDZgQ8NwqcQUHQrZFpiLHBsR5nrl3Vx6HEcmfVfXbNuB9Ksth+gwdKsN3
TfwnvAFW+5bKo/LpkEF4wrp15waQtvEpeznRIfTOxJ4s6Q0whkGODxJ0uD1s
pH1KYQPu3H5gI1pNA9Pz2VfJRzZgi/Bs7cJ/NDhSzucbfGIDzn31uWPITQOR
I/fiZPQ2wN1FnbwrmQoDQhrdN802QEjvpV7RLwr8fvZhidVqA1xLRRs/6lEg
dYlZOOX6BmhdavW8XU4G5+7q8yNuG1BqWH+FN3cSluIu1V15tQEXkmOX0rQn
oIfnB2UjegPUCQ2vv78bh1JfSc74hA1IMeXNTqSMwZNrY/q9ORtA91HKCvYb
Bd59d3+Z128w/GK2J+fdIZDNCvtyjmsTalPjeJm02yDEy9D/H/8mvCugiD9/
2AJUXeYzOmKb4FmY+zY0twmy++6RVWQ3oeOBpS+rRC2obLPeLWKwCV2YQaRp
ZDFouh0I73+8Cc1M57421PxCHzTHrC6FbIK9tdU99uByROD6INf4ahNObDV7
d1i7Cv35yF9ZlrAJt4gaA9wpDciwbXktuXQTtv5SkM7n7ECmx6ocnVY2QezT
no8Pjw8jS2Yt8RkCAasrOrm4SRhBISSJgGwiAfP6SVI3+TOCqAUdZ/dzE7Ck
M17sr46PIfHYgsKRbQTsKrmcWR4fQ8b+ryQTBAiYmkIBrS9+HGUbn6KK7CBg
4nl7sX76BOo/LHO+TZKAPXJRl+kJI6FtYqzFr6QImMZ9KaHTspPIdbz0Gacc
AVN1aH0/e5qMEmtj6ZUHCRh6Kss/3EZGzfleFwKUCNhrLN6iwJyCDvsq71k7
RsDuqCVbPz5FRXY3toUUaRAw/+Clp9gPKnpzijrljhGwU3v4btnvpaEKpepL
SroEbMfG0YaeQBpaEE4tpRkQMHv3jrWAYRqS3ni8L/MUATu+zFZsoEpHl0av
hN48w9ivLM+C9ykdBf3TmJU6T8DEDnj9qqqho6JcUcuBiwSMtUTFyZoLR6So
hV+xlox+k2XvlejgSPRRy35zGwIWXNIS1+aOI6PruWGCtgRMfvs1k5h4ht6e
fDHfeIOADStWx6//wtEnRUerF7cIWPHOp5ZzPTjq3W7w5+R/BKysZYx4D8cR
99oeObY7BEyWytbnuYqjE8OEV7/dCdj+UKuhBQY/8PjOSDZ6ETCbLkme8wx+
GNwxmtXnTcBaH45taWDk5xW1Haf4EbDlCmd1x24cPb7wt2rpCQHrlggIkC7B
kdlM0UW2YAK221gGOCIZfBSeOSrwgnH/D6uGQjdwtHDgvdvuVwTsBywuW8jj
qKrqBUExkoCF3faUHSDTUcwN3zCNdwRM0j1UviCBzuCPO+JGcQRsq3JU66Qx
HWl8sM28lEjAcgpk/ouYoSEeDbNjN1IImAKn2vfKMBoa7NSrdMsgYJf5X+Ox
UjSUd0/VzO8zAWMTfPXtYDYVmeWIucZ+JWAOz1Q+rGdRkPRp7o307wRspnKT
89EuClokrT//9pOAieQphamHklGM1FBaUwUBK8g6zcNvPImcUPORgWoC1lEh
UPcoiYQ0rMr/UOsIGJdajUDj1AQaiEwbYG8nYLmzDtUTXuMoV/ndf9u7CZgJ
gQD8X8bQ44aQVal+AqblradEGx9Fe7e4CGuOM56XvW0xbzRGkKO3yhn3Bcb/
33kg/frpAaQhKt3nv0LARn+N+BQ49KGt34SdwjcI2ONbh8x1vHtQLr4SmMnG
hOUc3tmm/7wDzduWlQ4KMWFDQ+GVF/Lqkd9JEwVjVSbs9jsJh8b492A6DiWW
6kzYikWyUuqHHNgToGTkAEzYf+eCn791L4LKEsGbAQZMGH36w228tRy4D/XE
fb/EhM3wvRvjHGiGt0IOW6W9mLCaoeNHV88NwTfxs6foD5mwszfPXDlzYBja
pY4Ff/Nlwpiyn+5nI4yAkCIHq8EzJmyvvBlfYcwoHD0ypb3tOROWQuCq1ro6
BhfUO/06wpiwcq0sp7O7xuGNQfqafRQTJhMeeVcmfAIKjF8ePxTDhBUXi9SG
niBB63kvr6U4Jqxv0Ubg0xgJBK4azgWlMGGr7T5Fl6XIoHzzkPK5DCZMbM9+
jchvZDB1FnEV/cyoR7BPsEOHAq+9SJSMAibs6qRddashFfJ9GmXdipiw51F/
0/R+UaHpSZH98RImLORW3aLMIRpMhSSkMP9iwtR6zXBrht/lfRU08u8PEzb7
KvZ7xRINDr113R3xlwkrCrf21zlHh7Nx5lcu1zBhtDWPByWJdHD9iMXtaWDC
TgiwUoTJdAjPkOmhNDNhHswsKsDw59k5vKIF7UzYxKcrXRK2ONR/Xbro3c04
n6PBwYmvcKD/GHyj28+EYclOe4uLcOD5XdXMPcw4r48DZRYdOChU5fK2jTHu
J/is0J2Gg3F9tEncJBM29lswnomh786tfqE3aEyYPsv6heXN/3//cPh3cJoJ
mxJ5wXVpDYeswbMcC3NMWMk5++MiUzjUjB/TL11i9Mtmm6vRgwOZuutJ4BoT
tqPqb3jlTxw4Zzl+mxCYsYYji2eL3+Igtzy1KURkxlIErv2RvIWD0WbniQF2
ZqzTfWTruhLO8G1lD9O4mDFVil/2VYaeB3NlfL+9jRnT63e7fymTDul8rxZV
BZgxF4uot9MWdKgSvn+EIMyMPa5VfqLFRAeSxLW7VWLMmNNNMU6rBBpw7D2Z
91KSGXs5vAczV6WBjJwSbi7FjNXWrj85U0kFg0OiB3dLM/a/c/mBtTEVAjUm
0/MOMmMbTlwHVHUZ+q3dNH5fiRlzo1zV1SsgQ4Xh973aR5ixn3VCJXRxMhAv
BCc0azD6CXkmndtJgoD/ZKNnTzFjzrF/a1M3xiDpLl/7jzPMmPxRI9/jx8bg
9/1lgSfnmTEWrsjYdqdRYA6sDhe8zIxJN5aFM/8eBr/4W8+OODJj310eXmK+
1g/Y5ZtUExdmrKdf1CLHvBeYRK6fc3BjxtISQxar9bvh8SurHbEPmLF7HFsI
Mxzt8OTJmRzCc2ZMoP40rcb1HzxzPNJR84kZu8YUKt5jV4AM9ytrjOUwYzOT
0Vf2Rf5EHKMKiRtfmLEsFompOzZ/UJC1jJNSCTN2IkvutPrdWhRydsdmVC1j
f36FMmmBDmS0VcQut5EZe8fF71d7rAtx/ROsrm5lxlSO99voXexBoTo8EWu9
zJiMift/NfcGUNhRpv22NGZsYMAgAL0bQSaz688fTjNjSc7PmVgej6JtuStT
b+aZMceeimtu18fQS9m54r/rzFjCKz16NO8EOjs+tXOIiQXD5dRbCnsmEO9H
2pMVVhZMCVfRbY4noVfiEyYHeViw8PI011EuMjLtGvmiz8+C3XB2O2r+lYz4
owZFrgqxYKY6SQ3oAgU1m/Y9ui/Ggj1bkrk1SKWg19u6h19LsmBvNS+oPn5A
Raa17QZZUixYKHl7qOsGFQkEt2RVSLNgQcK61PteNNSq18g3IMeC0a5S9riS
aOgNc53HkgILdjbomYWMCR2ZoeoevsMsmLeC4q6HGXS03bsSO6DKgim//Rik
u0JH7cf+pOiqs2BHKk8o2WE4ippHnDbAgtm9zzP7+RBHF/NLbnvqsGCqSx86
jmbhSPj299aXBoz7qU+b/WjCUeeBb2qZp1iwzM1pGTUqjqJJ+fF/zjDmIyb/
MImhz+YpOSx951kwwXcL+v/396K2WQ4Ll1iwN9GFtgLLOOqWzKjbZsVYD2h5
yj+Bo5ieFGXZqyyYo7eeMbUaR5bRSW+17VgwS8s+zdREHIld+LB22YEF+0vZ
WXPShZHP9/7aPWcWTKO+0nhUEUex9dGVYa4s2FhQH/ezcToS+46xRLoz5h2b
/HcygqHPH0kQ68WC/Qs+4DR+lLEe9tI70ZsFezElrRXdQEPvvI59T/NjwXiF
bKUlbWhI5Prg/OcnLFjKt7iAmGEqijYOUi4IYsEk9yroHbamordSnZ9+vWTB
1tXvr9seoSChrX6kyjcsWN2XHqZLEWQUtbh/X100C5Za4Oq8mzSJIms947sS
WLBfwq82hT1JSLBwZ89AMgv22UbW/kfeBHqT+Fd4PJ0FO9+7Gb5ndBxFeAi/
msllxAa4kqnSGOK/huqWClgw+Qf6lLTTo+j1KXvOzSIW7JyGWvHg1RH0aldh
AFcZCxZ4u25N9d4QCv930WNvEwtm9emw8uXP3ei5ZNTli9MsWFmJU224Shni
3KIZbTXPgh1v0nh6mPk7Cpkda7VdZvRbcoIlQCoHBVcdMbnNRMTOJ06UrHM9
h2dubVgQHxHTZsr1/hhVDmzWjx6FbSdiM8NHgvJ0qiHQYF/xG1EixvExgHCX
VAdPxe8dTtxNxA4bxbmqBbdAQKWgdLESEWvmTOO+Zt0LzHkltr+OELG9nYsG
Aw/74XGs3YdKNSJGCk8njBkMgr9rgUiLFhGrXnc/7mo0DITLVhe69Bj5hSov
TmqPgJ8e8fXASSKm+ufWuauHR8FXzIyLeo6IDYP/sdHNMdggrhnMXCBip1c0
z6Z2j4MP/vHJkgURu6V6jvXs5wl4VD67TrQlYizBf/h2q03CWnbsca6bRCxS
8ft6/vQkeL/T8eRzJGJrUVkUpkQyPHSJmJJwI2Km8ZNc9cMUMPyt1Nd/j4j9
LTXjMnGigpBQY/WH+0RsrGK4mUymwugtl29XHxGxRm3nNq9rNMj/yf1xtz8R
u6D51LChngZ+fJ/Ch58w+rVuPlylTAfjGye9PwYx5vsuyBd7QQex7xMOdqFE
7FshH7NIP0NPuAMv7HtJxNq2NoYq7cPh29W92uMRjP0V1hbdGPr7pOC3Qtpb
xv5hbw9WROJgynFth0MsYz6nbh8WRDjstNpkl/1AxCzT5VTO9ONAzYmbm0wi
Yv3rV585zOJQzKIxlJlKxLJUvxRd2MAh6FJ3nVMmEavQHnuxjaG/Fz95Fctn
E7Fs4Tmu1/M47N0USqPlEbGuK/se9g7hMGP6NSL7KxFjY+VxnGb4+V+p5/1u
fydicqde5LTH4vBiZdr50E/GfG4VO0Uy9NbS5KXF9C8ixoP/Zj9+EAeZJAX9
/HIiZhRcpNI6ToeF+Vrlu1WM+SgbT3pE0aH8pNNOlVoi9mrLI5tjGnR4HbeF
e76BiM0+2sel3EmDq9NpS19biBihMzjez5EGCnr6Yx4dRGzuTsWyziwVVqNH
m1R7iNiopbzMBzcqVFEfly71E7HYe7EXi0gUiMJ2f/o+TMQ8/b9XF12ggDLJ
+ok6mYg9WvlesWc7GQgaa65rNCLG9NSThNtPQn14jPXPaSKma9jqcDOfBLdU
O47CMuN6vnjrI4oTkBB4dlKbgxXrLF+fkm4YAZduehsLNysWEWpksz42DBoK
L36Xb2PFAuN0DwUtDEFHW3WsvjArVl9Ws0RjHQSefTomRtKsWPhMPeljXQf0
eg0d55JjxepKjnbsS2+DzFrf/bUHWbFESY/zWgw/redeQjA5wooZNvaKqonX
g/efI1/O6bJibqnaXhilECavyYhY2LJiUer+iZL1VcjcueeA001WzErH7PXh
r3Wo0iMMHjmyYq7YI6/3hk3o4/O5m4lurJiImHKlAm87sv766+vkY1bMMVTy
MfvhAVSL7lavBrJi/2y30MZyBtHxf9J9W5+zYhcWZX1r0RASHgglKkewYjKX
7067/BtBTRwW5x98ZMXyHHTMo3wnECbAbR+axop5s0Zzx1wkoWwJ9CD+EyvW
WNl5d23PJBKXcQvLzWHFvj4VDbGfmETPlfcl/f7Cir1WmxcMTiCjFY3Or62F
rNjWP2JV/GcoyMHgefX4D1as9ZOzQ/EMBelZTU9xlrNiBIvrSWdEaKjgZjJR
oopR/94C7dJ3NCR155KIYi0rljXXIGK8jY5ePuSU12pkxejqqiJVXnS0+fQn
nG9l9J+6sbDZRkcuL13P3+hkxSxMT+r9k2b405g99p69rJi70chjJieGv01p
fxA8yIoJlUwpP03C0fec4LDYUVZs/kAaTa0ORzLFGkmfSaxY0ns21y0Uht6W
418RlRUbsg3OGGboJbEhqbppihUrlfv99ztDL+92XegbmWPFmH0GIWgBR8Mj
HNPzS6zYGF2w/fQgjs7SfxA51lkxrcH6JK6fOCpdchERY2LDyKX12+tDcXSQ
RUpenpUNm7ThWEw6g6P3W9tAcwsbdorP9EY8K444RYLOn93Khv0k9zV3ZdOR
l5S6vS0fG4a/f7h59xQdTcjTH7hvZ8NCDiZNveyhoYuqiWGBomwY/NGasLhC
Q+VaZknREmyYaJbN+fV2Kkq8WFxdso8NY/1X3JeaREG81/7rq5dlwwKXuNT2
LJKRj9Ou6cGDbNjzRyOXb2JkdNkvUIT1KGN9tzLz9XwS+heiJi98nA0zfPfi
2HcGXx2LpIKsJhsmTtS6vm11HG3PNLU31mfDap9xDe2TGENPClgfXjFiw456
tNSn7BpFM6VFYXdM2LB7uslxyTtGUEOL5LfIi2zYdfLsVNXyIApeJxP7b7Jh
yx3Bf+QqO5H+nTdVmY6Mel4M3mR51o6Yx06EerqwYd8dz8xfhlbkXftSgM+D
DTP26qJ9PdyAXGKPSuk+ZcO2vVPmdlEtQmZqjyHzIxtmEX9M+NLrf8D3+QCL
ZxobNp6lWsN3rgHqd7VV6nxiw/hYT6VbMzeDAYeMSV8+G5Z4pfLQZGI7HO+o
s+L9zYatXAu9ftNrABaNPHf1VbBhsztn9TOrB6GgdNdoRjUbxiRd677SOAQH
U+866TSxYa++rMdH1ozArnuiDzwG2TCVxNQJw5sT0Ef6fUJnlA2LAfkp7mMk
iLFyZuIlsWGlCXn6NYRJuNi4vaKXwobd3j6888ivSRDQRUEZOBvmFCi5ZfMe
GRoLHU57zLJh0t5/2Yd2UyD0AD+vziIbdnr6QmHUHwqwCdx427vBhh3Quajk
M0GFP4E8lzOY2TFHu2uSx28x9GylUNKDjR2buxCh0j9AAw2Xa8PanOyYcOHu
N2qn6LA8xJm6jYcdq5ySC935iQ7fLhTc6uVjx5SNpXLsN+ngVm19MGM7O+as
mjNGM8BB8QT79D1Rdqz/1oLv6ycMvcrNLdCWYMduXdPVO/4Vh4y9ll7bdrNj
aUS+x/VdONyMZtHo3cuOHdg0Ezwxg4MU9+fNdBl2zHha1sOLoWcDvhf/3JNn
xy4p51R6MuL3s5uB2ofYsTuBB5uOMq43t88w2qbCjm00uPN/Y+y3vceUp1eV
HWtzvl2yUoBDs8laU7o6O1b2fqKQh1FP+O+UyHvAjh1de5hMYNR7+ugZC20d
dkyy8Vf7yDodODKXxLcZsGP+r0PNGtPpUCGRNNhjxI79GXFpGDagM/zSqeR0
E3ZMs+RcnEYPDTRZ5+3vmTJiV70clus0WPWKP6B9kVF/o1eg7QAViqgGOI8l
OyblcmV/0FkqqIS9D6myZscCnv0o/PedArmK0/seX2PHUvh2ymWKUCDNLcZq
3oEd8zOPnN5XNAlSgvhitjM7dk/AUxKWSRD/VSfCwZUdWw3QL6AfIkHUErW6
x5Nxnh0hNYefjgN/jNaNyIfs2L6vd3yuJ41BmHoU4YwvI/9YbpV14SgE+oDq
70B2TP9P70Guf8Nwj/g6OT2SHYv6yVzy51gfTKWMg+07dqzriP3eepYecDZQ
79kRx459ss+4ZF/eCXYho3zhyezY6+k3akmyrWDGq+p77ws7FtO9eWefWgUo
i/daaDexY/g9ukbJzt8o++eh+dVWduxpsahiH9NfJHfl6cuvnexY40fh/1Vw
3XE5f188DZ7dM0qEVIpEGdnkniZaQpKQpC9KkiRE2lRKSaIkNEiKUhSVW2lR
0dbUns/4tDTM3+f35/v1eZ57z32fc973vBsf33etFVgpXrNMrXMO9IuRjjy7
FrPVfNZJE3PgSFWea8EI6Qc/NXwtH5sDd9LW6P5a+h1TTquf9p2cA0j0pnhY
rRP/S6t78uPPHKh03ZAjrtONRVpLpdsYFJindnbrV/l+7NjgkXKXTQGmKy6X
+NOP+92/GuyWocBCZ+f7/zUO4PZ3l64WLaCA9JoN/yzPDGGrQ1VyVxdTwA3Z
aOiqD+P630qZ65dQwNnrCofbPowrUcVQsjoFXvmW16MlAryza3GAnSYFxl/5
esu9FeBiXzfFhWspYFPb/6ZMW4hB5VNuw3oK2DdfyJN7L8R5JYsOhG2mgIhJ
W1unLsKbTrqO7dSmwJWh98qfw0Q4i1IWKq5DAcbK+YtrBkV4dcqC5Xn6FLA9
l2NeuJ7AL4xdii/spEDg3N8hl9wJXJ7QfN3bhAJyTqbNuS8J3PtLd9dNcwqs
krPVOthE4FkWqfQoCwpEFucpbhonsEKq7JfHVhR4d8xyzJC8r7ZIeoW/OEwB
iYJjtR7///3t4cG9b20p4GlK+fp1mMBuWXtkC+0pkFYl6Nr5mcDhjNxvFaco
MN/ZY4KIIXCqvUpMoxMFXtOmOxsOE/hTXujhLhcK7Bq3duGyCdwvM6UgcKPA
6jmNFsVZIix+xrZr8hIF1nsvUeKQ95VCyaeEWZ5kvHuDtqnWCfHWRVonGD4U
+Hc7uk7LVIitLsSqyQVQYKA7o8T9nQC7VUnxlYIoUOixPUxzngCHq55NWxlK
gRPfS1fHO/BxmmfT2Y23KWBKreQufjmM+zVeTJhEUyDBxtEviDOEJa7LZB94
SIGsKX7h6jWDWPG752W7JxS4vqZ1r4XBAD54y/zvxecUaG08bvfRpA+7978r
8E2jQPGTJYM/gPRv25f4hWZQ4H1FqYPrih5cKfoxJ+EdBSbVFr4w6+vE23c/
4Hz5RAHfjfcv2U19w9bPJOubqsj8wQv5g3YN+OK/M1E9NeT5Tu7Rqy6qxemv
YMFMMwVoY013XGs/Y2V2v4rKMAU2xjfOUb+WgLef2j2gKaKAwRU7WauTF9Ch
gpznm8coUBohvLyjORlFutzU3P2TAt5Hku5V6BaiOTWrN3nQqHBlU23x1gt1
SGV5zE9/FhU2pqyJeDO3EYGPRH4YlwoPxBsnK9OakMeaRp0keSoYfQ5ZXprd
jqKCkGS6AhWoBjvb5sp0osyu5NL3ylSYo/njyyP9LiS4fcW4Wp0Ku6O2SVuH
9CDKcC+zVZMK3afUdjnE9yJVXbPqvrVUQHsL5YNf9iGbMcX9v7ZQYWr+/L2C
pwPIwyhYbjaiQrjEn4FVEYPoXvx4M1uPCsuebfoZdG4IVe8ttVlqTAX7P4be
hTQ+2iqztIZvRoX31GVVddl89LQhQC9jLxVS3O5+VDwoQOx7fW/cLakgVnc1
7qhIgK5YGahts6ZCmvShWJOLQtQ/Pylmlg0VHjstUHw+LkTmrZLMsmPkevym
r1uPi1BurL1XyH9UsDp0OaO6RISW2hSP7nGgQq4i12DzAgLdXqxiL3eGCoq5
lIcmxwn0u9Ovsc2F5KOn6/zAQwKdjO/ZGe9GhXXzM5HgM3nfHNfLPXmJClyX
FXp6wwTSVk3Q0LhKBZMDy2NbfhEouV/88ZgXFTzX1+9+SvozbrIdN8ePCq6J
aywek/7M06HI3/MGFfDaVffK2wk0qK48pXuTCp8fy0uo5pD+UODjQAmjgvIz
P+9C8j7LT+tqrYqgwlFnvx+v9Eg/dlbH7E4UFSizTupSfojQndVPCqxiqOCv
mLt18L4I/R0V01KIo0I1/d2T86tEyCHTNqnnCRXOD8vI1ucIUb1bgdzzJJLP
96uom9cLEdqgGOz8nAprC19lfksUoJQpr99aaVS499ZvZniOAMm863CeSafC
yh/7D2ba8JGXB+r6kEWF3i3ude7Ph9Hw1kf7/HOocDJW56v34BCy+PO3ZFce
FegenL9KC4eQuveHlPqPVAhZmeZ03W4A3dVRWBRTRoXA2vSDku79SEziWtjR
Cip4uZ0IuuXVhxoCtN2Ga6nwVKs1yMW9B3nfzNMW66ZCJywxEPxrR3yThekl
fWS+TGft8HrciixZV5VvDlHh2+JlU3HrmtHK21vnzB2lgsuHnvCirfXoW9T7
6hViNBAPOdvZUv4R6VrJ641K0GCe4pU6dbF8lDrf483bOTRQXe9r8tj2NfKN
3RyjI02DlidZQSmpN7BmfM7xAwo0GDTYf+1dXimOPj6vcaEyDRZcTHZZ8KsC
S6pe2tmtSoPG/ISFRVHVuPnZRo0zGjRAVaP7Al83YP+0t5O+22gANnH9Xmc7
SD1bER4NNAgYk2B0THXiBw8fLU/Xp0FSpvzE0lXd+HVo4OF2ExqESxvworx7
8QepPz/GzWkQeolfdCW6D3/yPBdG20+DwkV9fXOe9ePOM9ZFG4/QwPGv9LfK
h4NY0PflkNkxGpR6HU8fDRjCU0f0ftj/RwPbifPpd22HsXhj9q0rDjTooR58
gDT4mGW2Ui3iDA1KtlY5ePL5WL70cWHyORoY9I7c7I0R4KXbZQ/hCzRY88VU
jbtViNe+DZpouEyDjekTli8qhFhb82+owJMGEy1hVkdMRHjnU9dlEr40eH1i
56f2PBG2UBgomH+dBpVrj3wdXkhg26hD1quDaaC42dTA2InATqzqccNbNLAg
LnV8SSHwpev6oUciaHA2V9HUjLzf/P7mLHWLokFvT7LFiwkC33LXKAiOocHj
Oia/mrzfYkRPDj6Jo4Eh1d0wc4bAT0/MHc+Op8Gr6Br+7m4CZ3wPDvnylAY3
yy9np70jcJ7lP9W+FBpodZV0tnmR9+uX8/jXSxqwNEKnJ9cRuN5w0IqbSQOl
R+HdCs0i3PHh8JhaNg1w6KdP3k4iPLyh5ibKpYF83EPpvYQQT740ULXENLCu
+bm+5pgQiy97/8HpI1lv548VGxQLMPORppVfGQ2yL/UuE5MT4HlyCaPRFWT+
3624ddCaj1XC5G6mf6VBzcrruZm3hvHqOSEqZXVkfWktaruUNYS3eYl9aP9G
g+Pph80XVA7ifWeHRmidNKgKdLQfqu3HNgNHgpV6yfXscY7ixz7seLR2yaZB
GvStjdE1edaLfXfnWv43QoO50sW3+0y7cfqq0DwsRoeCMoOG2yYtOO/ZLMtG
STrk8zX4K8O/4bLF7oSAQofTVXMPXy6tx9+ljyrLc+jwuThzIFj5C2aMrA50
U6LDbINZS24eTcEO6fX7luvSwcZt4X9S2+pR0W308KcBHXhqMka72hvRwvMp
/RW76JDaWmeTcr4ZVa/3vuy8hw4fp2f9TvP4jtTl+EVoPx0sfKNTHNw6kf/0
fgbnIB02WcjZ3kroQptyVzzKtKUDg6YqejPQgyJiowb97elQUn6nPOpXLxJ4
zlpreYoOx4yl9Q2l+tEj+FY8fZZcn3fI4N/UAJpW0mV9Pk8He81Fzxidg2iv
RNqBBxfpkHk7sm8kdwjNLvUd1vaiw9BqBzs/Uz6yfSbUkvajg13w/dDj4gL0
PtDKs/M6HWQT29qvPSf10PFjaUYwHaq9gy5c0xWiM8aabL9bdNgXzdnJrRKi
0pXRBy0i6DC/6qHh6E4RUmRJJqhG0cH70r6g5jci5EE4Cyaj6bDu2OoL4TwC
1Vc3ry9/SMaP//vefYxAmq/1vaKf0GHQeNGypMcECrzzqtwxiQ4NokjrzK8E
6naT5257Toen/3npj4oItM0y4BAzjQ7BYjH+RqR/ito4kvg9nQ5Fjg5xr/8Q
aGTeIdGrLDqEm3KkVIUEMvpZstEnhw6h/tuWJFUSKKF1tc/ePDLeQObR7bHk
/Zf34POSAjrYPmPLSx4mkGXcbJkfH+nQ/2xFGodBoHSvc0dKy+hgeizQNjhV
hGjH2p7eq6CDGHH5aLS2CNnr7hg59ZUOyxbZJJ/DQvRhyevNW+ro0J1/bdp0
rRDNk1rkR/9Gh9on05kuUQLk2n+jsq2FDtzpV5+WCPiosmxM9uV3OuQNHrqT
o8VHS58fOerVTQc9eJNx48wwaj6tNaY0TIcDK1o6rd8NorWmcVvHhXRI0KtV
0KocQCGa1IDiUTocf7koRVjbj2D0u9zJGTpsnWfqMJPfi2Jqdx3b9IcOMmm/
o/Yk9KCJzKwU6iwGmFffCoy+1o2euQdrp1IYIB3yLENvfidi/V5/fFSOAdZv
65I2djag9tmhL69sYEBlbO4bIt0HT8omfN28hQEbHK9N7u5KwSzVdyNT2gwo
pCxflZKUg0Gvb62bAQO6DphGXXIrw4le2tlOFgwYH98lmXarEeff2tekbsUA
5Z8hO76uaMaNDx1mBg8xwDtr2WBWXium5N3d+t9xBrT93nHYwroTO00L8RFX
Btw82/LcVtiLA+ZIdi1wZ0B8cnr8m5k+HDdXXrzlMgOOJfvlr/jVj6vXGepb
+jCA4ZJud651EA/pHf5PJoABsrGJdbveDWHxfa7XawMZcO7ggez9wcNY61xc
uVk4AwYG2csOSwqwiXfWECOSASc/Ryy7nSrA9mGfaRX3GLD+NG/E2VCIPeM6
VwQ9YMBhhH4k1AhxVNqkyY5HDPCyG+rrMxXhV3kMZ6kEBshUnWsYfS/C5RXK
YR+fMqA2+o5dyDwCd7VsSvdJYQClya/F5wSBfw6Z1aCXJN+rja2eJhKYN2M/
9ieDARcdDDsbagm8knKFl/eGAWvyci9OjBDYQO72Oo93DPhZ5bZJ9JfANkuf
7d+UzwAj+d222aTfubg+332ygAEJkW8Pm5B+J1y/7l5WMQM+mYvVZpQROHnf
UI5rOQPqpB/GTUQSuNDuX/PqSgYsTlrUsnwvgVvOyf4SfWVAuoFUtfM/ER7z
XrEwrY4B0SMnJwdjRZgerqN9+hsDdhvv7ywh/Z7KowM2y1sZcPkMd+XW5+T9
+PKM18B3Blw1Wnbm+jwhtsz3e5zUTdZPoCFXeEmAz1ZGFx7vZ8CV8nk78j7z
cWDrq26lYQYY+E7W7GTx8ZPhEolOIQM8yh8KRXrD+P1Mq0rcKAPU7MYVuE5D
WCBHOSk/w4CURLvVPncHsNQyhcCm3wxQfdne8vZeP1bYsO55lBgTOg/WFGy7
1Yd3W9jyuRQmFI1sUtxn3YNPHXdn1NCZYLvolc6/1d3Y2zVEI0yaCVa95vZr
/3bi1+E5Z+lyTIg0nwpGf9rw3Cr2hMRSJvjYe6Wd2leLqyO2buOpM6Fwy8Vb
C598wcFWJ/yVNZlwfHJ7+eLAcvynJ1dGZwMTfNWnxHQtc3DvzxPrrxkyYWXL
3Bnr+HcoruC2Z6gRE96enXb6MucjOnA9ryTWjAnJ825UntL6hD5zuJa5lkxI
YM5v0UyrRRlq+e7TJ8j4pLbNvYO+I0fRwIc5p5mw36D17QHPTqSSxZ0jd5b8
vGvJ/PbqLnQfnbq3/iITVHl7bntb9qK9Unc69K8w4ZTmt9OUG32IXpG/zMKL
CXc+RbEOp/Sja5a8HNcbTGhJehEeUjqINi3cLuZ7kwlTXta+nA9DaKzr1M7b
YUzYzuHqZSYNo9Rnd8If32ECHOaMtF3lo//OfGh6dY8J7zXfxUjoCZCC1pAi
fsCEXN8DT59OCVDTNM/hyyMmjO1rXGweI0QRH7ZntCcwoYnNlr6rLkIm/g4z
gmdMWOYdViibLEKzjSJ1fr9gAqPEn3WNSyAsjYPo6SQ/K/PvBDgQ6FLDUI18
FhOORZ7lE6kEWvtARl49hwm/PDNbQtoIJLBFdpvzmCC5x/PSpmkCPV3qmLKz
gAmeX/+atJL+xFYQOXagmMzfid0OjuMEmv8abzlZzoQ3hfoXB2pJv3Nx2Ne9
kgnNdacKbeMIFKItWxFQzYS9Hv/Wju4nkKEE8O7WM4FeyjUvmBEhsU+OhxKb
mHBb0ldVPFiE3t+6m5DZxgTTVJk1U7NF6LxFAb+okwn6dvd0BC5CtFKer1Xb
ywRNR9buLeUC1N8he7VrkAnPh5nGhkwBepwExSMCJrR6mw55Ax9Znz7NEBtl
wp63t21P2A2jqsmCWIUZJoRuNbtr7TaIrufxezX+MGHLX86r+/8NIPCdq6E9
iwUZ/Nbkjh39KIvplH+IyoLb/j9G9nf3IOe6KKnTTBaMjdWDRGw3WhZdaOrB
YUFLkX5o1q4uFKMi9/3+fBZoebtJTlLakc/Wor8Ny1nw/q66OEupBgU69kw+
0iCfD3a8KXWvROHRkoTDGhaYBJwLFntQih5PGXb82cSC4ePbJe2uvUEFmRVY
dScLZK/vH5Q8+B6XdwuyCWMWZLnpvPug8BFXc1jp73az4E/r3NjK2Z9w51nz
x6YHWLArxfLZjf21WGxlg/eFEyxwr0mW/8+tHVMOTV5CjizYXbN94w16J2YH
y52jOrPgsdXBlOF9XVhx8OCxhxdYMOd4+JKx0h6sJnfl4MnLLLh7SuOGxkgv
Xm0Yu2eNJwvQ44e6z5j9GCV+1yFLDfaH9ceWKQ9iw7p/m8MCWXDUK9Ru0/wh
bCautPZgCAvWG1BuXJ01jC3X6KovCWdB0qqxEXrrMLaxPa4svEPGQwl/diKJ
j0+E+ctn3yPPd2SJkqytADt/SOL6PGDBVFBaSDJNiN2FpTTjR2Q83uNzcxOF
+NrCQXHZBBYoj99VH9EQ4evG1F/fn7IgeYr3YiJJhG95qI8np7Dgzbzb6l4M
Akc9N+a7vmSBaeAWefNjBI5rcurZ9poFMorqP9aQ98fTObdaZ79lgUpz8n8z
9QR+ueFVXfU7FuwLeGMfME7gt/9VV8Tks6AqP3sfJv1EfuToR/tCkm9kxH5A
+onij9w8zRIW9G2hi8t1EbhyTCtrupwFswLslbe9Jf2C0v7Uokry+ST8XXSZ
wG3m7okh1Sy4UfMso2X5///f9F6sZT0LOp23tMeUi7DgZU6kYhPJr3zk3dv7
RXiivTlkuJUFEq5hJr+rhfg345d/VgcLXhteylIm/ZbktoWe13pYsNlz3UPL
SAFmnNa+sHOABakU14rxNj6WibE5w+WzoO0B/9NRWT5e+MnrvzYRC75vac6i
bh/GKtOPjzwdY4H4gaR/DgeG8MplRftdJkk+wsXXi9sN4q0BkoaSf1kw//xn
K4ZpP9bNUt3+ZZY0uJnFGaRq9mGjHsMN96WkoWG00q1Dohdb6wQtXckk8frg
b+k3u7DHH+Yci4XSQD0fH/3UqAkr9+gtPasoDTv7RC431jTgivLLBsEq0oBv
u58NotbihZF9fgUrpeGImq3WqhVlGKvni2loS8PenZx18tti0Cn2+OKdOtLg
yp+IhW+ZiD2pho4bSENZb39ccFABsiuM9Iw2lYaig6mSbo+rkKSV008pG3J9
mwQHGZtWlKYdP1/Jjoz/Uo/9EqvvyHJJ06ZtJ6Rh7u3GkfS4TvRMpHfR1Zn8
fnXGxee2Pci8/nJUqKs0jH3y95F+2Yum3716k+wuDTfmX9igJuxDRgELJr5f
k4bA5/o7iW2DaMxxD++nrzQw7jaGTBoPoQfmN9bK3pCG93bjvsd3DSP9Dfl7
Vt8k+TguOua1jo8EC8ZdjMOkIf71ls5HDAG6O2t5+Ik70pD+JSdzWY0AbR+w
eeVzTxp0e3ZTb/gIUX9l5JfYB9JwYcZtfOsiEQp7/VmY/YiMR3Xn19oEEdp0
X4xZlyAN2b9/POqXIVCn54aVomfS4LmKa6vkQqCg407G1FRpMCp7unPbG/I+
2BXvqJIuDatvv2eK9RKoRbMpCGVJg9aReWyD3wTyk2E9t86RhmeL1fzHSb+w
8qde+YU8aZh3/XWoxBDpTzouD4QXSMMDw7PmnvkE8ix5NTu1WBpakeGPS1cI
tPRFn2pZuTQknNNKVFhCoC/hCwy6K0m+20pcn2aJ0EX3PfZ/qqVB3nHzDqvV
pB86fMNvXoM0GK5bl34zSojKdfLjtZpJ/oI3ZjwbEKBzy8YLzdqlYeWpdj9l
FQGSZy7vcuiShiGuhJmPCR99HLMRC+gj6+cDterAsWHk1BS5+PEQGd9Cm8kd
x4dQfoKYTeMo+fn95a901gygE0EbPEd/SIP9z22WtX/7EOusUyzjpzRo7Hlb
FZTXi1YvcjqjNIsNC51to8QY3UiSPeePpgQbQs9ktCc+6kRN4vEh26TY0GqT
vfyc2XfkM/jtxQEqG7bveBDxcWUTqs3UGw7lsGFRhOpu/d2l6Lp2Vt9tHhty
9ANcJp0w2lKm0nVXlg2UA9Gh+iqvUXyLVNPD+WxYEiO0k13wBJ+bVV6SpsSG
vO2PGyD7C1a5uakwYwkbGCseXrC5W4ubZJ7nvVFlw/mLC+IdihowqAVn5i9n
A71x6aKrwlbM3m3ypGoNG4J88MXipB5c3JQXW6PFBs33E9b5o734kp3G/Yb1
bJDtqm+fu6ofrxQ8vNO8kQ3hdznrhIcHcOcFVlj7ZjaM21bNPekxiCP/XQvu
2soGHQOl/95eH8I7g4iAPm02ZHrtyJ/nM4x/c219hhAbTBWmmE2n+PhVbPVV
oQ4bbi/2WWysLcB2S3UujeqxQYttINP4R4Dnpmec/2HAhsT6eZ3D5Dz8ebPy
2ZkdbMjeaPCWqiPC1z5GOP7ZxYa7ivhMYZEIrzWVODHLhA21LcatrzQJ3N94
/piUGRt8UgyUfP0JHGPbe5hqzoaJsbyJiY8ENhu2sGLuZUOE77tv9QICi7uV
7ONYsKFF+uTOv6QfePtn/W5ZSzasTfrXe+QngR1vPDWab8WGittm/iPfCazA
kTNcZE3G4/5S92MqgWtjbugoHWaD/7IzfuPHCXxdZXqbqg0bonYH9r+UJPCW
l6c2Lbdlg4vSh7VaYSIs3NispWHHBomMH1pfJET4ceGuVWvs2dAlTr/VbifE
Fsbv1defYMN6I57/F9I/URrUl24+ReZ73YasRd18nGfzQEnbkQ2rA3TKLSX4
2GWQvkjHiQ12N1UWyHBI/Xa9Os/AmQ1SxkH7/tKHcEjAEWlTVzaoB/h1QGU/
BukvtD1ubDBKVv6mcacPT9zfPnu/OxsK0p4OnTXqxYdSF/857MGGkBuNoU9C
u7B6Xdewky8bREoiw2Cpb/iT4onSkAg29POKFTfVpSGVjpr5zpFssCx1mr4b
m4uuPdQ+szuKzIftjEPE4mK0Tl5WhhvDBvel9LAck2r0mFd87N4TMl7ricgR
7Tb0q2bVm0sJZP0lHlEP43Ygy/AHFOsksh+KrGwrhzoRg3n+1cLnbBB/n64h
CupBJyu+i/9NYYN+lEz2t7JeVBRkZNmRyoZuF0dR+HQfujRb+c+TdDbQjsIH
21WDqK441NzvNcm3WPhNyXVDSNNvJsE+iw0fFpk73FEbRkE6/00ZvGWD6qdF
Sk4MPur9V220LIcNy2U+TEx95yP0YVsc5T0bSs97Sb14JEAxV5NHh3LJ/ZcM
ZUmaCdGPLTIGFflsuJN0/m/YkBCZz3jdT8UkH43Uzz3nROhFNp8fWsiGIpi7
MaGfnM/dD6CzH8n6ntfX4bmDQMfWfYwwLyHX61kmuzqSQHljmv1rytjgXOTE
8askkFxGzGbeJza0WdmqmI4QyPXs7NCJz2woO/224Rw5j1dpuHY2VLKBSIj5
1zVDIDVBu1b2F7J/N4Z3Pugg9Tpl14371WT/ZqeqvEgn0PdTb1ou17LBoGFx
v9oZAm1epqR5qJ4Nnhf+JW6VJVBkX4jPtkY2rNTav0HuuQgRCdP1i5rY0EN1
SfmtJkJGdvZq/5pJPpN81bfcFaIkxeorna1sOB0UW6UuEiCxjq1fC9vZUCPJ
/W/DOgE69PCZckIHGy77OEHNST56e4jn7t9F5jNAfOhK0P/1eHjhjj42nFoc
JrM9ehCVRVm6qA2Q8S8vGA0PHEDK+4s+UofIfEWJhzuc6kdNNdGOlQKyP1/r
77j/uwdphUt9SBOxYbd+4tjV193oltk5TtgIGxxZs4MlDnch/YqdOXsmyHzM
WzAwKN+O0ounpL79YsPH7q+uvXPIeTx7/5MuGgfOxH29GeRRiNfVGAfyGRzI
6GfvMDhXjjuGdc7+YHFgZtpr1oP9X/EGBU1tKo8DW2ZycstPNeKujSoqPFkO
OOq0hJq9asYhe+Tpi+Q40OCx6SK7uw33+M9uXr2AA7xs91lKPl34VtxvvGUR
B/x+Dgc4/ejGW3LGnuov5gDzt5LzP+te3FczGGqmxAF90Xft/PQ+HM7/7ma1
hAOzUguO3/3Rj7dJNRyyU+XA942b5fzVBvGAQoWu0zIO3LBcqXFn5xCO2FS4
3H05B55w/btbLIbx9r3ZbO8VHLDmcWJ9Tfh4+HTaVJAGB3bslXlQqCnAdwMS
vt9ZxYEN1Kakjp8CDI+iSx6u4YD5wdKE9elCLMgJS32mxQHtcxdWapqJ8L3a
gDsZ6zlw+bU61bBehHUFVzxyN3JA77JtMkOXwCIp12Mlmzkg/q7XV+UegaMX
n9r5dSsH6h6scdWrI7D+ZptVzdoc2P04dWrtJIFH9lrM7UEc8DHzd/v/z+cf
OBn9Eehw4GfYyB7mCIENr0PvpB4HnNqS5hOlBB57tKFCzJADn6oPXAsj9f3h
u5WvaTs5cP/AOouF5Py8s045WsaIAyqbTS9/y/r/+6LneSuYcMAhbyxtrhqp
t7OlT6qZceBfE+uInp8QGytKma0158Cuow8tWkoFeHLzr3Xb9pJ4j6Pz6XE+
jt83usDQggP+fibLo6l8bHpmQNzckgMeaLHWPNownr7ePnTQigNKaz/3vPwx
iHe//5R95jAHhALxU7dv9+OfdTjuog0HBJdWluXp9eGnwjcBPrZkvHu0L+X3
9uDfivH77tpzwDm76+ejqU6ccsODyHPiwH77zPZYyQZs+cSlsdSZA5rJqsTW
+zV4Vu6J/GoXDgTbrQjI3lKJrUR7b/a6cSDULCTJfFEeltq/YhnDk4z3n1Hr
HMt8lO6sxJrrxYE36XLveytK0OFAuR+LfThgeqpv84fWSvQ6V+KjVgAHsj+E
zntr1YBsldtsDoVy4G2VBVV9aRd67VL1UDeMA3H/ym12hnQjKfyhbfltDow9
Oidv2deDUg49sZ6O5MDmo3r2J5z60e/nEdEdURxoMT4zGHl/AO2e9msqvc+B
39+N5zGyBtFE5AnLu7Ekfwt9FZ69GUaGPQfuXo3jwId1rfr7Yvgoes2u+uOP
OfDYd3PtwdMCJPDawjOO58C8LUXWimpCtP3Lir1rEzmwaXRZuny1EIUvXHR7
/lOy33L8zCrsRKjHkVUtlkz2K+fnh48dIrTh3T/W4HNy/fOtRKIhgQLnjJp+
fcGB6K1TPovvkfPt/u6Qt2kcmG/fQZuoJpBGYl3Fw1cckGD2GI+PE8h7rJgW
kMGBOWWhR/6SelsLb3c5ZXJA54XP19n///vZsGeB+95wgHYtOI9V9//3edwv
25LNgbPe1bVqMQT6vCJ4tvI7DlyUlje/ZESghR5XDKi5HPivgDe2uleEnMud
/EfyONBu9qgl6qQIFc61+fjtAwcC7Nee+lsvRDL/7RbHBWT8fEvxypVCdCIT
dJ4Wkf1gdbLl/FkBypm11ju0mNSvieePLz/kI7r5EuxWyoFLrZMaLtnDKF0g
pa33mQOzX+tcLM4YROJbp66oV3JgvNWXFn5nAO0PGnzP+cKBQJcl8svs+9FP
1YpNnTUk3ycFW1UaepD+0fB1ns1kP/2tkH2n1Iai0nzO27dyYLXFdT3T2c1o
6Jfra+N2DsjYW8KRpgZ06/7+1fJdHFjEHDU9FfuF1Gv5ldmDpD6u4y/fArFI
XZFxOm6YPN9Q2DXbmzHY0/nP8wABycePJ70Se7OwMr1zmcUIB35oGKh7fyjD
TvpJS0anyPpyxH51v5rwh4gou6YZDsgq+gqiFrRhTteNJ/gXyd+r9N6epR34
rafj4lv/yHo7ukMp9Eo3plQesrkwiwtve+pONrb2YGt504eHJbhwQueHTphG
H/73dtWCFXO44BzWtvi/JwN4bexkCYXKhRvOo3z1vEFs75Pv0k/jwptnUrMc
S4Zw1An/BcUMLhx2tOUeyxvG5cbGpU9YXLiVHB926DEf/1zNPefF5oLg54+V
r10EeOXc5gVHuFyYHahkV7FSiG1+PSrdIsMF9walzgX1QhzeeeLcvLnk/iX9
v5eeEOGiEo2Fk3JcYL3skvHqJvUrZaK0bj4X/H1kukt2EnhpeO65jAVcWK9s
XZ56n8BWF3wXhi3iwoTPs7k/aggcbL2rzGkxF8xqGNouEwTOQ2xXIyUuBPUZ
TP3//aIilW8L1ZZwYVwq43QU+VyRFlcmpUrGE3Bz+4ZaAu8l7F17lnLBr+tQ
9Bi5vn/9ikWFalz4EXp5KUHu//bdWFmcOheKFr8QsyXjG4x753p1JRfOyrZF
Bf0nwvL+3ousNblwZumEX0GtEJs47CjfuJoL7+93WzuoC/E1M9Z52bVc6Cma
PjHtJMDpWg2LxrW4MPditu1oDB93z4str17PhfawrXIDWcNY5q/d+Zcbyf0t
r7Gu5A7hS+Uj5Q5buUCrTS8wuj2AU9Kyz+/Q5sJzmRxJabt+3BZxTUEVcQG+
brnlo9yH4QjDrVOXC2GPetwZ7t3YVbdO4YM+FywvHLjHonfhxGUxnx4YcoGi
X2GuvKwDU8aWLT5gxIUXdtMLMmY34+rrep+r9nBhztWco/U/yrC4E+3Ci31c
CHA6n9qygZwX9tQsDtrPBZubV9SCGrLw/QVHL+gf5IL+vPiNMnNikG26h2Ku
LRdu/2u/qWX9BUXc1am4b0euxzipvetKLSr2oLi723OhcOznnRV5DUjNIKpi
zSkunGaueXeR0Yas1Y+4Sztyofb1llXr5TpQiLSKkvA0F44OHldLlupCI80Z
7slnuVD3SHudW10PUsaXlK6f40KxWPzlBap9yCIRVR4/z4XNv6I/6J/sR9eD
Zl/UucCFriddPn9Jfc5xrlJafJELB5aWzT7+bhAN74us/H2JC5/0nklFlw2h
hZsPXWzx4EKk3Mt99UXDyExBWTnnKtkP1lY+lil85C0xVHn3Ghd8Vm88e9ZT
gMT1t9BjvbnAbzTpSjISogD/m7vifcnzj8dH2vwVIkpJ241kfy78WvhAbPKe
CAVLaZa+vM6FjQevaHTMJRDD0EvyTSAXmLdOaid6EOjW9Wrd3GAuPPS73tVf
RCB2mZJPYQgX2pqa3tsSBLoz5zwuu8WFWc8OPu0h9XnuzuI/VeFcsDXjThyc
IND9QNlt9RFccJJpDywl52n5Tyc8WiK5cDw9cVg/iECx1JycziguHHs+ayNV
nUAKRtSp/vtc+Lh/uaTtKxF6Emy9XhjDhZaT61e+nC9CKhUvzo/HkvU+97uv
i4MQPaX/yZiJ48JPhfoLW0l/oGZiNvLvMakvP37ee5/LRy9CHmnOTuBCh1uj
XDoeRppVI06MJC7cU49QmngxhNKZui+4z7hwqkVew81nEK01uzM07zkXJGkN
m9bqDKA3t3qXLX5Bxq8fOqon6EPvpW8krnhF6gl9cFKW2oO2mTd1r8ngwgaf
2vOHPLsQDl+utCmT/L4qK23mYwcq5lQ+1M8mz3t1/g2qZDOq4nHuHcFcEFt7
Z4GfQgkyt7BrOF7IhWpt7yRHw1xUG5nJc/zIhWn2pKWLUzJqlLUMdy/jQvd2
M4/Ns17jTrkHQWFfuXAeDVFrLeqwnZWg7G4NF9DuPwqpA42477727Ng6sn+/
GEeYnGjBw/M7fZO/ceGi6sZp9dBO7GS9pvBlMxfUvgblNap0YyLG919WK5nf
j09kDqT24IkFqlcLO8jzOMQK9wX0Y/fD7u/Luriw5dw9wYb6ATwTWzZd1cOF
pzd29Oczh/DV9nkb6/u4EC/2Nbt89TD+u8jxQssA2U+/j0kbb+Njb5vczM4h
LmyavuxoukqAxR8xxvr5XGh1nJologixf8eR1UIhFxxfGSUcKxfiOYqvnMcJ
Mp9xVRcmnEQ42FYsbWaUC/VWgS9okyLMeLKH/2+cCxdi0hYqkX7/Vlf88tmT
XNgTplFVlUlgtvLEScY0F9iGNYcKBggcYWfwlPuTC+bN9tZFfwksmxDVO+83
Fw69DL6VPU3g+z0Dyov/coHHHpCPayCwvMrmY6piPPB+cir81l1yXo4OmKKI
88B41RfjBkTgM6zaUIEED3Z+k4k0qxHhKD8FlWopHjDtt4KJkQgXTDu+z5zD
g/OsVzlaL4R4+Ey2+T0qD/aVuWV4Tggwr0diwIPOAx/zkvo3SwV4m5W5pw2T
B58L99p46PLxiapYnq40D8JCPJ5d2TmMw3WHnqtyeNB8PDPxyuYh/C57PVB5
PFDwj7AwnTuIGfFfnKrn8sDELXeNxL0+vEFugUTWPB58PZyY1batFx8NORl9
T54Hn1Zky56r7cav3cVKbRR44PpnXUVsfAdu45sc1lXkwdpLLfeJy21Y6lj0
mKoyD4p0Isw2bGnGVsZrFwtVeZCdTtRLetfiv4vtL13R4EFxhthzmcwMrHY3
nXV0FQ9oHqMRrwaC8R7an0TdNTyQXdhSPjWThBIn7tZQ1/PgduDCUW7ZR2T0
qUz9/jYerPrkXKD67hty2y5TeGU7D8a+HmWsnd2KHmbaHjgKPLi4Qz/2qfZ3
NPJwxm+pPg8o8n4zL1d3I3meoTzNkAfyvtazzBJ7kF5gRLpwBw8OyNy5oUDp
Q1GuK9qzjHlgt51pWP1gABUMXDx/35QH15Zfr7z9aRANHS6mXt3Ng+ViBRt2
9Awhbi378dE9PDhn+O3L7MFhtG3HkQ16+3hQr+ocMdXIRyfynlcu3c+D7qWB
gj2vBChszaQd7QAPJKwyjtm6CFHOU90ZoRUPdO43aXiT+tS9ICysxpqsj/Ld
dUopIsS43ar65jAPjHa5xHxSItD62Wp592148HCr8yy2N4FsrrjtvWrLAzg3
uiC+mJyPRwoGj9qR9TQk161D6uvr/5heevY8aORHOJeS+traclB22QkyfpeH
KxZOEkjS/OkL2ike/Np+X6RfSyDNkjEdkQMPRHZLxa0iCWS1hRwBT/NgOOW1
gu82Avm8uun85gwPYhz275GqEKEUlSbJ6LPk+WQVazaBCNVHqzy4eo4HtlPd
RYGxQvSXdW6N7XkelISH8S90kvrqn1+md4EHKcSpPXcZArR3hmqz7CIPCtx0
KsOU+OiKs+UE7TLZP528ACXFYTSxXUNB7gpZny+TdHNHBpGztOTOJZ5kPUfL
MGSeDyC79IwHW314IF7//OZUQy9q8w4s2eHHg607HO+sM+1BlnuOEvsCeFDR
8bwkIqMLGY0x9JyCeNAprevfHdaGiot6nC7d5JH617LI/WcT2n7nfZR/KA+i
TBIbT5s0oLXrTg3H3ibPYxkenuhQgeTdP96uiuZB2RulkWqxxzjSMCa3+QEP
vJoOH31ckY1Zcuf6+h7yIFBuxPZswUcsnqOw+e8Tcr8H8bd+xdTgq4E/7GiJ
PHBpXHei0bYBT1pVhsx9yoMl13b4zOE246GZy52aKTzgnJL4McnrxHafzWlb
U3mQGPYi62tRF26LWbZux0serIs7s2ufbQ+2PP33yL50HgzqRpj0D/fi6q0N
N46+JuvdQMPyn20/NmKkZpzO4oHg1cObaoUDuLjNt/XiWx4cuzy4YBZtCG9P
Oyjln8ODiX775O1bhnGO5+pV4e95QK/Vu//SnI/Xms05GJvHg0qrW/s3mghw
qsJ33+QPPLDQN3VtXiHES4ms1KwCHsTWPc5KFwnxY3yzsaCIjJeTTPlxh5wn
w+3Eqop5EPl61YFf8gSOtN2s3lzKA6HrFtjgR2DWGrZFXznJb3dYzoZKAt+Y
NeA5+pkHZ8NiglJ/EFisNv/Zn0oeJOn/en2CnH894iNrqF95MD/eIm3fEIEn
XE//kq3hQZP/SKgPqd/OerqqynUk38f+0RRsCDzIm79bs4EH5nXmtu5DImzX
S1za8o2sF5GfzNR+EW7LKo03bOZBS0hV3IpEIbYMeFi5t5UHK9dHCPPrBbh6
v9ukTTupN9Wrv1wY5GOjpcaKpzt4cCfWY8OmzmFcPKlkdLGLB7mvz7vMzif5
LJs+79fDg75p2eV/vAZxzr2vD8P6eCCzVGS3T530J6eelj0Y4EFA6Q3Tg/l9
eCnVYkEWn+ynhj/qKxK68eNmdYMCIQ9mpSgGU2c6sXzKrLOVBA9UjiG+65Xv
mGX8qqh3nNRXrcOps9d/wz9CaI6yv8l6b92JplI/YEV/HRlVEovRSq51rf2A
ja5c+rCOxLQ68CjOycePHfq5FiRe/ydT9kJxHjYxLMqNIDHT6NiYX+t7nPjv
MpP9hwd+6OuACyUb73MdSqf95UG/suXNmLyX+JqD4iF5Ei/7c3kHvSwNJ9se
kFInsU0vPditJhX/NSs5uIvEp0MYAWv6U3DKiifigSSGdVIBh6SfYfE+Kwup
f6T+M+eE6xbGYY22sL8yJB7a7DPj0BCLrepKk1VIPO5odT1oKAa/LFz3R4/E
e1tQ9WvOPWwdx37qS2JZb6bShY+3cMDdHeYRJF6/oErsKD8Yp4dc+/mExP7H
jgPwbuDZVwRmhSRW1WQ0NZVcw2tcl8xUk/i38kptV9mL+LCDdUInieW5MtPi
n53xddvbpiMkDg0adVKqtcEZB8pJ38UDM4misADl6g//A2pQYS8=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
PlotRange->{{-1, 5}, {-0.9999999837447585, 0.9999992205832492}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]], "Output",
CellChangeTimes->{{3.451749606940433*^9, 3.451749616308116*^9}, {
3.451749712008665*^9, 3.451749781743596*^9}, 3.4517498134501762`*^9, {
3.45174984418414*^9, 3.451749897333509*^9}, {3.45175004550346*^9,
3.4517500849148912`*^9}, 3.451750528405238*^9},
ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy1ffu3ZkV55rH7nGMDAqLGqInRqDH3ZDJrLr/mp5mf5h+YNWvNmMuMzqxZ
k5jMmslMVmISoyBgMFEwF5MYo7mARhBFsaG7sbFbEJD7RWhoaISmFUQuXnFP
PbXfp/ZTtZ9d33eA2WuJfeqrb+/91fvUe3/f+ndv+s03/+p/f9NvvuWX3/Ta
f/vWN/3am9/yy7/x2n/zP96ahna/YGPjBW/e2Ni4/7Ub+PeQ/hn/yddb8J/4
I/79i/n/dk9z0l/5v298fj7/Bfxf/niXmbkLf22tuMXP5//bHL7//WG4++6v
Dc888/3pa5vV19K1ae722nFsePzxb5axH4mxhx76Rr4z/npFjJ048WSZ97IY
e/rp75Sxl5Sx75ax02Msvd3wrW99txrT754aY08++e0y9qIYe+qp75R3eZGZ
d3KMffOb3x2+851n8l+nxNgTT0zzTpIx3o9j3/729/L3dQzPwHtPYxs/hf/L
i5sW+vHHvzWc9+6Dw/vPPzz80bs/t7Fq+bfwr1fHzc9PXzrnXVeBdGXR8VK/
/X8/M1x04c1l0fECb/31S4cvXnts4wdi7Pd/74rhwIEj+a8zYuzovY8N/+VX
P5b/enGMfeqTdwznv/dQ/us0WfT/8O//Hs8qY7/6yx8dvvGNb1ULfOY79g+f
+cxd1WJ+5SvfGH7j1z9ZjX32s18ePvQ311eE+PJdXx1+73f3VmN/+YFrh89d
dW+1wPj77//uxmrs9962d7j++gd10X8u/9/WcHZaLtI90XDlejdwH1d53DB/
+v4vDN/97jPDX/z5tVz8u+46Mezff2T48z+7piz+bbcdHw4evG/4q7/8YkH8
17/+zeG8Pzo4fOAvri2Ix0J/8K+vG7761afK4qfP84/Wxf/Sl74y/EEi3sMP
PVEQD4L8r/952XDdF4+VsfQOw9988LpqoUHw//Nbn6nG0nvl5+hCX3Xg3gwi
HfuTP/788A9/Xy80iIZl0LH3/snnh09ccrsu/s/GR8DC3su/nP9SnnXzTQ/F
jB0SYmu47dbjhMTwjj/clyH56iDShRfePDz22DeHC//xJkDzB+MZl1x82/DI
I09iYQtBgDbcRgny1391XVrsh/KuIUFADCyYEgT3u/TS24dbbzleFv/uL391
+NhHbxkuvvi2cWwXvsZ9cfHHbx3++D1Xg9FUZCCpueRpD2fmoGM6j0t+7tlX
JRReU42B/PW+CDJsDue/79AgV5YU4CbTcFBnR5TAw7izLk+EPnr0sUKJeOHh
mmseALFJiYBdXnVSYm/iBffe+2jeLi+ReSdOPJVXUymBFU6Cp1ACcIcYu/LK
ewolDn3+aMbX337oBkMJbLhPXnoHRFVFCdBeVx1/Y66O4Q24cbjq73vv4TLv
JHlGPW/jZ+Kj6657cDh06Gj8Na0t9tmjX3t6XO9FSc6VD9LnK3GF4dJP3F5W
PsA6fO1rTw0f+9gtP9gMY4ukrfHSGP67j3wpS9gP/+0NkGSUC/il4Higyekx
FTIFvwysIu0ekgA3Bgr+8R9uKiSIBc4bjguPfQnyJeZZxtK/h89ffXS4844T
FTEwrguPxcSLJ9lZxs4+60Dhdsqd2q2CteIGbogBRkZRHUAfHn74icLMTu6S
4NpBL/xUkkA/S48mCbgn9u+7Zzhy5GskASlzxd67h/uPPkYScFhJcPz4k8Nf
pLWAhPnC4ftJgrPO3F/egSTAUkM6JxyX5b7vvseGfVfeAyqWMSwhJGcSMoUE
WG6ITSUBXv7Tl905PHjs8bK0WDvsEzxX51XLnXff+OnGT8ck6GZAHP7aFmJw
kU8yC08VCPoWUDtMIqWsLP56VRAIetZHL7pZCbHRbobEwIfDh+5vKRFM64zm
7kqJBx54fPj4P92WlZvLPnWnbgZOJSWwQlgp3Qy33PJw5lM6hsdAnUhSqVAC
YwB1+tGVPMCmueP2RwoloIxDduC5J5dV56fc4OXTiRLp3QG6ihKYCgqtogRQ
iBdZRQnMw4/lBeb/8kKlbxYqgWMlQblBcgRLBncYDn7u3hfHMH7NRz6cAYDH
kSJpOYark9YF0P/lB75IivCF8FClCK5zz7mqrD4Y8003PpTXSCkCfpDYWcWe
ErsdTjzyZEWRG9N3oYxxzfG9z3z6LlnzcR6gC2ruibFHH306AelWRxsKS6UN
XhHwXEUb0BXYVNqIvC60SYJzuPfIo4U2eA3S5oEHvp7lOi6ovQmIhTZ8N3Ck
JGhJGwgjqLWx4qQN3hh77XvpLklbJG1Ih8SDCm24g95/weGgw2ZmmHhJ/IC0
diTFu8/9XMZpkp2xdJsF6vvG36XSHHpCkl2FQokFZztEKQSKQ1eDSk4KJY6X
lwGcNCj0U/EReNHffHA0Y14YY7AlG7lkKYQfSnuSFAI18FoThbYz1MPGzBd+
XbI7s1W3C6x7l9yQDzkjloMrDEM1GZwkE/cKrjSFZIImdv/9X8/DaSVIJtL6
fe89NCPTtF02s9hM24Lbg2SilokdSDIlVSej/povJE5788O6QYDaJGgKmaBY
Xx3WlJLps+PLFjKBvIlL6EYima699oHhSzd8Jf/F6e857+qyWnksq74/3Pxk
Jc6dd2Y2VBFH1nwkzoduSOzqkdHk3srviF3EC+z+JfEZcBKKI+kQqu5W2S8x
nr00p8XSQbBDl4r7nRrDI+wyFLExSKezzjwwo1NsI66gcjZcSZsodMLLY1qi
EWjF9cd7w6JNJAw6bWbOlBhgxuf3vvfMnhgG48AQBMU993yNy4/ZIMsEikIt
rD2+pdS64PzDxREUY3ZTwQZq6YYXxaIp3c4660BFt6vT2yWZTLrB8oWEd3TD
2gO6vLCypJtuIIjj9OhCN/CEtC78DukGNYW3k2ESA0uXfvgpMUzFHy6HtJok
E4ifuDDflcPQJrB10kzwUGWG8GaB7ZJ6kM+Q0+A2SUaQehAX+CFhU5EcwCeF
ZUO9P3z7lYUCnJ7s6ezEWEW9d01UoXFUcbVXBvXaXYetf+DAEVIP6AwAFQqR
eg8++HhWYx31dGddfvmXs6pL6oleo2QSa0GHORuETayO1OP+BNdLaCOZsMjJ
UuNNOAyNApo5ZOpll91J6gEC3/72d7PvkNS74oq7swmdn/fo03vk7cCMcZdE
Lg6DiQESeJ0kgcIo+sm4f9iN+S/1fdIT5AhItinaXDGoHAGFveYLq56+RwK2
9FUC3p5ElyqTSkAQnlsMPzKJjkJAvWeh1BZ8Fnn1cEHRTrgpfJJUBANMS3lK
MwwdvvDEzSz5ZCNzmBsLS5M+JsUgkMMCmjT1zWw4U3NMBjQphrfEW2Tt7wsP
cJjiJRS7hpBQJkBm/KWGNInxwg4hIXTpKyYhVbV/ZYxRvxiE3+rYS9egaDLA
8go5iur3IFzSAhSKynOUovAPJts4D9Nd5CialoYU5VOgeiXFkaQDIS4LXpEe
xmGqzNi2iYQkXVIZhwtC1UmclcPYSjBJgmOTdHA/kjUng4/D4CV4LIA0pyhe
n/6KiR2sR1FRKezWpPNagFl4sKJmpOh2xRBxQctLrOeMoAIADMV5FVFBrUOH
jvb57KgQYb/hAvtOSmJYZFCkpq2EJUVshJQlRsKKIwlBaJAxnsJh3BkzQ2ch
CTMbvXRk8mm5OYxnAgNw56V3Iwmp2eDXJ5xxGFDEbFD2kUeebCirVCRl1Vzr
URaYgXdbKRtqQ0VZADQYlJWupGzLnEHKY8ceJ2VxC8gIXtCNSFndknA2wS27
ggFnQ+3e0QCFZ3Gi3lYlGLGk2P3tnoVoSqKDJAw88c04jJcGGXElKUESkq/G
OyllIUeySnvdgyQhtR4sdjIS98hsqNOICqRnBGV/IlYY70evPDVt+Bpoj/Qo
S8+RUhaKSaiYhbJw4AScC2XnXHi7Ig8uyKZkCp4RH+M1JbpKjfX0oIZuTfjm
E+4scdN6kLgUZ7igBE4E3Mq3oLyEeZF49oy4wWJJRfpoDHEjEKlUhAwL9xRU
HQ4Xr1Iy59ICkIpYCzBlPPLCC2/e07wJUJIEckNcsJsQXYW4cOhQf+oRV7ce
iYs1unH8gYW4UJwh+lYRtxWxUPrSvUjclvbgR8k8IXH128BAwkIQd6slLpYo
JOoWNdz8GUgzUXGLTDd/lk2Q/UdmFI57kpRYUFgtuETk/uM/3FQiTcKByWrH
4WtaCuOZib2otgROE9ydw7TBQ11qKCwqZXELGr+cpbDOI4VjHfJfpHCoBvHX
/LsMiuE9wsCdnBJ3nKAnJ7jwXDSHLHakxgXR7EgNECPgQlIjAEMiwOJKe6uQ
WhkpAj/pkYXUKk/Sv0nT7H0YPc9K6vdfcLjo8MKpg/3zhTlMuQm6irCFu458
J63YnjJ7tJ6x19PCNaRWGaweYI71SO02MwNeg5AavsXYLl1SS/CikBoKRZiu
i6QGFNIv2ymp4S1O61VIDc4fgodLW0gdfDN/Fs7rQupGeyNNoTyRHMnI4nCy
YHW2uiLAiXElYLS7GjcSUqtkT/Tl8J/96RhNCqkTpP7xWEr8NgapWo/mQFJn
h+APmU9JYHhvGTYmgZVfkMD0tw1CYGySsC0KgUF0bLKhQ+AsDa57cInAUMZI
YP0qPOiJxRQCqzTIZs6n7iwEvin8DrjgXv/Ih79UCEwPRtBGJfCJUQVFHI/D
+nbCtjMjjpiDsG3OxvtcfPFtSmCorriEbVPjDxnQEFj4USFwJIXEwg6zvUxS
iye1hF2UDzCXQSFBUoOkcDENQmpgGZrtIKSO2Hr+i6RuJXTEK5ZI/c537Iuf
tp3RxZAYLpjUySQhtTUeXW/Zraws09WMCyzCCWnZzmGc5uHEKTiszmzRty4L
owpX2vwt5w4df4+5d3okh4k7iLvEHxpqQ8BRJya1c2Qhsox61Ea4ISJWhdpK
2R61D47cNv9FamPn3BCZaM7KOj2e1JIzM4RP3dnb2KQ2gye8sAUSn3uR+SqW
EqocqS2qRtDpukJt8Z2DOifHV8IjnIfDJC1+R/1KEmMcVqVQNjiJCLTKTtY0
IiE58wFCi2tIzgSVQUhOd+ewguSABeTC8CxIHmud/yLJw2yt5q1D8hDyDLNh
DehkdTG9U+I24C8My+LCoz931b2OteNCXInkx9cANF7IxSGdwfbIVHEhSYSf
6dYO4m60VI1ncRi/RJgEhyXLYzjn7KuUm9Nln4DUMvnwpTQYUIWNGFDG2sOA
uB12zOTxvX1hbhMDEunbEQYiE4YYgBCFH2EQDKh+SAxgU4RM0QWaGP60L3GB
lsSAylNcUwxnq4R7eE0h7xpX4SgrGFAVv/GjCFUXEDNp59NN0pSWD8TuDgy8
MRZHoqglQ1zX3WXREQNGIbB8QHFB2sIDRkIRA4x/6zy11N37kciM3uEvGh/3
ixLDeZE0nf8iGCQnJF94t0RlgkG+ki+EXAkG3aXjuk8EP378Cf7EfCmzUMaP
V7zvvsc2Wj0unjUJ/Okrwif07dITJoE/oU0sOC5TBGEbMDDxWhdbmUQPDDP1
P40hYzfKHLpggAc63qyAAVKNSVSOIZxWvvvMzN+u8wiG0HzyXwQDjZxBwEAn
Ja/QAAiG1p6AXkEw4CfQ6gtyFIIzEYCXcgbdz0iphqHhwCBKoVJdGIZKhzSl
tdvHm1zX2nghOBswiNFZwKAO1R4YjNmfZSc5/A/K/TjPhcnaXM5hBRiE/5Z5
er9MxV3Dgf1H3F3ogQwa5L8IFZHghW6to39SBufprUpv3DsSYfKlEkS/F6FP
KyUS7U6KrwiKmdy00TrncCVwtOZAPJ3DRFVEhBpA6EISEFAXCZIeIJTQBITE
pCJlbjddp3o/k5e1PiBUpV0ExMZuerTyXy4Oq3U3tJR60GiVSGUTrQqj0IgA
dfksUcHek8EApxIUI3FLpSLdjxtOXUiv53iFcf3hKgynQENVLEIDRhyDND1o
uCzNO6YkhQINRI0iivi8QENdHD3BgbTylhs4rqFbgfM0J9vZArgUGiq1caEq
it9DXEMFU9r25TOFVATdrI1ZnEhblagIlXbDsQcxNPXtFobTjwlo/FgsgboK
WYkigY0d6xTqxSU0EI6Gh07utzY0lBsQGnDRMjG7Bw3EEluSa9SZ0MD6wljV
eaqwLguU60WgXNN8NnENbBWFhgqUWbLA549uOC2i8Pv6NWipOD5QcY3pK8I1
9E7FiC3Q0B1IaChcMimzF/lV8akDhHp9CQj1UOwUEAxHDwKIK6+4O/1vOUBM
QIgftxBa4v0FEFoh4JTRJUBAoyQgWhGDci0FBHgorylLtOY/cK2mjbPhmEIY
n0H5rcq3ERldG63iEO/otA9RM/TNE1gaVDAXbxA66SZ1FXXEh7qemU+uHg3i
A+tz+7g+BR/r6p3inCv4ODiFXbv4uGgKARa650zJcHkTH6pSOMuVtFT5Hou8
qGYk2sb3tksGIy/cu2Qy1kZOGNEFIgoDBrMJEaV3pIgViKgYSvPa/ABc4rRo
wtsNRLC0DBI5UvUggrQJaoR75H6cx2pv1fR2ChGQ9NiYvFUgomM9mRIafP6L
pIeniipIm22u8zR7W8vpaR9znkjsQtdlg2U7CYG7cjoSL9TglOy6Gmks93Ea
aDhLClyU27Rw0e+JQ1MfJfaMvnwabuCiLoydwgW7msGnPea7hMs/fSxnDscv
m8/rwUW5B+ESmcjVPNWUXYCd5NXQzSnmuxMMJo6icMFv0XlzWM25y+Tr2M7w
Ykoarsgv4leV/ddFEHOtFAUAhItCIqohgslvKcrzBYetk0KitloXShcziORE
flcXM2Gc5b+IGaUTMYMfBFN7eBaYuWEsOc1/ETNYAL5fz9h10kVSgQpmFB+c
p+tCzMDRycRIzhNiWNGBC/VwxIyoyPmKtATHnRiT42cqWcIIK5jRz0LoV5jR
MGBSba2ae+45JczS6EeBmTfEb86Za5GwQjdmJA7E94dFzOTi5RA3PT5jfPMV
jqhHq0uVnjU4OGjWtAW3g2AG32s7vzhxgwRBuouJGVdApN/V8s7L68YWZt5c
LE0W8XZJIOYVWim/qhscZgV8KXviq/F39dVkWRI2agDT1ULYICFVYTPdtpZa
57/vUBuGw1UcdwU2kppVYANxwKXtwSaKpPJfPdgoGyBswOajXKfARtk/YQNY
0kwjbJSFEDahFeS/CBtlF7vM/XoK71xLmWpOdd688H17BhtQINGcH+PP70+O
eqY2Oo6CC64WIqeVNPvGtEciRxkHPTFEDgsTeAHLjrOke/ArYOf6NIjZBj4a
KCF8EJWjTdyDD0Qxd/pOuQ78+VGhUDl2KAkIn2hDkv8ifGSVKruKUCZ8XHmM
VBN0lWEnqcCJ24r7uRY0TyWqCoS2Z/iIgIFjPLgg5wiflntAKKXNPjGe6cHI
KoK3Zgk+MPYch0n3UBF3ocSjwasa+MxrU6xQWIQPx9SWYoioB5+c+3PnqPQS
PhGFj980jgHajAi0de/yfpoq31V0HpnKzLrKsT6D8IFS3cYQJb2nwKdVjvG8
xGn5cYuPUEyWRB4Md8In5/Z9fMIACrVKZWJtuOco08H7KvhoBBL+Iqcmhf8r
/Gvzel34khoM6VYjhnRNexjSecSQFJJ2MYTwAnPFiKFcZR6S0ynVbQ8LeT9N
qRYJNldoRHPsKssOQxAKLFFQFyHj5ARJG2gOfC+xoFAieqq2YkiBgDdKpgSx
oOANcVswpGnquCZo1mYdMkNg6RNDeKSmQkCgBoZeH2sAhZUd7djZapYrkJ3B
rzSfEjlwHpKCPeSofkXkKJp6yLEm/ORQ63IfIIfNd4gcpyMp6ogcZJre1CBH
g/SERhtgCk8WP1bdFlekK3MFnb9oHs4fM6gUCsEbHYoCcAVFbfLVZKzXwA0f
SIUifaRIM6IoWt3kv4ii5yLNsK0Yo+7hCZILWbSD4Emc8GWeYoJ4Usc/8QQX
DmntTDDOUx35ZDNPzfG6qeb4fky75Dz1ek66dM1qwhu59PEtNz+cphxRPDEl
w2XkKZ7YUgUX/hY8aSQkhGDBU1vSjtCYs+ToHCCexJjIFxSqBk9sxDYInlRp
7uFJ6cDVyPgMvtPDkzYCIJ7QHONo8DbOcymc6nrRtFu6d5zr0HmktVkJx1yU
k3jaO7pwq3nque6pP7fdenziTzX7wqtf/PHbuIKijlhnE/EU2nO5TfArh4to
LVDwJDnK+VIp1/qsFU9Ri159r8GTri/xZGqaLJ6cvIv2adX92MJpWo3dpffg
IHhCuiVcd8PQl3fOWFPXD/GkvGi3+e7JZkw1ILq7iae8vA/V0XVQlFX4PYkF
WV67YOc+gWNaYL6bZTPVbdS1QGCFVV9uA/YgwNJsrEisK8CSt8rXpJXNgXXv
kUcLsCR3MV9Q3RtgKTgIBLBTCiAHLCpSiHa3DYGjL1h1P7Zaw1+Mrs5ztHdT
+4uXH2bgONWMETDqHCKw1KfYE3w6RgpK9Uz5bdFCoJoHX3rrs4cXpWU1kqBV
gNVyrGhqo8BqfVb6qgSWhA3KbS5hHVetGUWTiaDC9iwBJGw44k6ZXfirCrbw
NZQ78RLzroctmFlsLN3DFhQj1ulp/yTOe6nMi6KMLrbwU5oM1Or9JqY1F26S
kF2wpVH1nhB0ShULogfBlovwZ9U4etb2uI2mKBNbbQZIyCreJopLq9vMk2S2
Sxed5jZcacdCVexvyW3CaZOv+LV8ijblwYXpCWv5411AmlMAx3fYeF18BBcg
NR9qSBpY6YENvzCwbAlHsCHthVYCl0B/rqY710vgNS6nmYvrzXrDexJS9Rku
GdyWkLqDgA3zGPjhvHD75L9US2hRgnnsUESwtZZjWKt7zFecoUoYtNklEbBT
sJGaLsRMsLG9D69IvOFT4q7l41ANyNdaWSvGIqEG/sXSRWYGmX1uoYb9zAwi
7arIeYTajZO2UKDmEql1R/SMRScz2SIQf9GpoGURdKVqyiEhJAGGDWd8cp5z
kSIlhLBSjEQ/sM68OV+LgBxvownAPS1fWHC+ojSSK60te9xttuQ2CrVwq/Ap
rdM+vK6EWit9Re8n1NRPs1OoSSuoLlfTpDYugEvMdlBTTudE6KYZ47tkTpdU
Pp2nPg1NLYki6w21S+tzJ7wnVVqJFajBh9diJIeVQ41w2V0u2VJbAzNpdNkA
8Fm/c1DVWc7ufgq+Y9LqK8eiH3x8Oxa0Cfvs6iFv6khZkDcvfxnPLhgUb/k8
A55qsC4uLxobyue/erhUvwVxuaqsz0lbSlHtsOZUQL6Lbn7i0qU8SQfRgsvI
lK7mObtVmjAVvKmJoLhs57nULVcnE337qnn6OzhPOnlYnBdf5YOPz7SBuaaz
XTWBwRWFEGSKbLPIK1xMCs2oqMkXnLwNNOeFuQvHZ6x1qoa2VKR7rgdLWAIg
37AClrrUzk1CWEJIUK1xEpzvIutm2apmyLSlS+JhKvMce5PGbwVu0cR0Nq+F
pbN09HcQbipulgMFIyzjPKgO3MbftndmJrdrv101rMGlRkb6WBwI+Yq4hMJS
Jb2R1bNcmQy/hfNdXIeyPDUfO+Wq4HuY1FyOHiZNUa72HCqY1MM4HHb5LvCE
720C70pzYk2qWAsmVbvjPBVzijWybWItXL+zeQyRcZ5TCZxoVnfzcrChDto7
l4xislUxnAiPAD/HKZc1tsEmubjitsSkvHW+xFT50Xio9sIaidtFIoPJPfG9
LiZ1rGfBOPEtfeemqnzx8E1ifm4Eq3rnaoM1p4cZ2sQkcM8iMc5T60drfdrf
pqFc0lwtLGLSYXxuotRJBa6WQ08NYVHDMtZ2516PLSbn2N3O/F+zI8MgVky2
8ZH9++5Rw6rBJIyr8ccXWGqzngVYZtLtDtUS3oMm5Lg2NjWxaKfYdHsb3jfW
ahGb+QyEJnlE+S/fRcNprhkwMSdBqII56XNtTR7OU9rztwlVNpy3kvMUXy4f
jpiLvnXVPMdXnaqqz+BaqTnXw2abuRtnHxB8kmeVr0g7UWyqBhDByAabmkS0
gM32GMMcSD50tOdidIYG3JXMXOwhUysLe5Jcg/BEphoVnDevCKuTiXvIjKSf
+Gv8rzrmnCTnPH2uIpNIcrUHbneu0hqjy44tmXX9ZpwDnGvljCgnydvMYHyn
iOp58C/8DfxYasDzFd3YGmTO4hXZ8s73GBnlVpXjN4xgtc01SHZtrvFSM4/L
r3HW0808Lhd8r9FDskBQy1o4b17gvlv7TxYIqhKm+Sf1OZa1O7LHHFVh4G9j
73edp991PrGeQMa2bpVEx0SdAabvx7XS2HXPwGnj1PD6CwRvmOy4fIVrgR/n
EuQTU3uqCHY2ENQ1oJGihbI94ezwJ2cQFPwp4+fa56TxKHbtKY66XYk/RECI
q8nombNADctNfp+5MXNwii+UeYoDKnomk7Uyjqq91fSmVf+LigGO9YSuCMlO
bM/nDzp/pJi+Xb9Pm70c7Wo0lKj4iyi54k9Fe+StdljgK+LpTcZrxfOcQoi9
RJHoso653nCYUOkk5lSUqPLC+xFz0ZurmufeRRUpPUOA5Xgnmftxnsa+nBOm
J055KoLOc0aIGt9OjCvmqGQrlnie1Lb57nIMr27N3RO7beQxsrUUcyaiyI+1
xSauyBwKzPHAdS0ceWU8vcH6hjab0LQYhtVgyMEPOgx9VU9l5WlyvzYvC/yM
BgIxp5UMzg9OzInToWBJjL6COYdNx+dWNc5R/tVizsVTMIeRfFfCzHkuv1Ad
NO6A056qp0aSUx2JuTaFPqpPCKp90/E/+Yq0On4sdfr5iqc2mFOZT8w1oc8K
c9rkiJiLYz3zXz3MIU+Z2Q/aEI1ZCFxHdbQSc6j5YyzHpWwRc1rjRyzh3ZhH
qClWlIUuJtjDnMokxRz5ktPt+NtWndHSw5JIri42neEL6vPgyWVsbs/qMqIM
Vn1FRxtfkUJ3M27T9v0AyyhH6BTwqTeZ4DvzHfv1ixX44hi4/BfBJ52xu+AL
91H+S5uxMseJv1ADtNrygnZxL6AXXUpkJXbzXJH8F8EnTTlt7kMPfOY4KJso
7WxWDVI7RZHz9F0UfMxJ7M1zHkG1vZcDf9tVaiquynLwcW19HMGnmaq4DiQZ
f/ttjzTgm592tqn5Srg2NUQC9yQTZVzFw0vMGAmkC0/wHZNaQv5Cdb25Z3BB
VUpNWcvzbAhtDac5WXTjcp6uYg98q6zVHkdz7exUI+s5TDRJtschXSjUgc+l
2LQaXjRh7wWv9XGbC7cJa6QBnxKLnA+ZXtK7u+J88PmzA4sDBjtx6IkVJCRi
LSyZJ/ikw2elDl3UJAQ6vzS4XHtInelWU7lZXIqCmiEcc6kHPVPVxUwc+DQu
3TNDHKi08/dOvXoXj0eGVfPm7qy5SRtxbwUfHbjucUvgi5BKgO818U0QjyDh
MeGwKyPQOU4W8OlR4z3w4aURUBuEkJoLQ/CpHctfqAEsl43KBdW6Hlf/Q1C5
FEHVi3o6n6u8dYE453p29oMGaXv2iPO76BmfvXnOtlX7q5fH2ordyIPj41zG
+Dpitzpcr4BPe54TfNLDapws4EPiHrMzeuCDgk/DhAR3efcafyAhFWiuY4Mu
KDslumIhgsolDerCu2SvnjPPRdqc03letLGb8YGV8xxH0wJMznP9c5wzzzmn
ndhtDY7KivU+xvk+ntfsxc9uwAdvD38QwZet16n0uwKfS6Ny4MNhRzww4iQz
j+CDR5c58q6IZKrVn4tdpGRRlEwFRXOOBi93mxmo93MRD76LcmFnmLh3dhGP
HviceFZuqODjRu15kp2UcKhx81ywT0GqKgoNu57Z6054mqMQWGVVBFEo9Y/j
5GeBwjivOv9FyrsUfQ3fuuoS1yrL+RF6LFBLMVyKvgv9av0F/ZpOTju23fMZ
a0eLnpx2clXL7nrzXIzSzXModCxVf69bq50I4khAalCob/xD8X19ggDQdYp1
AIxj7/NfPQAis5UOOefDcC1LNEhEFt5jg5rF5Viyy2zlu0TxWTXP5RS4Qnan
2Glma8856AK/cvZLN9vFyWB3PzfPAdWtlbOO5pt6LtOr0vYCQP3mCgCuywEh
g8mdekqgnHTaVQLdbo3amvxXjwNqdUWPAzrLQtrR2ChczwJxZm3OZLj54Wqe
i+i6CgJpXtFVAp3jzwHVZR44oM7l6+qURgKwNaero9o3fiS+qR19fji+r28i
AHSdbR0ANTTWA6CGLCeNfi6C5zWuI0dgTqOrLNfjads8PmcCOxGsBZk9Duiq
kx0H1NB+D6iOE2nBaG+ey9l3Hmonqh3w56LVV/DPe797T/YcgHpwKAGov0IA
6NrkxvHt+S8CcIyTaaeupZ4Zc7HnzpNxi6W1Rz3vs+pxLl3P7WoN1zCO3eOA
rvWC0wH3msRUzX/oWRjSSaprsTh1ZYlj0ZroiWB3+NSq3JwlERwtiRoAItBF
S4AAVIqvEMFaYEcAaqyspwM6rjOvt/J+GM2o73FAbI42Wc9xQMfZIqmtmufC
H44DuiS8aOBbzVM1pAdAbdDRC/w6Eew4lprHLoFj2dHiAejiIBecf3jQK0Jb
DQA1Z55HrWtNRo7AsR5Z8/8II0SGGF51h3G4IjRXqt7zxjgIqnnheKATLC64
0bNvs/fkUA1B5Vk9HujqNBFgavNP1UfcE65aqNVzGToe6PJP1ancg6CTF473
Om9Mk0rAoEoDQaUGeaB6SKShIwQrI2QEkZ4NTAC6ZE6nBToe6BwxTghrspjj
gS4H3/mYF3lgruN23twe59PDQTR4xTpWzrtE4mI9o0I7OvWMlDFw/0z1y939
NJDWE70upLQePOeiN9oPNLDTuxF2SCqmo0pgd0xaDxE6mn98hrmlszhPNWM9
0esU6jgPI//V43surubEidNDtY8o5ymf6vE9Ta0hYKATt/mAmhXQ42dactLj
j06kunmaRtAzPpxLa5XfkQBsW5dEbm0A8NXxTe1b/er4vp5TJwBEsxN2JSeI
1C1AAJ51ZmG4tgUQv+uS053gdY1A1KhwAWBn+bmKSF3U1hKXLlIVAEm4HgfU
VskuiKUAZFC9V6ihidE940OTA3vAUuD33C9urVbF/pYc0KGHNwCEpxjOtEEA
qGXEAkBkK7MShyBCIJlZoj3ND7ejkcLvugxOJ3idQJWTOQoAHVAdB3Q+LeVY
fBdETtrKDyVcjwNebESry07VLOSeaI2zdqt5zvjQ4LirRFAAtl1ivVExF8Gr
/Ik9Tjl3NxUkaqNRIlEzqQSJ4I70MBNNyOllGmkPiap/9/wwquMTYVp35qhP
hGkE19VC9Fih5kRr2WRbq6QF4z1WqP1RXYijh8RVxfB8F3e6uiqXTg0mIiSB
vqs0OmVwVWxvXX9Ng0SFDTXFWLINhSHqOJmNSyjB68K+FD0Ywq2GhAX9rrNE
oDahdmoQGOJv9m1xOXja8pZS2jGXHkPUchBXvVuSW6+Yklt7DNHBy7bIl3I7
lw/oklbV1dm2DnOS1rkD1TfeC5ysawq7beKeO0/Y6MJQmGGBIUhMTuUO7Hpx
/d38l1bXsvlvTzHUqlltUUTjt8cN1VohSVWu7DHf7XE5VJK0MFTy9bhhnAi4
+C675X5Mm+1xwyUYttUl0as5/+WqUl2+TU8urwohLQeG121JUmCot2jcNRUM
9fE7hSEiabS5T62fkf9SDnSsaXKoKe0uiqe9dAlX5+fld1W1JAlUFdRCXtoY
CkOGePkMVRp0Hjsa9bicT7+ac1fHbbTpHOdpoWVPPUSJRWv8u+JQFxxx0T63
Tdy8eVpacUirUfKaevqzgqFrd6ExtZ5uqHDQRkQ0z50/hzDU5lhOk9f8KyoS
mnZzR9O7s3LUx5jWlWphAdev5Gdf80A3ryqTObsgnX3mcgk174K5EwpmOml7
mp6G1hV8zGp3uRM7y01YWyMk+LAfkMY/CPieCw9c6lDF9FXG9pQXaTc0Fotq
pyE4I4fB+3Jcb2aXx+Ryr0gql7OtfiXNu+ZaKfjaXC5NCOzxNsyjh4LvogUN
jvQKw7bcaV0Rq2mzPdHutGfnQ3LbxAew26BRgaGe4/maGIv9P7bO0kDdKiyy
yYEWnBfV7qGpMxqxGMdU5L+IJ03M5HdBK7qJXFIDv6vM1lkEmobVdifU3H6X
u8j11S5ofIaeQ6xYbOe5AhRtOK2+UK6Li1FzTDsg8n6ak9jzF7o4uDaL7bFi
Z3Q/G9bZYFGX+zUxFhG7HbFEwlATpQglDTwRhlq7TSjBidnmwqim35PHjl05
GGo/XJJKG7c5Cal52NQNtAy4haE2M+zBUAvp+C6r0mX1Xa4MMaMstj3Tzhm/
Kj4UhmyP/3xI5lXlzGvAMCJ4FQx1Xg+GSGP4dHMSCYI09CsQhuCQbQtxJYu2
GWph6CqONNzWk8yakqWZOMzNc1BX0reqp1ba6zxm9vSsExi07ZaQo0e7ktmV
4ykX7uUO6vHOPUnvnNcuE2fdFK95RlGBoS73a+Q19++751nBMDdK2F83WXDB
Od3NhJLLilHDmRBxsZGrjfvNWSdKPpJK4eByox2p+Ay1ijhPybxonTT32zJj
jvQcU8nB+6mw7bkM3TN0DXrGuYPhswn2BQzZAAvciz4OVrmH4VzB8J1/uK/c
ogdD6E8sZnLhOI5pHLryt3yizo3RFgLOTcfvasCj56txHCOapVTzzj37qtnS
KqfSImFupx5cXWW83o/v4jiV4zZaX6JCnsK2l0eo66zcdW8Dw3VT+Z3uuqqp
UgPDfGr32NW/wDBCeRmGr4gxhKTjJxXIgdswSsoxNT1dWgLHVI+ZGi98a6ZX
ujwWFxiRsw2st1hheGOjxqt+50qVuLR6fByfsaTuX9K0yXGBFme6a6MJx1ny
WPbzON7Lu7h4szoZe6Ldp/HPDRPXF2WVAdOADzhH/TL+kkaWbFJZWsnAkKZD
jEBDLjCjbRzTbvEuF5Bj0ODo+3WHThJ80CTb7v26tPyu5rqo+GsTT7UUiqSS
o4i6olidjK5cmPOiDcvsXXg/7Q1MN52Cr72f2whoStbW5znRvnRqQAtD5A6t
A0MHa5crpEH95frBAkPlT4Rh8L/8F2GoeYWEXA6+RsyeY9oTtSeKYYC03YZc
KuyqpugKQ7ZYJum1f6BL11LXSJsv4exjly+hPFXhysB3L5dBXVp8F3UFLfLA
jTo0ozCkiO25DPX3OtdSL2ziYK352bvNM5xob2CoJJW2qjMYanYhIadhDo5p
ekrPMFGDw2Vf92DoPNeu7R7GyK35XaQGtREu9aI7qDuXB8e0hY2LhDnPdc/9
4rjrUt+mtlTKCVtNDNttxvS5jBD07OOlrnNcZ9cFfrmYteqSyld63fSzZzDU
HMPTZYwk4BiEKAVhTyPULCQHOQfNntNaOx+5pmQaqGbtgoOI8zS6gKyL/JFU
CmsnlHvuF4VDzz7W3nVK+haGjvPN8i8qDdO9lQtF6+o6HXe588lItBwTIWy0
LUsDw3zlFvs8T1azDKsbHBJPc769ywN3+fsc037MizJ6s7T736gL+vbIGHVl
ztM8HWJRU7mcT2er/I4eKlWv6CHVMcKZ6VmVtRjXYuYLkftj07ucRuCQRXQo
G9+pQTyv2Jodt5hfODKrT5KfwFvRxwLyMGOQ+AvfTP6LbFAzCwm9o9JUegTS
lj4jXzg+zxXWEXgar3U9saRDYHknwkiVPpeypTWWLAbUXBlWHznFrfHx5L3Y
k8ouncq1NHAxQZcg6qS8SfcqsEzkL/NcLFpT3hxzc7FodRfSfu15o+dnqezR
Fqdcx/wPnF+3wcO/xjtk9qK/i98hVnXtiNUrr7xnhlVNPyRWQWs6K5awCmPI
FUO5th8Tk5wfzMnmEdMPrJtNu8In4s1lrypzdgxxcgRNz3UuEtf61BkP7ruk
u4viyCHtdt7WmAqgJ8xYlqfGTYtVZ9s7jVTVIY5F77hqzJ1IBR7RuspVJQwh
3mOn+rMJ0aQtziDqXNuAbN23fw5RvI5LRyREz3zHvjLmav04FpGWCqJaerSn
nic/v7ar1Y/Y60Gex6bjgjZ8daCrgnPdxlbVdnBMI+6b8d+mk0vwrrzQYUla
v45isz0FVReJ89RHpzVgznhuM8TVYlTfuwnj7ASbjn2m23ax6XITR7fhHJtw
afZEvTuYc275bFYsVQCjLU97HHQpK6yd5zQFcgnloK50fcy0rY8dcGWxq1rL
alJ5DdST2l75hUxEKlKsHKcmOjQ9xHHlHid0RwK5TLM5B97UWD0uVUTz/+1S
80fDg6+PsUcffXrHmDyp3Jmv5rjjqmJS1xUiUFntKEGlHBddULnU8rLNh1w6
PIljW/LomKvAdJxRqwZdiM6xtp7TR9uTLFokPIBdhYAz4R0v68l3dzafN77n
B6Fram8Jo989OxW3WttQRh0PJV/TOCLx+swz33/eeKiqoBpa6aFV4SYILi4E
wk29VtMBxfN+IJpSyO+eI+Fql4Azl+/upCo1JBwSnTLac11q8N7F8NSYiBYU
XeGu6VLOOOM8d2Kf9uF1imzPwFIXbAbmbrGNmCGhUcQ3yA/jy7ksWwc9qgOu
sFnD0D2xvW74Rs+bnbjj3MrWU1he2JnnumM6K9t3PJrLcQc0dRz22KVyoh4L
XQVml+TT0yw1/NXjlJqlvAp8PT98aJaEoXKg5wOGTibrvnayu+c3dzDUwCth
6A64eVDOXnHRwZ6jyBnazlHkoOnsGQ1nOEmuMGyFrrvfKonveFFPODtjxqmS
Lg1SEwT6fvgGfLqgPfDpvB74nJdH7QyOeY/kXBQvJSbCqzMI+ByANJ3GxR17
np9VbaZ7Y45naVzP2Tecp96WHr9zniTH2+SY4i5IXTaEes6cDTQHmsvvMOBj
bphGDH9sHHtO4LMpO+JK45hqUj0B7NIRkbPBBXDnmBBAmvPlAtKLPp0NH3Nx
NoezVxww9FSsngDWCJSOMZWpl97oOBpyO1qX+1InZbYG6rkincvGHV/uujC/
7Xc+26zzRrb93oz/vGAcCDpVGNxjxlRrZQjHudndd50tpPO4DqvmgaGk59t5
DY6yzTJif7K6kT720Ytudj+ZP08zft3PC2u6dQDuiWFFUxl2jtItFc3ls+34
rGkxXXmS5pkMcwMQcS79lW04PTpoyDNdkLpyV+C5buFcEYb7euIDYvIVU1cV
EJYAtgZXZ921v8DtTR4BM3DVn7NQjF5eR3ddm910110nZvM0euzgErtup5vM
mIvPeZNR2181D/npKO/obbLorGo3WbSm720yZB9QmeltsqZbMDeZttwrG2qz
yhuRfSYClx+ttc/mIfP5PksWWEVb+oC4TuFTqvbZvIa23ijpHqv2We1+qr+e
tr6IWbvPGhsvzwllvyx9s2KunUwj3ap95iTj9dc/ONs/LplVowkdm2Ddfea0
dFW8eGQS02MgXOHkwl/sdKTnhLV4R7w+gZn+tqx3fOpOmer1LCUEga1pyyI9
VqW09uITzjvsjvCNKo8KqS645gxUp35pFXTPT+K+a/wQebUp2l0TPAJl7ywG
4uMasxhGpdO75FaniGk26A5hSbwgbYUh9zfKPDpTCEv1GROWmsHTwjJSwvgY
zdxw2f6Epa49YalpaQJL11nf9T5cdRqh84c09W4VLJ0LzlkKqwqSen4TZylg
aVDsPjTEZqKGM4UVKOz31EnEsfqJA6MrrFIrrePScwBlwAEq1NVRcatgZH4W
wQjDikn7Z8ij+BOJuuul/xErjF1fBjemLN/1OiJizzrzQPk5rkrY1eP1ordL
ZwK0tXLOEF3LLZc5jfO59HwfGs3vgXSxVWLjY3ZAc4Cc2UMVn9RjiPgNbRE6
0rzAS7t4KrzY9pzwgrhlYjbhpakQhBcyM5hD4vJZCBGoYTyk2PVRcD2M+F13
QqGrlXPhWhdocAF+vMfVzSE0LvLlBLcDixbd9+YtpWFRJepFzRyANCu953hz
x4s6i0v7OHHsETnFXL3ITItrIKc6jEKODQcJOSULIYeYU9sYWBPgOeZiW7oz
CLnsormpDp1qTwKXuUo4KIfshV199umcU2mBuNMVe6nQju9oBkNv3hLkWpeZ
8ye7vBPNwO255ZYCtW01Md6Fpwz2clY0cNFATl9TIcfGWoScO+JL8/AJL+yq
E007Vhez0kY8GXK7IHtdDzjn/1XXECNGvWCr8/9i4duzh7SlUY+3OWPDRapQ
79vm66/yzXIsTiyvxpZ8whxzBOc8V6fsSui1c4XyytaHq41tOaa1cgE0hgjA
E2IpN358HKvspB7QNOueoNK0H465+JS28yFvU3hpC6IbmpOqXThAWXovsOpi
Vu5oBM3d03l06feMhqX0pRZyq7oJzMtB1g0guGiYSx9Z1TKEYxqJ5JhKExcN
a4Cm7TJ2CjTtX64Ck3yCY659qiYVEGia5EGwaAiuBzRtCuTOS3JKuasNdtVr
nHf++w7n/l467+2/f0W5n+N3lePjoeWmzj3hiN+PddAxxwOX2qy28S4HLyeA
tT2IGhxtX/elrvk8WKeBHM4E4jJmyGXPxsvMAhBowDRzoB2oetoaFo7BMwIN
Sezst0KwwGhgPmBPiGqbCefF6wVCVaMhCNT46c1bMhC42UgMPUm0x9EcgFal
dqwKerbzHKjcd2E4uvbTrcGxqmt5AzR9/Lq87SVmjO4NdxSXE6JKUkLO9QDU
veRyNTX5jYXuPcg5A0H9iFrew5M0OE8rLnvxeJfCm+EaWqzL5OzpY6pc9Oa5
noKrzsPjPOc4cYq/Zm06fuwa4DeQ01dSyGEHfuc733teILfk232w6TLuup8q
mV2FWtVR5VANOZdDpG0wtEyInnPO0+RXrbqkve0i4BzT6jaX1OZS2znPQcR1
d1kXcq42w4nTJci1lTzOxnXNg/S5ATlCSU2FnxjHMuTgTE27sgs5dzqwO/X3
rz4wt0mhGXDXE3KI0/JdtA0GU4Z7Gpxm1zhTQTu00JIi5DS1S0twmM3CZ7hm
8rq0+l16M0kWkK6FnLaZ4Lz3nHd1uZ9Cju0ue543Z3U+F8HqChudtbuq02kD
ORi3zNpWyCFl4s47TuyYy7lzfs985/xMODiP+equ4IFwUDvLpf1qbU7b/8o5
KzRKps2D2tbwruOLazLkuBy2ayt8tPbdlUA62LiknR43dNzLGSHOTnUeP2cM
IPDdq/txByY1kNNbKOSgP1xzzQPFfNB2Xi81P6fH5Zwupx0rXHBVQ1BUxV2y
L+GghwU5Z69GR5mcr5Bzvv8Z5EyMwDmAte2B40qcB1OphZwjvUYpHWx6Otq6
vjrHDZc6jra5n6uOvm4gp6+ukINuc9lldxbI4W/2XybkVHcg5NyRqvpzXJqu
SzNx9S+9+IKaGa4CkWTWXGg+Q7vlO6tzLOvSqKfLIJ9Xry4DkmH4nv3p+oeu
ykBxkVCXFNwzLtx5l6vsY9d7tAGaPkqBhtq+pNQWoGVeF766nQJNX8mJxJ44
dRGJef+23XkT1Akmnrdpy1otBONvc+F1NUxaXxhI16bBziv7fXaJOzHTZY2o
i2JVfIGbg1By7mE9A2ddHtg7mmipJSTHAnKEEmxFprL95DhWkkdQps956gbt
idMlb1wrEl3Z/6pGZj3eprVuPTsVB6O1JauIabZ5bE5L1ERGLjdIx9QG1fTY
htG5D9S13J4S7MQpnsHUBqc1KUTWgZLrieeP1p6L03WPqDSuEUIJ3nkmEbWQ
Q9cSztMEJELO2akOcuoCcN1N+uJ0XsKFn8jOziSzRu20r1mrqOshQFrqxZQA
l2KpHr/21ArX0FYrtp12VSBnTkZ3TmHXE88ZA7rOPSi5YnwngNcVrE7TM64R
Qgm3JQfKkMuRBoIq97CIOEQPaM5UuFgC986p0ROnriOUmjeqSdGFSqCpBUzi
auibz9CEAefo2DbzKu2qOXXQHXA20/SqmKjzlGkaf0/YutJRl02sCsdOhajj
uGvGFwgvJXiPo4G4JCSBBm8S7ROCBXoMc8SZ2g7iIHdtGLxdye+ee87Uf6Fn
ILhj5pea11KwquBiAk2pH5S4q8tHq+Kzl9dAQxiuTb10ISjnklEH9SIgm9/W
syE1htGDkjrae24QJ0TXhaZKp4AcYaMnc/7UOGYhp9Dkd+GwpVOTsFGhQsgh
XZEHyfZ425/96fQTe6YCLLXW9+8gp7uZ5NPDXfiME5JT4kJVCjnX6H9vAzkX
D3A6pObG9IStwtW12eY8Tamc0id9zUSb5eHD/+sJ0VUHuSjkdqHa+qfHSQVo
aMbdA5qmixMs0Oi4/wk05H+0uR3O+aHEdXm6GgRj4KkHNHWIqOuB7Tn5DEQt
WAHlUn2aUrBqkRVUCjTWxnGecwXrSUqOaI7PKtAuDMNEf9scaHNtTW3mnivY
PXfd/vDGxasike2MRt42lbxA4UyfOTWNY1onSuSovk3UQYLRg9AzS/VX9iSq
xpR6qNPVdZ5VPsOdBOBsBHeII1KQW9S5c6qc800PpXbxI5dKTKpqCZKijuHd
nkRVc7g3z7E3N8+dAqhob1CngrpFXTZFjz3ufG0c0zy2U2SMFTxEnVp0O/W/
uYC/or2HOtXZXAjJ9Xxwwo3PUERo2tANTR6w9mhwPiqNc1B/1EA5YzjLpbX+
+ConLJ3p4BodOQt2FZp6PNEIVUZBYQkxDWkUrxPqcm3CzQ87dxvHEHgkXyNy
4D1lCQJRp1K3J2FdZxAnYVVi91Cnh7Er6lho67KY3Eo6k5nUcqnAmm68CnVt
9o/yMFfl487Q4/2c5HR+Dl2/noR1R1o41Hl0ziQsUYcSBBYjtaiD8rN/3z09
1CFWyD1N5Kj/nKjTXLeehF1V/Ky5wkw36KFOmwORMupY6aHO6ZgLHSVmfNed
LuEkrB5xpTm27RlpTsJCX21Rp875RclZFfU5N6572rqn4XawhhwMbvcWa9hq
SUntaXPQqelgJ16APcariTXVgnrGKnYPPbk9bU6d/T2saZGV6uPsd+MymFxi
mSvwJy21Hkax1p4o4fwert7EHQvpOJw7xtG1wlqswv5CXb3sjdD5c92+dPM6
clVJ2qIOV3oEpyI7ndX5tGaBEPaWIXKQfkiP2WnVvPG7pLTq7XQdq5/cUZqo
04ioq1TQkkJmAjsPl0ticnLQxTyqDP8j9UGmmubpfPZ8F3e0kzsT12lz6l6Z
3Mm9wNesK+qGd7S4HF6HyTV9caxKAAhY+Pcz442WsAa3GytlXHIc8ych91k1
cbqZR7ohjMfQILHmTr1TbV2LH3r0UKy1EsedRu+4gJOmLp1WPRO9eauqFJVz
9Y4B5zx3CK/G63p2qLZhVdShrEXv557rgiJrytVSRnrr8ZJKmlGXQUegIZ6z
LxhJD2jueAnbHlBiQQQaDAoeA6FiiaGLk+W7FzeqjWNqCkhXsdIDmjMWHIDc
gWdL5VIc4zu7qJAyK5f5NLY917wo033OmgjK4vk0RClb94rz4j6bQEQDL7wS
nXArmBqMTXZT6mFNaU6sOWGkDihizTnXdDW01oGlzT2mpmmVPabmopKOqbms
WD37oaferWqe45iV20ecpydCufYTvcy2eYu/ev/2XM7ri9KZE46o02V0qEuv
TNRps6SdcjineIOdc4WIOs3kKQ6th54oWZ58hnOPOjRp89Se2rYqWuNcM662
uGfAugCG4xF6mK3ri+PaM7qeOrvNM/jbNPug515xRoBTcZ1KYAIO7LmrQutn
xxst8TrkylHm7RR1zqWrLg2iDrm27YpjJSnPXb6cCxAQTZoW6cJXrtmXkxqr
5CXTGHqoc5W0Ti13Tr33nHdwNk/T6PnbVI/omZ6KsOJeOTJ3rzwXBc5IWKIO
+ikZ2Ii6uvkkz6Egb9RM0Z1Cz6VWIjJBPzGhd+stx2ciRg8edXlzTnw6b5/z
PU3ZwXOfpnrhe/5f171pVXuYntcDvxXroPNczMm1jACkUGmrz3VZuqpOO5ul
Bz0HZcfwjJgl9PBz6ARz0MvFwg89UaCnt+9BT7lPT9ZqYTShp84mLQVEVtsw
+CQApwM755+DlMsSdgGvHtdz7REd9FySvCOttl51ekR1fmbTRMI1zXKONJ3H
+6mzs6fhPZskgBn0pmV00As1okBPH/l8qHmIMTKrmNDT0zw0iZtcoMf1XLaw
L5ub5rn4A0mmqZGOOzpB6rpw9jwmLqqkTVV7RogmcamPuYWU/o7ePM3fc2va
i0SsadISDtALyHR/bnxgBb2wzAv0lDP0oKc7tOes07PyCD3nG1Fb14XIXBat
48BOOPSgp6ECd0qy4yru8JueheHsVZeu5XwtLhVVVfee61d/29wn4zTQVQ0R
OU83UwM4dTY5wCGGlURtF3AaOegBzhkXmkhFwKmHUgsDadQ440KrAhhj47s4
c86ZtA5wyKtre6G4hgnO4fL2P7hyRgqNOrg2sZynCaY9CGgTegJJj8xWwLUn
MGmCLudp7MwZbMsR/m3lxfmK3zoGosR1O62UQxwcFQkVXemqjYN2alO4sgnn
HNF2FxqZrX91nZbMd3Ebc10Wpy073cnFzlx0LE4p3/agcFJTOQHXwLX3mFdx
b+u8fIXb84XxcQuM6NLZY6RzWbqtBny+gokGvhjvBKoZ7/z5/F9/um8PX5op
Qo1JdxU1xbB/q7V1tV7ODeIaRCzZYa0zz3E058xbwlfbFMwZBM6t4jiVO23J
CSHNqeoZGLqmxJfMy1eoJMSXvGq+wkbp6YhzJWRb5Vi+Qhds8JUbh0QOaMbX
Zhw5oYR36j3Bpe2ECa4cdI30QIILrJ1n0fTAtXQWZNsKwuld8CWxxqCnn6kq
3wOX6zjn4g76zq4eQz2sLbhcNElVkO3OvHnMbFvfJV+xQQguwXy+0K60ARcV
mB64pKI1X5F41oALjIJVgD3mRYxAv2YP6dIm86YprYX4ul/6rPK7n5YUJbdx
iS/Xf8ElZjr93/VoXZXS1sNXLkvYW58/6FrdOnXMCTNlhj0cqu/YdU105e7E
V3O6D9PjloRj+Oz4lAulhLcnHEV85yuih4Ev0hLJMe98R+5WtPHP8n/n+EJt
FjGCZCKmthFfLj1cHbD8rgpRrq1aInwn14p+Vbq5ptUwNuFiuC5JVYUeBY3i
q+0f7NR959BdlQrJeUstYDjWE45zV8m23i9f0Zr2hQsfR62DqrmUMsvu223t
ipev2DkNvjQxZQlfyr9Q8MGkb+ILPIkKj0vm5nfxHAYHXIxbeztwzJk0PeVe
Yzwnl3n98iFX/0zc5KKXplehi0E5r63jX3rId0+5d/F752Jz8rFlUHHyPPEl
2y1fkSfFb8s5HPmK1EN+LJU3+YrgVgMrsAP2LBhhtT2DVbTwoOalDWiILE3U
JbLg52dvNCJLuUpP83LFviotTzFjWtTBylUia1XHRi14ppeOiNHK+p5T1jmc
ncTTHKAe51pqwN/qRPOGr3PWFNkjS5IxTtJW6CiywvXDj6XheL6iUjGQRcsf
ClS8xsYvjN+cIQt+k8ce+yaRhf3LLIKXy22ohxFZ4GF0WRFZQBpSpXVV1zUY
dd4pZkxrcFky6hwS6kulQct31ha8WkbADBPXRKTnkFjK1mDJWQ+BLg7vtKE5
b9tW/p6vKPsislp7MpSnJWRFMQQ/lhBYvkJpaJCFKjMyoCVkhRudyPr0WMOX
/+IxHs5RiSbwlNlE1jFz3LvrBuKkoUOW09K1I+8kDT2y8I7DUBc8s9Ca81RD
5G/T1qUuQNSTcq67iLMCXbMu7bDSk4atNo9DRdIzX7jwcbQHUWQpdMK+VWTF
D8hXVG40yAIrpXG/hKxIeCSy9OTIHrLGfT3emsiCE5S+CedEPdXcrycNXbtD
bbxLZDm9SPspqARvC9q0FYlKTeY69pxczh2pZyb19H13upu26nZRahK/VaQC
DESWqGv5iiS6HrISP+HHN1z/YIWsiGkGskgakD4E9cbr8d9do2srf0qMZXdX
/mCk8hx80WXSOcF64NMxzXtjPKcHPlfh4ZR8ONW4EQg+ZTnOCaae08saw0TP
uOc8bY/L3+YbaMydYC5LRlMueuzPZQ9p39Rl9jcXmHH+2pLADNuZ35bzp/MV
dfzbscxy+BKuHNdskIfEQdYHvm78WnVCZLo2e8NzEILFpD3iot09ECq4CEJ4
5Fhq1ZOtjgM6T4Zr3q9yiiB897mfK2MEzf2SeV6sYylh1sxu6gjaTISJJTt1
82vyRY9TOk+GpqH1ZGuLsuDsL4wFlb2Rr+nYa6+TXbH3bt5Z8tLzFeywAeH7
Lzhc3mkBhPHTq+H8k7YiCrCKOa3LAF1eGzEF4c/jXk/rzHNeWpWMLhhO7MEo
Yv6desdaz58rotT8bv42d/6TY4BOX1Pc9rwhzsuhzHOZUc4ZYGCW2GuDBOkW
FfZUtoY9wDuLDzxfMT2wpxVI1JlfP1Jnbez5McuingsUnYyFLKVLpQdFV1Ov
ipuLYnJpXAdHd44gyiNYjqRGKWGsfUbaLi6ODaqi6nLLdF7r7nCKoLbwX563
Pbz7nML28xWplIRiyyWVDUoP7HzhcQJFKbHJV2QyNlCEPsQq4gUoZnLtnnTA
9QH4bOSwSz7SdGamSxCAyn96clgbzrgibi6IHrGRAbMLC81PtTLExZ/4i9SX
3OOAeoaMBs9JEs67yPhCnGUrqn83jtCaruELmjhgzSDRWY2wEyGQr+huobCL
FcpX8OSAHbcvpNr57zuU/3rDSJMWdg5sm2bMOR13CkDHAZ2CB4816+EJQJcG
6IQx1omnb7raA0IsB18eMm65sDy4hNgMmKvzXOgLz2U5ZI8D6rk0XFPtUqLz
Wii6PmDq+lt2IC/655agiIgSoXjH5LfOV/hneGfpMJavfaNa0kARo8ys/jH8
N5u7+R67J5vDY865c53UVZfMTjGn4VbtvkoliVjClmr7PLhTzJwC6BQ2Pf5d
Mdcm9asixt+mLcxdBjbnaZ85NRbajiian8d57qwmAUTX/dJqeIHpJambXqlg
Lh+ZNHr18xXeIt5ZkgzyFaplg7n3vfdQead/MY5ZfI3Hs+lplWP+IlOMXxFj
USBTre26+NKiFuLLnT6g3c+0SIYhSdfPg/hyHYFQ+UBvBddFM3Bd9zPtAcHy
Q8195Lpw3l5jjLpiGs2HXMZNbRT1gl1tklrUyhFfrXtPDYwF+an4CgdtvsLn
E/ji74YqyPf8l+OYxZfm1pKmkQWe/yK+cC8GTneKL61cIb708FPiRrtzKb7m
J/dMsov4uv567xShXCa+9OgCJwtd6weulXZTVeuixZdLF7lMMrx7+FKHz3Jo
bHsmFCNER3y1sdY0veBLflq+4og63lmokK/ITW/whT3E1LUevjR8SppqsJn4
glOLuhHXDPdnK0J3SBvxpeUpxJd2vyy5tQ9NHR213KXFl3POZdPqUG1tujMd
3CHXLp1Sy2w0PY0d1xRfrTrv0t3U0dPDl3q1l82ILdVL83XmO/fHO829I0gh
I7jk/vmKUhqCSwqu8hVsN8DFHwNi0sr7V+OYBReUDMbXS4cEARzBBeX3ko/f
Vi0YsjPZjrgHLigoVLQILtdvWxtl8V0QvyKRe8qXClEVelSCXC6lEz4EjUZk
OU8ZGufpGVqu1INrpRusBy4oaG053dzlsTXzvsG4JLha4CWwV+BS9ESEWsEV
8j9fodM14ILRyXhqD1z4MWzIQoLigQQDwYUQPrkKn4HF5i7rgUvD0ASXNpsh
aJRjat0UtbGeP01TBVyjFRfad9YNQePqiLR/uFqdrfXnEt1UM1zWqDyo5y7g
rVkGd/oNBVxtTEHVeqlsyFecu0BwSaO5fIXXKcDFl8SOBXfAX/96HLPgAgBj
F1Qt+ehYJLgQ02EhFxcM9yfXe4l8t/WB6SktBJeW+bsmyZooxRiYq1UnaI4f
n0QWweVA6DKD5icyzP3ycToWpevtxrpzKW56+lAvVKVJUcvz5riBC4KYah1p
yrCk532+GitTv8rmGgGoX8T/ZY+YWy6XtkPIAKisiMoP2gXqsnspPNqPNCei
610IFOwGAq8kMR6aPNoudc35A1wbrB5QnIhzQGlXPVKRtW0lJaojLIGirjHn
yiKl2uTE8959sABA9lm+0vfLZ+e866rqe2BGCg69b5TajR9vVgkiaSuOke0R
Fw1TcWXQrmr2lWYedwIWiwmqZCrg6Dz0socVrZXblPtRZehh5eyzDpQxxUqr
QyvxXNbGTrASag+xoh12nEpMrDjX0lygzX1H7/2Tzxc8SJZ4vpSRSJZlvoAj
YgWmUIuVhDliRa3BtPvWwIpLAtT92MMKtCD6bYgV9U8TK669njsfXG2Xqcxt
npHj+IX6PHv8Z10B1BIvnHvq/mQFQ08A6UEpTqlxfqDoilXwIG72fClfaYsX
4T8aP9tspQqH9Zel4TUw4s4n1DXrYUT93cSI2uSOn7gWjHwXTaIhRlyCulbc
U5lxSQbOxl+Xn7TOu+ixT4ycMP1s5jmt8+AE3Lzp1U+K9REUU3pW0AhveL6g
c+hnWno4QaqGRro/h9VZmW71/5l94Lu0bAkNBPMpr3vQcB1UoVYQaq5KVt3D
tPhfZJ7hSL5TtaR1y4XzX72PzJ9wBrIauqGm5yvyIgkNBWDY3BX5NZu95Sj6
2SR9NoezziyCGIybwyp00uKvAQ14V2nTcvkgvmjuvMosn+t5QWjkk0Kac/xc
8bUrINWu1S4iTBrAjOGx3YSG67DmorVunoNGGxGIsgPXcGDZ0betAZJ8RfMF
QkMdv+GLK+Rvi/qUa7SfKTRUExWBoihcDxqfTZKT2jaXD7+HhgGh4aqMHDQ0
WNTjGk7xXJUuRRpAAWYNMqHhm9vNBcqq7qCERmteIryTiHFy/LA2VRyKAL8q
/T7yFf3+luCQQFdILjUa+VJHiahk+VIhom+b7u/0i/Qj14DDLcmWbNsRoJQJ
cedhBadQkhIO2telBwfHKRwcXGso7bHe0y/mQmR75toMl9Ip8bErJkmCnChw
XneiQLTgfEUUiSjQj6JnQ6F0m8ytWmY0PyifqZapoBR5oQIwvfEaKNCic6IA
0SC6pIgC3Jm83KHAndniTiPqWSKrCl20qK1FgWMec3kxJ3OoJURBC5IoVyAK
WikCPu0+CwfIBiGg6ImYaiGzJMblK2mG1WcKgYlJ1IxA5IL+gr4x6mIilIdw
PhyNCjJCAEZAe5CEO/rOVbOt6vXeg4Dj95rM9SLz3WW5MPdyhhd1hMB8p2NL
8rNWVKS5hf7alyn65hb6K3eOjOVC4zaNVFVGyWKN511nWYAIAmUBfUOzR39o
6qxoIP1zEsKXvxqrOCyyAMfgXUMnN++sd+4vY84ZoYFtJjWQ/s6AnIda5qog
SuLThiSNW3mPPbf0WbpVob8K+5vGnJ5Cf8VG5IQVGksbh3JPfiatGPK15GhI
S+T2f5qu9N+UAjN7oJquIKmO1CQenua0wR7VoR0z3cM1fO3teucy2idpcj1t
cO6q2tYuTfnKeWQH71um7LV214ebYGPSC6bPop/fhlP/IsxTKCstdvOlgl/O
q8tXUvU3nJ6Xfqbb9Qlsz3LX67qR/qoSrsv1S/1U2llUMUl/x/XVCCf9teqd
dNWa6BfFG7UBR/g20oLxY+mSni+sbaLTxOxrhr602UNNsMI+ziK3wh4bG5Ag
aSWBLV+62SW8Rid8IXvjCHCbPd3qWZJdx0h2pOBf0hzyoTHvl5nvlnqR246X
k5RJdnU7ucR9kh29SNvsZsSdmZC/RPbw0fBjST7LV+Tlk7Stmqdk190eOWdW
xsNIS+ZpIbu+UVR0FtJKVkG+UEaikAhnNaPghez6PFHzVYNJ/16D7LDxKc97
ZNfD70h2uICYTuGOdyc58wECEaAk2aFHhDu0a+y5um3tGUW6trobYJoWjB+3
fpSIi5C0LljMz5R8kelSyK5MN3hQIbvCJY7IK6SVEoF86W6XxBCmnlkmL7td
XzERYA2ya1zRNcL/ITPG7yLgxgPFemRH2hXjlCS7xqh6ZIeJSzPDCe8lskcu
IT/GOh4VX0pkTCmTj2zJfEFr52d6Z3rsSHZlutE0oZBdoRQ5mhXZ1UmoGr0c
NMU+89aiWzDq02PXIDtIx+I8JgTB3UEn8A/HmOtog13MDjQvM/NITggHWoMk
O+BGC0HLDpjLwpA1tHeGK52mTrqCAIjL8YosP368r+k6lKsyjj1O0kplWr5U
pVPZHjVlhewa+okCnEJ2/V5UqhXSanZl2DvlM01vCoa/4YR4JdsnFWM9smdn
buRokez5bOZPjcybZLftZqQdDsmu1Q8ku/ZvINmR/U1jnOTED25rVV26x/xo
iG0twMtXhP75saSs5Qs5niceeZKklQJCLumGk/uRRrrhPHyQu4ljiEo3bcHQ
KAtp5TilRm2rP4s6IivbRZPX4T7ZnZN1Sjl6dXzqOjliZ7DYlsTGfq7qLhu9
nMSG4UKxUFKnEzsmyEhsF4N3xJYSiHzdOBpK/Bi4umFqZ8HQOwmK0JR+G25Z
x9oj+B3ErkVp0gKcWv/h8dTmwMCkdEU0mMOERhh4JKPafmKdK29Zj7qukb96
53q8XL9LOoNpsmOZs79JZzADljdqoinLWjSnkeUqPV7eyugoh35R/Fgkk4fI
yhd2LT9rv4qEZaetx0GHhciNUcxh9QQkgnOY2yiUMdKXkAhLzgnlNMXZac+e
vnq0F+nrVDTd+aQvXEY3NqU4rtmP5raqV5W9GElfmEDtPKeiwQoOVTNfe0ei
kYbhZNM1K/Rt5bh6XJ1VRYrJmQ/YWBzW7JzE1DlM3h+JH9P+vb7cPIkE511N
2OHwH7/n6iTbx2zDxru6KcWqc57cUJBUBVOhWdzbtRBWbY2C7nhSVdNPSS2Y
4tToSFVN1OlxZ7ihbhQHJKTEiRNPkXJQAKPEgktSqBoHD5TPlDVr0iZQceTI
1zbafYjrbz90A4fVok8r1O7xiLiQqmS/AS3dnnyuZOB8MN0EOSxRPrTGroWb
ou0R4Oir3UN7u1Y7K7hde0bQY9YgPUmCxM1fHC/XfoyddFp89famWBtKwNNP
f4fkakPZYLL5s11wATvOTuUIKidTnsIAtyxYtmgW22O9LH5mS3p0fyvpxFOq
Q1QzkWrSu0EDYEzyDF1sDWJeLUfHupZTJKYGQFxgi8SMbljx13weidm6I5AD
c/z4EyRm+zE20GnxGULMe4WdIhB5anwme7t8j1TWiv1Ae9mU4oPhbrP6kmxK
7fuaSN2y2uiVRTpS+QmVjwTjcyMgz2Hq8aFvrUFHBNdZldyjI+BFMec2pTvc
y2UWLNExxPc6dGwZKNSe0+LF9Hvp3yQhzFWSPtKPCgk1cST2wYaqPeR9iUAc
lnN6VRuithv9e06Sm+AKvkZa8bmx5zjMVhooebj447euQUKNEzLaACPqvHfn
s143aNUcE+2UWwy4D1ZRegW7tACVc0skxJxkAJKEajdG++FCQrye1r1NPHeR
hJLwNuY0f+auQkLNCDnrzP14XCGhOMLBUDiMEF3Y38pN+TtDBrYKbeCDtEJN
E54bSZIcjvLk7AROVO6Q0AUHS9+WZHCwQo0kRLEVu02ShFgYisGXx13bEA3W
O3HXl8YDXMHZGfGZmvTQd5PUjuyDmjRpLR3F0q1VOmLBcDGH55T4igbp09M5
LO2dgQlSRdqJKMskbwxbh8Ti6wDXyWbZI4/Epo1kZx0Ghw/bew1iuTZj6jT+
ETNP9Urm/5FYLTUy0i+9ncRyrJDEUo07qjoLsdTKS99xxCoxvy1tED42AT94
XyGWtsdMX+cwBBnoGjQkVaTPhW44csHwPtCzTqRCGJOAPOMt9g8pxT5RkSjy
LCkFJSP8o4VSLgsmWwDhbyWl3jWV/owLlRSbhJklSk2neNVbLpdDpvV122qB
Ukk3P7UZDvcMqQH0sceLEEmqXJQa2W0/ep/UMiDPjirfNvyhRGI2UewbEomn
X0d3izWIhHAX2x67OpwekbQ2cGk7ffbyu4DHJd4HnZ1E0hWHgEDywQ54X/o3
icSXDe5CasgpuUokTV4QIoH90gEuG4zbFG7lpI+2RAIzJ5Fov2SqHDpKIrHW
MMzNNYikveF6RHKZJWNK+/cqIrVbZe94zAaJBN1ACxSV5+lX4VRNmlYhkvJD
2UkNKzy1GUZ5VNLESA0NRQmRorCXw6SG1kQWkTUtDt68LclQClHKh9qvFAJQ
EOxLU9agkPoeexRyUknnkUKw1qPjeb6goCd7nxSSaOWMQuOOHr8KiZ7mWQrJ
NuIwFJzEoVteh4So9DIkhbTEAcviMBcNRpEYXJpqXAjnKUTlB0FuUohuhtDq
98gwHhbNtGdeLdIAgjV+RjGc4lfmv14TYxdJ1N8ZTi+PxUV8gFIXF8D0svjs
4GSUF5W7ECVpYvQ1RixjlQDiCoWG2RIl2opy9RH1YvAjrT6HARKsEwCRMHVK
s/pTNvBuMrSKIpwHo5sUwTIBnlEOQIrkcwCSXYiPElI7e8b1kaY6rV5D0gbO
jl7DB9IG8lCT0CBbSJs48CCP59MUL74taLOZud/ttz3CBXlxDNOehLqStH7l
ZgjNx9ldbdY3bKl2DJ5jEgSuNZRroOPHpy+78xSZClwm1lsWH9Pwro6J4ZYk
SCT4ZU9nEsckCN1jUSa+BkGivWZFEDA1Hm1Ngqht5ExUEgQRkGhxky/8EBIE
spFsARsDueckiBIr3ZcEIc0fuP/rwycuuY0EuSgSf+H0veqqe9scbDy0LdCY
HLubxX4PqawECVdHWXz2UFSC0HWvY0iGYcxVU5foJliDFGCFX/lK3Ysdt6Dn
fSTFdpbsrc34sY/e8opYZcl/y5duCex1egGg3CedsVAgjmjIn8mWYBQWyf9p
YUgBiEm492B3XPOFB7ja74oKwcnTN/2GycM3UiWffPb5o1XZMOCTYDZrOalL
Df4PBqlj0HjI83X5I0dpneXX5kzumJnXxhqqakO74pWxKo2s/YEY5g7eO7JP
rnj4CDibKw57DW6qKHDhivPQpciB0CpWrO5ZZ+6vVpyeBF3xUHmqFYei+oXD
95eVRHgSj9HVZW+nMrZLxTrucs7ZV627znhZniii6Tc8LOtHY501yh1yp6wz
6YJwSBKz7TqHE7HtqgThzEVGABLCI06bO60MPzhcecU9GU/p5lxQ7CfIwJbT
Y88kXbaq70EaMiJFusgIyyabsCxothIOHc1vpPVMUPjLWLXIkEwEeGeRR0Ew
N8kA1AMHjrwu1lYKGPJdk8JW1parBZUn/Ra6mQltsJO2jGo6v3Ezd8rAEoRq
wVAe5AdUfNSGcCysgJzypOw6FIIqeR6CMcnRalXBrRIFygpCIcfuUOiCbV2Z
5FZCSbuqu6ZN111L+DNPjCZvvrBlk/kcx0EwsYcL8aoYZikaWtonYcdlJGHw
jlxG/L6M5AtvLiHS40nZff/5h/M8liKR8U+u+bHwAZZ/K/KAuLS1K2RiHJRW
jZAyi+uF98CYaolgyghjJb2g0hKZMKcMl8l7gdF8GNVuaVFUd7pa6uBd8hAf
qvuYorIk+s8T0lkxk3XfOyY8Z8U48QCuO2Q2+K3CF1wELtHDh+6vepMGrKta
UHIsrjFkH94srVUZu+CCw/n3J4Wsah4ABzn+4rpjfSmYtPodHK/gdGNMajg/
YSBBqFIG+S7qhwiOyHX/52ZRR6G2cFpOPZVq5vnRgfhLX3oITJVLD3aNB4b5
x7RsZE9g/2E/M7QBrnY4cTpks3LdQYs/T7814ao6SaJddx3jGkNhftvvfBaO
tzIGdvM7v315DkJw3SECuMZcd0DjPX90sBqD4MIWVVr81v/+dDkEQLF99tio
qRqr33nH657PiGGHHjhA33PeweHc9E5pr78hvg328Lbf3Qv4llTod7x9Xznv
hRCHVvsrv3RRWpr7ylJDur/5P/9TWpqp/S6c+GyBzKXGUjF/hqzlV37po8UM
4LKCXf+3/3pxNYblO/tdB6plhV/013/t0mrsN976ydLCh0v9n/7jhSWfj8sK
BwbZCMewZfh+zw/EtZicnUG44nCEMc2UK35r0omeemqcR3BLZXxZ8Wj9mP8i
M4cByEyp080YVzzOBs1/nWrGuJLYf6xD4BgYCM8W5RiMrLY/qN5PG2q3TWqh
7tTv/FxXPP/3jeOMLBeE/e/4Bu5dNpubLn/biXv9PP/7LfEuL/h/I9m/0g==
\
\>"]]
}, Open ]],
 
Cell[CellGroupData[{
 
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{
FractionBox[
RowBox[{"2", "\[Pi]"}],
RowBox[{"Log", "[", "8", "]"}]],
RowBox[{"(",
RowBox[{
SuperscriptBox["8", "x"], "-", "1"}], ")"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.4517499305753307`*^9, 3.451750018725004*^9}, {
3.4517505389702682`*^9, 3.451750636764131*^9}, {3.4517507240311327`*^9,
3.451750846944359*^9}, {3.451751005738555*^9, 3.451751013178668*^9}, {
3.45175149231258*^9, 3.4517514935721073`*^9}}],
 
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwUmnlYTV8Xx1OGlOY0iX4qCamkRNSigTRTpCIlIhoJKYkkpAmhqJAk0aCJ
Uu3meR40j7fufO+5Uxok73n/6lnP2WedtdZee6/P97ltPud3/AI/Hx/f4ho+
vv//tbhA7qqkXDDKE/s4RNB7arTSRMF/XN4UNAzCrx1K9IPdbxOTC+QdYHNF
eJBMShhYtvXnp8ifhzSRsn/Cn+LA8fxc+TP5QNil6TRbUvoWRrUemsTIR8D8
JqGXZydy4d1628go+QQQ7SZMrJKshHuCBVsfy6eDys7FX29NO+GU0/tcFrsQ
mhRG1uzknwRs2EEoTaEIMNPsdUbKkxDpKnjB3qQIfvZJJBwynoQCDz+F4oQi
WNcgp6oUPgmivoYPQvSLIbdpQnjniimoCx90Xh36HdSbylSdlqZA56vEakXB
UpA+pekoMjMNTZp1bm3apTDT88mCyj8Dbt+Cft5xKoWCjIDV3/6bgZjicf/J
rFK4dAHLXnSZAXJl9nCG9U/YruoWd6NrBlL7jn7b9bwMbuadON/+nQjC/+6d
PrIJQda1OaMJPzIkejm6ahxGYMSvKDj6mAyqvRpuEr4IBA+Pbvz5gQxGn/s9
hssRlFUYLcn3k6Hk88ui75qVkMLD1jsfoADDnl5m2V4JDycbf77lo4Lu2n5D
o6lK+Kj770+0HBWCK6oqtH9Xgrfpt88ntamwZturyvWbqmBZ30P8zlkqbF4+
VDvuUwXneWccpcuocCLzVcs1kWrw2yNWK+dLg+Qz4Vaem6tByf6Qz6f7NJiS
9Gk7pVcNhOeDd0WSaOAXatxheKYa3J58SHOtocHj44zuNdnVYNV0hyYsQ4fy
JeOhN1Y1MBZroW5ZQIeV+TtdYt1qYP9gjMn2ejpYXJQbuRtYA97BCjnDA3To
72KMXkiugUdNNuqFf+nAzkic1KLXwM14xXwdMwZsOcYk1zyphXo5L6lNLQxQ
CDticPF9LaBEzq1jIwwQz373ROh7LSx937PmKIMBi4L2msemasG1ho8TLsqE
zsrv18b21sEmCitOxoYJdUzxuns2dbB3nW/B2TNMKFW8LLPlfB3krLT77uXN
hI9BiiVX4urANSOuouIxE4K17y3Pz9SBZL7sBfcqJvi5Dtkm/6mDsSuGWzLa
mXA+evd7kKiH2wYeDzKHmWBLnjGJPFAPN4PFH03zmKD6zuKx1PN6MIz4a6ep
ioF8+4eh4sx6mNyu2eyghYHo0tIO54p68FhT+lXPAIMFx9z2d5R6OJV7QmaL
LQbtYtLSmgcbgMio9si9jkGNoc+FrhMNUHfwrmjqHQx+XKkvDrzSAC8+Ni+Y
PMTgQ0OQ08+XDfB5Mou/8BUGibNdWa5fG+B7np1T6FsMYlV2LK2obgBNucxz
SxkYBIWNppozGuBbKZ+AQhEGPtl7WDT+Rjj08H3f958YnBuOOxQn1wjsZv3u
tdUYWOsbT/eZNILWS7faxjYMjC+80bvl1AjWK33ndXsw2PucF6no1wj6r670
2A9goIxlbPN43QgjdwL/fZrEQHYjX8jqvEbIkFV9NjKDwTpLp9bPdY3w/pyE
bTUFA/5b+RuthxtB0l9p4BQDg7kMYT8WqxGUJD50vGVhQO89X/l8dRMEXb4w
8JKLwRR/hYS+YhPEPMl4Yfgbg35tWY+hXU3gKPTfl+fzGLS6+heGHmmCzx/W
lCcuYlAd3bRq85kmkJiQ8LdawuB7qbJj7dUm0C0P9Mr5i8FXckjmxUdNUO1C
talYxiBNpm9BKLUJhr8V1If8w+CVqaZlTkETLB16c5OI29FXHyYfa2oC719z
gsu4Hf5ugsEba4INh3KVq3H7Zvs+SOTh65X2+ejgtqhm0UyTYDOYbV70dMP9
p8doR/9RbIY16tkdpvj3DRhfdHbuagbV4Tj38T8YdFltHXQ1awajkpP9Wnj8
l76mhcU7NYPtRi26Hp7fsvAmtWqfZth7uMqFPYtBwpWkVu69ZpB315lyx+uz
o0X62paXzZD6Uu3AQ7x+1dvj5R2z8OcbatTc8fqeihKufFTRDEGH8s5ieP2Z
lEjP0u5mEH+64eMuIgYPjvKL0InNsH+spGjrFAaKn0MLNv5pBnShya5rFIN8
wQUnW7EWWEmT2qM5iMF4A5aRr98CJp5HJvk6MLix9Yr1tGUL/CqN33ajCd/v
h0TuercWEFMYqkypwWDf4dGDtx61gMqr5yT+7xh0fjxFykpugVwXmWXIw8Bz
VW/MSF4LPBqtDtD8jMHz2uYhGGyB9LyIB5teY/i9e/heAKMFHE0/flN6hkHl
/aqtH1a0wq0EIfuuxxgwjH8Ert7eCg8DpqTNgjA4UvVRtC24FSJWHHxx6RgG
Y/9tLlqObQWRazcvkg5jEHg32UX7QyvcVjf8J30Ag/fwPPN5SyucGREtCtmC
wZ/yu8bOim3g5Tw4FICf72cbl8hPtNtAvfnRdXcSE9RDb8aVm7bB5ZXZDsuD
TDhxwHfkP582ULL9oAkVTMgtdblBKm+Df+J+HwbCmXBYoV9RvrsNfIzccnZe
Y8LIreM1FsQ2UIlYk6fpwYS1+46K54i2Q7PsDJ+uMRM8vu/JCjzbDgQ9RcaR
JQbIFkqMrVjRARHifSlBbgw4Hf3HYVqmAz5Z+aPvRxmQdn6mpV6jAxqVb5Of
6jBAY31JyZNTHTAXGjchI8AA4xtuL9bndcDGLtFMt7d02JPsmJGg1QkLu4bC
p2pp4PSodfKBQSeI/qkTavxEg9uBhzbeNOuEzZmTj45E0aDKakeCk0snRJ07
5iJtQwOrv8v3Nj3sBHU1qXMznVRwd804kznWCQ9Dlf9drqFAhMWGpCRKJ+g6
uEhy3lIgY098bxSvE0wKm4qlblOALhps6SPUBUS+OIWtuylwA1nv09nTBVIl
1TFPk8kQ/d+sdFlMFwQW+eS+OE2C4imT1o4D3aC3kD7Z+mwafpnfY8cc6Yb0
nIq6MY9p+J1TIWN1vBskdI72vtCdBv2Qfe6NF7vhGsNsgNdLgB9SWr8rn3XD
3UGZ9rsSBCgxVfgvn9wNFLm7N7cHT0JZButaQkIPVLXoVCopjED15ZQNTvRe
kDejnwffJiigXLni+rsXuAl7sk4FN0L6JYOfHnx9kPXlJqXuQQM88Ox39pXu
A0eRg2s/v64D83MSr+8f6INYicQQelkVdDg9kMuJ7gPVs5GOea0FMGLus15g
5y848mq23OlSJppVMxTL9umHLSNJ+2KMe5DRlHFDVFA/WFWP8vW39aDIFPOw
S/f74eVzz5PUU71IRtoBU0nqB5kY63Y33z60Z8WVjte1/cAiH5/f9bIfBQ0n
xj3aMADCL6/euPtrGC3F8cTONw3A/oBNL3/zTSFTy8WGQ70D4H4vyoILUyh6
Nd9dpfEBeLHyFTXlzhTaGCrMGuINgNah+MLZxSlkdFm589h/g/C8pyfnNkZA
YaZ28XBzEN4OVNbY1s8g/oUv4hu2DEEOJSdAexMFbWgz5oLWEFCPO48rWVGQ
7vvBvvP7hmCHgVFHwi0KunB0zZsc6yEwOhh2dG0PBTUmndtifGMIxrbcduKG
UdGkz8Kai3eHoJ+UETnzmYoWD8VTn0QN4edHI+BYDxVpUMtz+1KHwPLBq6/x
qjQUZyBv4NUwBH0rVI0iKmkoUzRPMbZrCGxUWzo3EGmocurwv/zhIYgWsXyz
WZiOOFGBtUvYELz5Grvzqj0dnRzusImXG4YgpRLuvxE68sv13FWkPAyzVTbk
yb909Oj+X6khjWHIPi5GUdvEQCU7dgyqHBqGB07kpN7TDKR4O9Lju9cwxGAG
nMRuBtKz23h45NowSPxhBfowGchGtVB9xZ1hsCnls3m9lonCWicZFs+Gofvw
q645QyZKfBfU6Zc8DMdumFO2ODJRXqBYQULGMEil1O/65MdEU4qGQWOlw3Dm
LZ9laioT/WH1OAvUDYPG6J4UiSImkq67bKjeMQyhHGuVnmYmOuyTyH+VMAyJ
+UDfz2Oiz+Xc6FXrRqAooelPuBGGqp9G+W2XGQHyzZfnD9tiaOjC5uO2/43A
15WMeJuzGFonaiubpDsCm8+1fVcPxdCWqZmFcqMReDITe3s+CkNGxbdHpsxH
oFzxcpJgIob8XbPea5wZAUEh25czuRh6rHMo4tjFEYhgDZ7OK8VQ2uoBzxsB
IzA5+978ey2GSod8j74JGQG1ZOOTC20Y6slZpVH5YATEDu6OvP4LQ/TwZNGZ
uBGYq+kf2T6GoZWOu9lrX4+AnenTc3IzGNq4o7lHM30EFPraVQxpGNrzz63Y
PmcECo9s2pXIwpCVdWW42Y8RSHsalSg1iyGPN0q2+tUj4EQdvtIyj6Fgyp0N
21pHIOuQW1/FHwzF64+RFH6NgJJ1gADjL4YyHhgWrpvA4++7r37iH4bKepLv
LlNG4J2gfshv3O7evGTF4uL1avfY04nbFD8X+am/eD2VNZImlzHEV1E607Nm
FJCvEGkb7k9mnUJ+ncQoDBEnLmYuYkjD+dad7xtG4T1F8NLpOQwZZw5YfN4y
Cjdcz+0142Lo1G992Tdao6Cy3kPzHBNDfqavCNH7RqFJVS09n4yhyGe/c++Y
jELj0ZB5vSkMJU+cuO1vPQoTh37H0oYwlK9ZZH7OcRT+bFnu6O7GUONt6fUO
7qOwUDmiTmvC0FjztUmzK6NQM9UmrFuJoVm5nmz966PAlyvK+lqE7/9FneBt
YaMwQqQfO5GFIeWip4c3PB4FjsavfI1UDNkcsxtfTsbjgZCnnvcxdP5t7hdW
xii0VRhoNAZiKIQhGjSVNwqqq3bwOV7AUObjNvH6Wjxf9kjjogmGKvo1Rr+3
j8JJU77VYjoY6t0S/fnzwCi0/NQTsVXC0IpqC+MY+igIJFw0PzbHRHLiWaJh
v0fBvEqAIznFRJqua4f9+cag9YjYsX8tTOS82HDNQXoMbtBFXBxTmMjffOvB
w5vG4Gnsj6zqCCZ6+DJy3V71MZjNcl1wvMJEhTpmHzccGINeU7IS3x4mar6b
HiByeAzifL3bJBWYaKJdwOif7RhYkY5usf3LQCJXqn9NeYyByERarWkVA3l+
AMGsJ2MQm4IqVIGBbrNTe9+8GIOXvwTiHygy0HNYfhfzdgx6Xs+9EF+go8rh
sn0BBWNwinJNICOXjuSlDa7sHR6DmN8Uwz5JOmqN0G2v3z4Ol1qx1c+/UZGB
WAv/U71x8N8SSHkfSkWZSe76LgfH4dQWpUdl5lR0Pyf2HXZiHJwU9czkRijI
YIB8Ve7eOFzZ6qt4f46MMnekyF7uHweMucdHmp+EZIp3W+lOjYOk93fBU4iI
Ig42312mj4OM2bRvSQgR5WX9CTy6YgL8jyS9H2bPoCdIfWxUZgL0hSrNm3um
kTElPG+18QQ4OwWGDftNoVua7c1XjkzAp0s3djUqTaG8a/IznVYTsDGGtIi1
T6JNy7nybxwnoL6tvnxh+yRakBwN1/LB1+e8x3wKx1HeAf0TpxInoCfGt2Sd
1hBSiqctfGZOgMn8i+d7H7SiCvewz/ncCaCvPTs2KtGCXHdLOf2cnwAx099r
FFKaUPIvgx+t/JNgUEq/FZlbj+Q2Rt3AZCZhB8U+5H5dJZLMUufqwiTkMe/t
sFj5Aa2qvUBHcZOw1zAtYP+XGkh/sfCmMWESDn/V67muUwemF2Msu5ImQTyO
knW+pB7ChYqypj5MQvboozPK9U2wbLfSa9WPSQhp2J97ZbAD5kfTZiwmJiGQ
tXS6gN4HtLnxsT7tKcASLnk4FkxA8cW4aos9U+BobfWfu+Qk3O03ykD7p2Dd
JedrP/0nQeZ7is/nw1OQ2pofaLVjCuczl6Xbp6eAz1btP4tXBHjN+yWv+mgK
TNR6FYQOE+HC+ci/iTFToOnQAimviKDdqzcp8nwKKr5kCWqQiVBfkJA5lzIF
dRkWpVsjScC+ely/pWAK2O98Dq0pIoM5u83h6vgUxHFWCi8OUkHKPXQvaRp/
nmM8OS1Hg7FODcXT1ClIHu08HnKSBoF5Twhms1PQqz1jlNhGg7d+R6/KCxNg
SLPdROILHS6Pz5+IFSdAtGpFYf8YHXRtM/cJyBAgTPzVxS0SDGjWXLOC8R8B
GAy2q1kAA34zauMq9xDAcO6zu7ISE6rOBF7TO0CAj6ohdtmHmRDdpuKYdYgA
f0eT0lNxfa6cHb4pwYoAKSqbTT8WMIGhqMO/9jgBnHQSlAp6mfAjenIm1JEA
R2L23ZPD+dza+2D2xXMEqH0pVzO8EwO5ESx+5CIB0ud+NOmY4/rR8m3gMR8C
ROmpp/e4YZD90+ZU/VUC3L/fI/vzJq6Pdyzv3x9EgFCZheWZaAxM3mQr5YUS
wF5c7Oixd7ieEz4jsOU+Adq2bP+z8A2DweB1pKRHBFj47aE9WoXrO+rPZtFY
AhSIH1KYx/WQ7ytblcvPCZDRuP2e5AgG+qaEkLpEApxv/ybkj+stPvaN3v9S
CXDji62dKIZBc4rQztsfCLBRv3YF7f/6ziL1QX8mAbwS/GcEcH3oOrdrTCeH
AHvyvg2cxPWkenrdntgCAnjvMeicxPUm284pjvKDAN9mrwyk4XbpXzrJtIIA
9Zl56xNxvRmRdffguxoC3FXsrkULGNg4Sif9aSTA1c/H9svx8HqtzGSfbCeA
8HwF6S0dr1fefov8HgIIrBY9foKAwZczHWkigwSo9qBv0Mf1fqCQx59LYwQ4
+m79CtMWDIy+/7avJeD1GsroDy7DQPB81FclCgF43gHxQ18w6BbftCqESQCN
HCv9c0kYJJd/O/OLS4APRZ5c8QcYXLhsVrxrAe+vzQlriL4YaMoOisYsE2Cx
K7V74iQG8zXeF8kC07At6nkHnyGuxzcmyL0VnYaUp5FDOQIYnGzeGrAoNQ3l
xa98D0wzQenmz6YT8tOwJc3yELOaCfmdU8HrVKdhn1cCtyKYCbdDb/Rc3DYN
m/gnDo/Z4/psu5BGjeY0IJfaSuUdTBi8v2v01r5p2Cke5LaxF9dX2nV6fUbT
cM1PndX7kQHeo6ditU2nIXNvXnDhdQbw6d8Fks00TCy9zsXEGKBGbX/vcH4a
Vr9ZjQVr0oH18txirhce353s9hdsGpSa/D4u7DcNCecU7KfzaWCdsnFl9a1p
EJ5KfKqqjZ8/O29PrbhpwO53619bTwWjv/8qohKm4X5x9KcrzRRYk/Vclpg0
DWIFHj+/hFLgtcDPxuR0PF6/eCexcTJUFa/dIVQ6De/U+NtrYkgguvETNj09
DXaMuzK2qdNw8OT9UQJlGoKdtBdOHZyGq3FnW6aY0yAw/pKhOEmAXyvkPk3M
T4O1pe6h6U0ESCU+ch1ZNwO2agHtzCeToJl3ua1HdwberZLjv+E2AtYmml+q
I2Zg+HX2m3uqLXDntlBS1eMZsPiznZSi0wR5RcTIytgZOG2b2/fYqAGk1d+e
q0icgZUbvOfM7GpgZJ24QunXGdhd/ImrUV4M3r/Yj771zoCftgSlcz4NRXsV
eb5TJcI67xiRHSHdiHow+5HwdiLIq9cP3IjpQUfkPmbd0CJCqJtZZGJqL+Jv
SGBaGRDh/U1vmRXlv9At1cAbC7ZEOPV6yW6UNIQ8x3Uij4cQQWzfSlKe/ySq
Ld6eWX6XCCtW1XZL0SaRcqxys3okEfIi3/dsPT+FRg9Iiv6LJ8J+TzUZveME
5PCa/eJLBhGe+zFFPirOoEMn8j6u7CZCcWpAsKg7GaVqZDb49RPhduGFW/ur
yGhJ4B1laIQIyaLqLy4pUdCP/Lid30hE2HJkDyGpj4Jkoh7aKjKI8KMnAD3e
SUXX3MMCHnKIYBM1InrsPhVpivsVnflLhPzrZj+N1GkomuTZ38hPgpe53xuP
3aQhaoXrwm5BEkjR6r+ur6Whjz42hkJSJHCpOcCOOklHii0764rVSbB1p+u6
Xa4MFJy2hbRZkwSfe5z8OpIYqP/WxrUxu0lQH5I6OIDrl2fqItYeRiS4XGKl
L4LrE9a/lX7tJiQ4K3VrQt2XiWz6l+L3HSWBeyVtOT6ZidZG0nvFHEjgnD5s
sp3NRJ5npn8HO5HgNqGr3loWQ7W6I3JEVxIcqPUKTjPAeXJdr8Gx8yTIpXxU
UHbB0F1Cy+kyLxL0859LrQ/C+bS05s5WPxLsmbqzN+o5hvY/+/nuWSAJeiuF
nS5+wVCiV0H131sk8LrrnXMK59ffB79MXwojwQZ0W80J592ydNqbmxEkkEkS
EAyZwFC4oIZ95GMS1I2EbFhFx5C5t7fQi1gSVBPlRrg8DIl2fq368JwEZ6pu
zJvgeqB3NyMoP5EEKVku9hyc51+/2qldlUKCxPYbK5dw3nf740PqSCNBlZyi
kyv+XO1sTurYJxLI/VvqlcH5nl7NPMH4SoJP28Z0VHCez1fTEln6RoLBgaMX
7lEwFBTlVyv0nQQcutErrVFcTzFzQ+TLSEDxH9HQaMf1znGWjnoVCbCotbXX
yzDUXKRN3VNPgkeF8nrCmbhekQ94b9ZCgquKPs9p8Rg6GfrtlEMnCdZLi2jK
3MSQ4iRbzKOPBNzLpvFRzhiaMtVpCBgigUnS7nDz/TiPZ169c3ecBE+S3dba
yWPId12BXtw03i8Xjb3e43pR159LT6GQIK++QcWwjYkWe3anf2WSoDN1cEHl
AxNFvimUbJ4ngcg7aYP+w0xk9Y/XNPCXBOpvjC9kSDORpIfePRI/GTrzyZr1
4wyUur0YWylCBu1tJtR/Pgx0PvZ3hpQkGZYbijM27WKg7Zw9rsqyZLDZOfDq
FZuOikq+t8JmMnQ8ef4o/TIdBW+cv2+jRoYXpusvgQodHby3d/+ZHWS4MJt8
wHiQhlrNSz4H65Fh9YXJK/GGNDTdXxpZdJQMvPT1Lt0kCsra/8ew1oYMljnE
u5rRFOT/dv9stz0ZJqMrBhQ0KWjJs8yDdYYMZfOM4+WXyUj6d/nBHVfJ8G2h
aorcQERDTstz+26SIXfMTT3CiYjelRvlmt8mg5GZ/TKZPIM0HqCNnpFkEPJs
kd+1YgaZSlctvntNBo7Y1HKRHAEF6tQWytSQ4dJijlvkwCjy1P3v3dNGMmxp
V0zemjGCTu25/WRdOxnCeHaKiv7DaL+B7jn+QTIkfPASu7MwgPiN08WYTDIQ
6VNL1TM9KO5YxOU6BQq0DQ5EuUZWoyx/0/8Cr1KgX3NYu/pHEyRffSeM3aTA
7fXPo3KCWiEmcOm3Fz4nmpw3nxLd0wH+QYVtZx9RYNYtuW/Mvhv076qGWKZS
4Mq5Tt+rOf2gHn7Xs/4DBUaEPYMP/BsAhYiRY4c+U0D97NEYe+shWH6YoK5f
SIHKAWXlfFwn18at/KWMzyWSVfbbNxjOv0/dqlI6KMA686vve9QkZD4v+yrX
RwFmsYFnncoUPHkVeF90ggKUmyXIxZYAx99Oay/OUqBBKShXLGoGTN8fVLz+
B/dfp21vJ0kEvQ/Ja1h8VFCUejzci/Ov3CeHsRlhKmjLx6WffE2C8ZzaJ12b
qbCZ3zZndQgFOhkr6TpbqaDAKLm0g4L70TCzStCgAq8+8ba0AxXeZdWtc9Sn
QmL42VVMJRrEU1b5/DiA20X1QWV3aXBP/XCbvDEVCi+uPCo8RoNzGfUxI1ZU
aFc4R6LE0OH4zGqm4XEqVPM2pjhP0MFE9YjNW0cq2HZrPBDRYoCux8McvjNU
6HrnvJ53iwGqaQ2i585RAXu2R5uvigHSk2v8ai5SIbbwP3XVlUxY9Z95h6oP
Ff7st6s+bsIEYkpjHOkmFe4/u2OcUsSEXyOCLPNQKjxRIwm/JzOhYcNRu6xw
KnjK7DMNk8Xgh/PjPOFHeLz8sht2GmOQmdQk7hNDhRM6F03fXcIgcWBtQPsz
vB73ZP60R2HwWNaiSyuRCsumHQJ5mRgEn4za9TSFCkPRH3INqjG4/KL5KSeN
CnMbssY8+zFw7hXi2GdSwTkihn8nGQNLKcvjRdlU2Fe9bnMkzo8Hjj/Jlymg
wqlS719XljDQeNoiGfSDCgf/DjoO4Dyq2Cl8bbCcCv3apdfrcX5dJ2bVY1BD
hSvh9JRdOI8uWUfvTm6kgub9+dH1OA8zoluf/22jQm7X9hm/CQzGWtbxXHuo
sIWbutqwDYN2IWuHygEqrK/U2x9ShEHF0ZjCzWNUcGm8qbIN58ucR23S9wlU
WC3tsfZwEAapDSLXp8lUCMhQmeo6jkHcaps+MyYVtu8otm1Tx+CuWazeJy4V
inQD0/YtMsE/ov2F4AIVGm88HpJrYIJbjehvr2W83y4e++wTx4Rj/LYnWwRo
oJ2ffHU/zo/Gh+KKNdbSYJE1ah0pyQSdux0ysaI0AEnDNfZtDFBGYjcxKRq8
IsX/9+k+A6SWbfvt5GlQaWXU/UiPAbyQzldSqjQog9DrEtF0mC4Vnw/cRoOW
wUXfRm069C3YnfqliXOh9ieJnV00KL7ZJZe0jwZmsgInt66iQUaxxK1FIxoQ
Thxt6sb39dXssUEXUxp83P33kaM6FYKudSdtssXf27f38X/7KXApX3IxzIEG
8/+t8bxbQQYn9nHnSScaKLRQ61mGZDDw61FIP08D6Xf2esa7SPDncu+bbcE0
qI8x8H9MmwaHPWeeaobR4I1v7s8Kl2n4uoIYuTsCfz+S1yXQRADXxLkAw1ga
pFlU3uJ/MwVVdQrmx9JoUDvL/7lr0wQ8/M+dF9RMAy2+xejXvn0g9Yth1ahA
h/XtGHZa9APyfn/DuE2JDpmbQriPLXJRrfc//W5VOlzQc7suWlOEbghIqIzg
XD0WWe267m8lGtTWXcCM6bCalvFHc1Mbevsk+KPsFTooMrm9N+2G0PxJgTeK
/nSIb7bu2fRzGNkpR8dvvk4Hi/0NQcubRxF/SUrIjjA6cOcbxkII4+gCsfIY
PKfDikDtQ5GvplDFt6NHTBPpMPv5340oAwKSCe0+cDQFjzcLRdcMEVCj1PRW
+0908FlpP3xecgbtOLRm2fMnHVof83VcciGhvKwvWwcqcX+hG1Y+YJGQrrTd
saP1eLx2SbLO98joACkxfUcXHVwb/5BzX1BQpZ1he/IvOrBTSuo5clRkVjo5
JzJCh3BLXtfVV1RkE7PdkkWkg1DLR+fiBzTU/bs90J1OB7/il98OzdKQo9u1
1G42HSTduXNJZ+lopEm20WSODgdV0//7WEtHbrvL2IVLdPjBEflzVJWBppPd
NqjxM6B0jbmB/x0G8lq9yuzVGgZUNey9zdfDQFcHrRNvSTIgeK4HVl9hot/G
nCqqLAMsTAa7juUwUcjXlzSXjQwQtPyRUEBjIj6Z/evblBngk7NNRV4FQxFh
40ZG6gxw/s7YHuCAIUHK/Uu5OxmgF7nq2pcwDMUcV3/2324GjDJqJn+kY0iy
rPXn070MoIsUhj+pwdDLLQEz/EYM2FliHy0zgiGFuPVigSYMECp5e8GGiaG3
8yV7Z8wZsIbP/4s6zl+q51zPnbRhgMfEe71knNcyW/ijG+zx+M6KKr7HeU1D
71PRXicGHK2w+Kk9h6G8VMvxz64MCHDbVWKG85muIEtww3kGFKvtWjvSi6GS
gASdaC8GeN1wZ7FKcF4b3nv6ry8Dtkk7rb2fiKFq09EHvoEMWBKqP/LMH0OH
c+7ljuP3vv9I7R8lY5zfZNUG7cIY8MlotldTBEM295r5qyNwf4UWM9VdTNRD
9dXYHYXnd+LVh8k4JjrlIHUyPY4BRSodjKdHmGik/HvY+hcMeOLCLzwyz0Bu
W09/jnzNgB51keymDww0E8/XM/eWAS/M/7AvmDMQ0+Oo2lAWAzZW9vwbvUNH
V9sYtpZ5DNgx/Hdbvzgdze15dqusiAEDP9RKS5JpiE9ouDW1kgEiz8JjH6RR
UcS1sN9i9QyI4O/9+EqRitaOqvx3r4UBWzJPN0zHU5Bknvc1j18MeK5ZcuXp
JTJSPbksr05nQNPGRM8d/TMoE6WZJLHx/eermONXm0E7tx3xEZpjQKV0hfKS
3zTasxRXSV/BhPv+0XsnZqfQkbTNF7/JMoH3h3dG5c040k0UVatXZMK2vHrL
W2Jj6L/YP9NDm3Edv+vymYDQEbR4q+/cSg0mxD7xaLlyZBBlH3vs6ngQv4cb
3t6feNONpFawT/y9xARd/vqRC/vyEd/cqLSkLxMExz86mkhkIDq9uUftGhOe
ubiv53sdi+oH0o/ZhTKhfK2F9zr4CLfyTll/eMqEArKg6q/yGhg/W2l6tJQJ
F/O2Guth/dB6IlvAFTFBPVNNet37Qfhh+br6ai0TelOMRVbbDMMz/cCDye1M
aNTbvY/wagzMxNQPYFNMeH+Nuy3Afwp0Vq3/I4DP8b1hN9nftQmw6c+KUjkG
E84zvqnLMwgwTxzWN55jwg+DRIMgpxn4UhG3+4UwBrGixAbqH1yHFN7mfBbH
gPiRYWqSSIaILK9vFesxsHOXVvPQooDrSxMtshIGIjC946w1FSyjtZlLqhic
Zxe1svA5ujd8Y7bEdgx8Gj+MF+JzQMJ3bvt+XQx01IUWLEzpsOwxTbHdh4He
92PbhvPpQHXqyjxvhEFWB223wgYG9NtWXLxlgoF/LJ8+9TYDas2+qMWa43O/
LDZJc4AB3/YnzqRZY3AtWHZ9K75PqbsepH/H526kwHqUGcyEqK1XPVodMejx
2Cf5tYoJNzeeVZ48jcGQ3NW5ihUYnLPTPjnijgFF1T+gAo/D5v6KqH5PDHQt
YtqplzEwKO4u776CgXbYUqjOCwzUKB/Ybf4YnDKjnH3wAwNJxetbmq5j8CvF
r7W3F4O/NoedaoMxyL1j+1qKigH5nmwMCsOgQ89py555DHoLyZWlEThXaMY7
/P//NypJJbyix3i8iSve/cN55YvCE/VvsRj4+VvJvJrD4KX16dNfn+Px3B9w
5+I8FH53Z/ynRAxql0raxHsw8C1YrklLwSB6J1gwcD5xInbMpaRh4LhHLeDR
UwxM5d/vSPqE5+8U9JhwAc/D6urZhK8Y7K0UfLJiN85LYSbP477h3PMoYTNp
nglr8qUboorxPKXDc19/ZwJnembxwU8MLO4Z2qn6MWFM9rvmvUoMON7aQzFK
TGi2eHTudh0Ge8TsJ6Ya8Xsk1OnlzWYMTKgOBdpXGBBN+PPXB68LTdrhJ+81
HYJk2nZ5DeJ5U4csYtXp4HE09cL5MQy8f+W6XMylgUHuwTZnPM/yZ9kjuz5T
QW1KYsVJBgbPzgjHOihSQWI9QfcYBwMrG7aR/GMKkIMfJB/BOVD5k+/8X1sy
UE/uuPSejwVmZypmTmeRwI0lxa8kwIL6vm0Jw8tEsFSZ0VMQZIHp5Bndxpcz
oPz4YYq4JAsKusMNMiOnIFHZXz9WmgVzo/KaJsWTIFp2qktYlgVSx2IbD09O
wAJz26o1iiygbdEvfeowBp0Ord5/t7CAR/ly5eWGfjjMLFwdos6CRzahPhcP
9EHZw5R389tZcBmt7D/m2AOfSn17uVosIKiaGz9ebIc7/0kcoO5jAXvrrg8H
XCpAg35CuN+aBZFv/sxbb65CPxysUJQdCz5J2GifD6tDJuXG14zsWXA+VHdH
wEATco7VGv54igU799mF8+3vQo+1134J9GBBbIR9QnDyIJJO+ueq7skCCz12
mkf6MHq34rfkyCUW/BX79totfRT96J4KNvFlQVHPY9+F2glEDCyzkLzFgrit
/O/yvafR1dH85boQFqTff7GLcmQG/TX7nH/rDgv09vcJvlckImnZlwqT91nQ
PxAW4fWNhN6FRbcnRLJANih5iexPRhrk8HDzxyyIqvB+3aBOQSYlftTcWBYk
nHJ2f3GXito3e6Z6PGVB7gHZCIH/aMg56vRx2QQWSEx+mW0vpiEi5/jqlpcs
SPpJlC03xeeLy9HSO0ks6KIK9r9ooqPlGvDVSWbBWPjvahUzBnqssUeZmMqC
+OXWrbrfGUj6hcavpPcsWNXZu+WVEhO9+6scZZ3OAn3ZmkalO0yk4SlvtOIT
C7YnHNyU3s1E39vFOIWfWXB/OcvyryKGjPVXZ1z6itv8qz+sOYOh9rdLToq5
LLA6KPE97RmGnAW5Ip3fWODZGuT7rRxDRH9K1f1CFtT0rZdRGMNwnhm/rv+d
BdVGelfruRj6e+jXNloJC75uHWr/gPPBo6zW0dQyFgy/4Yj+35aWqnl6HLFA
pTWw9Ae+/l1IidnqahYM3nERHh3FeWI6d6GkFrffBi0I49/7YZWR7dPAArLy
ejOzpxgyKUp239zMgnfFJ+5GO+Pxbny+vq+VBWdkT8tS5PB4Ix83PepgQcXW
jY6erUxEZIaFHuhmwQXb6atS15kowPHGLlYvC94v334kIMVES8h75kM/CwLe
/EmzzmCgR+oeSY5DLJh6oFS2Tguv71Mna+FRFty2Ni87m01HbxdsV6BxFpin
zwd5baaj4uYDXmozLFCnBq47SKMi4927Nw6RWLB4iyXieYiK2t5s64qh4vu7
iEnNxlDQtLfMvlmMBbqjxzO2C5ORf986RiaHBazoIx3mB0hoyVDg/elZ/DzL
Gimi80QkJcYSrF3E97s053pL8jTqLo96ePQvC1qr60z3lhPQM+8tqzv+4efx
Pzdp+f4pJNnsLDC0kg3Mgh/9pvMTSPJB3V9MlA3tqc+YzqxBJP7nNWeDChvc
PVeydLorUednvYD3W9iwduazt8f9Hyj+VCemps6GB6lOXc9ycpBY8SrGrp1s
OKW1UkT72yMQDfAnHdFnQ+QZr26Z+RpYRzIbuWbJhjGRpm9jJcPQ+mLCecGa
DX6SC8bLXaMQbRoyeMeODT3/st88nhgH4bS8X49PsKEj4W0HlzkJzXaWJ8RO
sYFd9OzQ+5kpiPo305PgzAbdtEY5kV8EEDqzoevtWTZklPBzf6TNQLNwse2W
c2yoTNy3ePQOEaJK7dqzzrMhsFm7eP9xEqyVi2wp8mLDVu6afYuTZGis/89i
vzcbvEXWu2xLocCj6z8bK33Z8IRvt8YdWyoI9rDqWq6x4WBV+6ngRBo03nti
euwGG2YNX3xIwnXRI221ml9BbDDoFPjZXkoH8/HKQ6dD2HBaj2w/egDn5FiX
yslQNniN3w6ILmRA/YHfRhfvsmEub3V4Bs5ZkbT4cno4G4Ls7wQv3GfC4dc7
Dlx9wIZdm/TZJ4eZsPpofencQzbo5F3XT9iKQf2c277QKDa4RJMDoi7hczPj
z3f+GDZsMp7NlUnF4PCJl3sexbGhjdy6QqERg1UrdxWJPGMDzBvE3CLiczO/
ZffzBDaQ+ja/37SAQYS7Z77cKzzfssSG3/g8NhVfsSs1iQ03/6X+4i5isBK9
yVVJZgPfGqd/wvg8Hzpgaj6eyoZ1tqXDpvicyy2lT7x+z4Zuvk0tocm4v70v
bp1MZ0P6tUuiZW4YOBcbSkp+wuM59mObsCw+f3WJWW2f2aBxuIV5G+e61fmx
Jo+/sqHKMzVimzMTRrT0R0xz2eC76oC3Fgnnm+zxQL58NkRlfg4v8GRA5I5H
ImWFbOBKUf9NDNDh9GftjJvf2VAcKniNYkgHna2DRrtL2dBkpvJz5UsaCH68
188sY8PJLp+//pNUGFPe7p+F8H4MU068+h8VCt51C3pWs+HWurOSDvY4zyWr
GIw24P7WNMv+e0ECXYXW7sRmNiRTqZUhGURYmxh4xaGNDZlhl22Nvs5A4fO6
5JZuNgz9nbtukEQA4ScX/5WMsuGNv5lfuPAYTAiKJ16fYEO2z4eH9KRhKI78
ob2LwAaGV9PvCIVBOBe+9lwmmQ2vly511/zugR+3vtS+5LKheqOq+OVb1RA7
Z3/m+G82KPnfj9f/XQIe15dmRRbYYCYrx73TnY2fN+utD5bZ4ETtdc/WSUEX
LmGPr63lQNqjZ3VCTU3IgPhKWWsdB7Qa28cnDTuQ+PmDP6miHPinTFz55Xg3
Kjv7lO4uzYEFpbWSye/6kaTjbls7JQ7Un/ayvD4wgci9wyRhZQ4cyi1YsVlw
CpUfj7jboMoBqx6XkJ1aBHTJpu+b0XYOyHontfHcZpBRa6jFogYHDGqergm7
jN9PFmqEIi3cv/2Vm2u9SKjC7Kb0Tj0ODC/d28U0pqCEGqVssj4HKhwOtB3Y
SEVehxrN0g04kK9fQQykUpER8h87a4i/v6mwZVMWDUkbyt/ccJADi/bV/xpd
6IhaWiXWb8yBfeFfHwr+o6PKvZczn5lxwEeNt+vWcwZ6WSx5yMacA/JXy0bK
5Zjoiu7PwbWWHPCarP5xN5aJKjv7vv6w5kCvhFLTTw4TrfdhhV2040CSWtmD
G0cwdHmtsL2MPQfEi6uyr0djCH3colZ3ggPuVfYZD6rweWV8cOHaKQ6U3lqR
GUzEkNeYc6uyC16PlR/J2n8wVBF8/W3XGQ583xVfFY3rYynZ+Kt33TgQEkno
Csbn26WCLDMtDw6MnWcqsn5hqNy2Tm7sAgc+dgSpUj/j+pw+Tou+hPsnDCz7
emPo4qPFiv1XOMC/8P1SzCYMlamuf0b14YCrkU/36UomkqjSupDkz4HC932X
/h77/+9DFnvNr3FgBfOZfGIPA/1cOC88d50DfrtSn7nivCD+MmzsYxAHrBs3
GD75REcXdF5/cwjhQFGZ+273RRoqbS+MELjDgZupKjoaRjQkdqXDMf8uB7bc
LIk4eI2Kzq+hbne/z4EC6WD6YhIFlXxYuSwWifuLVrlfmU9GHiP70n2ecCCR
x328vYyIfgQ53FSM5cDhHM6rquwZJLLez6IlnoPrGpRv/nwafcfhRP0lB5aW
ti+cPTCFhJGo4fQ7Dgw1fdz4VGsIublsE3/+gQNHcvYo3rnWj4rmTAiHMjjg
KFBw8PHnXnRW+9bjt184INp1IoJBaEMF7wl9zsUcuHxoi/Navs9I0Gg5c20J
B8o3pCX373JDZ4bkbv/4yYFv3qEPy/k/wRopG2WZKrz+Dwemf5ZVgUvED9+u
FrxeQV68muReyPuv59Dddg4Ih5Ycib7eD6vKGdJaXRzwZK881XloCHJnlX9G
/+JAng89SCVnHFY+M4zdP4jv3+l/Xje2TIKT5il36jAHerhkM4fLUyBwMWaN
+SQHFIPj77n1TsMpgcyh3wTc3nI1TWR+BrLfVmd/JOL7UcQJ0BEjAf+B0bsO
FA4o5Na2KcqTwXFgzl6AzoE6a2XDzesp8DVQcms+kwM7020vveGnwgqJnYtu
bA6oZBjEMCeocDL7SJsYjwNnmmdYD3C98eXouXcVvzmw3d/Cus+HDroam41g
gQOrH2eq7RFnQIXoxDD6w4EE+Z4drz4w4Ag79dbBZQ7oRH88kryVCZ09Z2Sr
+Ljg/OEhxnrDBKdixaJDAly4UdDjbs6HwVTi8PHqVVzQUCibOOOAwZWQ1yxj
QS54rb1P4b3CgHfGKbZGiAuktYMXB/F5EnpQTsNUhAt14ntnxukYrFbpb6oV
40LJU8nCmb8YxK96edFMkguqn3JlunBbnuywql6aC6X74tyf4uvTmqU+HJbl
guWSjrwS7k8ju/tggzwXNm/YIXz7JQZFcU/HjihyIT/jyLmCYxgYXbW73biJ
C0T+7qLBP0xocBBTOLqZCxdXF0qJvGCCnX779yYVLoQwA1dd38iEQfmYExZq
XHg69jvO+AUDzi1ZcpvVueDqMLUzb4kOtDGhp5Y7uLCuJLd2hQMdAquaNFt3
coEpZ5wQ8YYGDyOPXG7T4cJJkzS5e0sUEPdaLWijx4VtN+e1a2Qo8Nqy7mO7
Ph7v7pEVDcpk+CpuMtlxgAvbTTY9XvX/32e4K8LsgAueX4V1bH5PQ0VfpWLX
IS6QKTGrAtsJ0Pna6FT3YS4UW5b9bD6N91vo39njR7mQQKxnHZGegKmzZc97
LLnQQlyTFxgxCjxVg45eOy6IZH08UCs4APK5eof7nbmwhrM4yBlphLSnPILj
GS5YO1Jd6saqQSOw4N7AWS78yAq+7fupBIz27SofPM+FxzmpogLJgXCuRkN3
xBfPP9Bi46UfDYj2kdZ1OoAL46KnfxaUtqHAR1l+o9e4oHPvZE7ery700Fr9
y1gQFwZ2jyTVZ/UjcW2S+dkQLghzXgbN3xtCryUziOOhXCBI/ZY2sRhFX/tV
lCfD8fVLc93v7SeRXukUcn/AhaqusUyb5ClUkfz+zNRDLmQ+/fVVY4iAOt2V
kgjRXIi+yBw5oUNETqZje87H4fkVLXYqWpLQlFpK7/RTLmz4kh4jcpKMZmkK
4sSXXFgleZWXB1SUkEJqSE7iQjczM0xUi4Z22xaG2SdzoVDL746EMB11893T
F3rLBdZa1aBVPXQUkG+NVb7nwpecbg+TSPx+Pa/w6WY6FyQ/jZrqqDJR7nqS
q+YnLtyp34COfGUim4YCmZnPXBDX73sviN/njKC77W++4naclNfaWxiK3m4d
eTyXC7E9ZYXMMgztGJE3WpvPhdC634U+FAw1xxBnUSEX7veceGKF6ycvKMi+
8Z0LZlHu787h80eQHXZhZykXGC7/6IkTGPqUZrVxuowLKVKn9anZGDrsIN/3
GnGhFXjGHh4YmllFjD5WzQV3y/Nc5RUYiviebypYxwX28Dd354dMpOIVtlTR
wIVOxyaC1W8GqlawKrzezIVfO3ir7GwYyL1VzlujjQsS4TI3WuLoiO/OjAqh
g4vzaszE3p809FYrfzipmwsKjs8qVLqoaPSZpeWaAS5E/iNvn6sgo9umcgIV
Q1w4QMzebJ1IQht+T5cGjnLhSMbo80VXfP+c7myfmuLC/h8GOZTvBDQvZDmV
OIPH/9jooJzVFHpVJvvalsyFM43rSDe6JlCf0re15QwupEn9jPS7NIwCu0Kr
rrHw+yn37IuZrQNI6r7Fre1cLrwZX+rY0NOLjhEJ5FfzeL/fcaDsZragtq8y
jVcFeKBp7vvnxDk/8HYlhG1bzYPCLYGWN/JyQFg8T39CkAdXRGvt1+WUw9Fr
Rz9Zi/LguPSO3aFCbVC373akujwPAgJe+ccpj8B5mrnR+AYexMfvUJx2GgeB
lPW/X2ziQdtNf6F9BybhEF/uBQFVHsR9K7tiqj0NE99CNpaq8SBiWCIw8NkM
hHmY9/lv44H5jrB6BQIRyusnTcc0eVCjlb5G1ZICp4NylhJ28cC597C+oxsV
/mwLKbTU5YHI1cSTH87S4PXwEW9+fR7kDil9kjOnw74YadWSfTzQsjx5cFCO
AQNGk8N+B3gwp9q8KN/FgJus7OdqwANjlTFrFX8myKQFW44e4sFHtFPp+CwT
iuyPCCSY8uDZ9KdwOZz3H1n+eKB4hAfyxJ9vH3zB4LTJNsGPR3kQnS5J3TOO
gdb+11E7rXhQnHRzlIHrC/7dwiLFNjyQvqRQH7qMQd/223FGx3ggW8wTbqVg
kKnMkGiw58E21rqAzjIMQhRcE2xP8iDvqZ7xi5sY2Eh2yAyc4uF6ln1LXwGD
zUIHk9xceLBuz64+YjoTeCu+baCcwf13vhuckWVC48Lm1AA3Hvxsc2h7fI0B
b9jP/ls8x4OHc2/fGvyggy9F4EP4BR7Y2HOrrxJpYDwZuEX4Eg+Sp3PmKpap
sH5w5tPzyzzgd+xfU7GCCuTOk9sVfXgwGpZ37T8WGX42NnxN9+OB2Jy5WGYz
CWIr92rtvMqDD35iT7c+I4JunoKu0U28Hoblt7NoBFiT+aS4/hYPXB/68tLC
pmDo7dJe29s8WBVwasvtlZNwL27M0O0eD8TvXvfLbR4Gh4e2leT7eDwVPk3B
DwdAPazSOCCSB9nzgq5Ptfqg3TftSPgTvN/4RH4YJbaCgo3nsfQXeD9qjJ6Z
ttIChll/j0YiD4J3fLp2pOYrqjQ0P1n0mgfP9wSUMVvKkOfO7S71b3mgcjpo
jXhOK9q35c2oTRoPVO/OfEgY6kLrNq5z60/ngcMj43vRdn2oYB3zPPkzD6gZ
o3bygiMocuVZkv9XHhwRFazjmYwj56UOr4UcPB/VJ2WeuycRH/2br1AhD7BP
Fx3sd0yjHoIy+1kxD+68rnTaGzeDMoafX9tQgp8n9h/OxUkismq5HqRRwYMH
qjkCc5YUpFRDXCys5IGtVjpN+RwVcUodQw1reHB+22c/3XM0VJ/f+K+ujgd7
b83RDSzpKClrX7hNIw82+L7656jIQN5pWSv7m3mQHrbKp7KXgQ6+3vDwbBve
r2M9fOXXmEjqWfRacgden+Rjzl/mmYj4+O8T/24evOe3zFo+h6GSe76iC708
WJ7kczuYj9/Pt8bj7/XzoGvj3VpxnP/PBthJCQ3xoHc09v5W/D7W8ap68WwE
j1ft6maHRQytcteR2zDOgz1o5PSdIQwNnPrw+sMkDyouX7ydkYqhr3bSGzWm
efDEjf/hzGEMhZk/eFtI5AGpecLTp4eJul0vndam8KBvaW108hEmUr1uKf+V
xgPFHexf7e8Z6OYTzV9bmTyY5ntICZqio+b3Es8/sHjQavRMVk2IjhR/8GyV
uDzob7q4OUiehvza+9e9meVBpzsMqUlQkfSflMhnizwAqQ6XmTIS8pS4ZyL6
F+/n4rmZ9qtEVLL1PF/UPx60bPNwb5CeQa4O24PvrZwFj75JHf/NUygzu9jH
X3QWZl5Htt/i70eLNUnb6eKzoPD5De/E9R5kPXSbdFFqFrxEvJPjvnQgzmoT
97Nys6Ca+PjswYFKdMCtw8FGeRaeWV3X7u4phdgb+RLNqrMw8Khkryu3Fiaj
X7SbbZ2FPZU6OeberRBZ4mJuqDELBZ1CJ+Me9UGnJHm/xp5ZIB8O/lT8ehKU
t7XMf9o7C/ZNe8tW7STAdcgpUtk/CypvRX025UxD44mnV98azsJQxtJilCIR
FLwDtTYcnIX4sBvfpm+QwDvckf7SeBaEXcWd+n6SASUafJY0m4Vm36ZUOSoF
JHM3esYemYXgzqu+oXw0OF/HpyJkMQvix0uMSH9pUDxMGH9gNQvLY2etbSfp
sJZTn7zCdhb2txxqrvvMgNOCWU6hx/D3pRB29SQTcjbFyCzYzwJV+NCaRCIT
+PT8ewJPzsI56vNT8U4Y2Fvax7NOzcKUxCR/dw4GGe57rL1d8HotqlUwZzCY
vykvRD4zC7uWNkYk4PepRexSvYfbLOiKxSjFzmOQkj5+f/zcLMS1qL2v6cGA
VVp90OXCLNy+srHEIB4D466Pf39dnIVs+0KejCYGCaRHpccvz8K6p5rjSdlM
IP29crPdexakq56vUhFjgoG0ra6F3yw4U8dHtOwZEL1dh10XgH+/yibKJZgO
YwfX5xwKnIV7eXExrg9osMtx/nL5Dbzez9qsRK9TIcJneOu+W3g+hs/DT1tQ
4Nf9iunCkFnwrymMObmaDNtev3+vfWcWau5GfFDNIsLtvAjXr3dnQepJ6bSg
/gxsHrUY+PBgFrYv9Ja8kpiCqOr9uScezYJ2xvjn0gMTwPmkEbnmySxUN9QI
q2aOQPVVUd0r8bPQctZlwfldL5wX7I7TeYP3b0SXlojQV2hlVHtOp8xC/4m+
h/17o5FeT4Hhy3ezkBBZ7aq0vgitTn1BW/g4C4PLYcT/VXDe8VT/XxwnLb5G
RAllJoRKQ5RORKkkDUnJVirZRXYkpWUTUUZbsrLC2x7ZM8ke17z3Y949fp/f
n0/387nv9/uc1+t8znlc984sNKHP+81PVWavQlzzQS4n3yG0aduZHR55uF4P
Vxef3zWKHrK1VxUKVuGqrHKzK3MMjY3vbu4twvW0W94XlUygM41S6U9/rcJ4
la8h3YqAcrMEfLTLV+FegvQaxswUkohhm8xXrIK+Ylhh8ZUZFPwQ25VSvQpJ
1ppR5zNm0ZzlCPt83SokoFMvae1z6LJ+Rw934ypMEZY3SP6bR6XKVZl5TXj+
Biz2HK8kIgWhvBCH1lV4tbHyiEwwCb1YSb+2tWMV3hgk+b+TwtDK35h9jV2r
IJRxSrPjNYZuoNCNvr2r8OIl13EaXq/qMh4Mq/7F/cxz/N5LFobUw28VDP3D
9bC+DR2iYCjO5erLiKFV+GC+6WJnPYY4l0/b642ugtyb6+vcXTDkqK19ZGV8
FYKans1bkEioXXo33uHj8e1RcBcyIKHD66RmzGZW4b4q5/ARTyJ6P8tfwTu/
CrtCTQrq/ObRxnZW3C/SKmQmtj5utppDbj9J9+4trkL2pjjXxB2zqD9xWF96
Bc9n3Jaj2SXTSC+oXbKDvAq+CnE7yg9OIZGzuY0HmKugfU3G+k77OPLZm/6e
wF4FjYEshTMro2hcLMYrgZsMEyesRoAzjPJH7u9krifDTi/Rffnf/yCpupvM
77xkOHssqdjIpAuFfjPrsuInQ5FsuGR9Vgu68kDrUbUwGVgKJ8/HfStAlP9Y
A+FSZKDc3pXX2tMI1ovEvKPSZKjK7JLk8+6Aht6hcJIsGTKOUQcRqQcSUisO
X9xFBluidx1X0BBwheUIrVUhw93TDM+Dp0bhtlMa4acqGVznJ1okNcdBW/Nx
zDYNMvyM4YK5WgL02m47lHyADJf8wh8eMJgGj1dZf2Q0yeDgRt5/9hM+b5ac
eJihRYaTzrYnrWdnIXOyT0LpKBlWRWOb6vnnwVDYufTbMTLoSAU8ZvATYfIo
j+UeXTJcPlO6OXmGCMGOCZzcE2Q4SGkQ8E4lwY4YtdRDJ8mwYSCyP2Q/BiWo
Sq/EkAzO77wcJlMwMJszm9A5SwYx3v6EhTF83t9CDK08h8d3KjJNmYPP83rB
uwxM8HidWGEbLOPzuvPWxoaLZHh6SttQDWHQ+CbzjpEpGZa232ug2WJws1aX
v92MDKdTjjZTh0iwZrH3+6VrePxT3H9+3U+CFCmn838syDDKWdNcZUOEI4bc
i9esyGAcwtuieGce+jziooZsyOC1Yq5JOjcHnu92H7C1JwMx862pjeAsbGqq
6Jm8SYb4X4brqZnT8J1s6nX7NhmKbXbqXd09BYRzQSWuzmTgKBntmsHn7eCH
YhYrrmSofXs1+Ah1FKQ/fGV5eZBh4d+kfBzvCFxldh8P9CbjfW7+Gq+BP9D0
Vbn+ZTAZfJsMN0peLgLH3nJH4VAyiA6l/r7VEA9r11zmiw0jw7HkQ2lxjM/o
mHnAubcv8PweM+OLj2pA/Y83Y9KvyfC1nGox8rsdeWV/jkiPJIOw9sXc25o9
KHtDV9fXODJs3mkWfLl4EBntd7yv/oYM3CExewNHR9CMJWtLbhIZ1DyWuKXb
x9CT8Kiigyl4fopLG7o+TCC5gl3Xit+ToSkjUWWdNQGVj5Yyjqbj+WQI7D/K
nELXBS4mV3wgQ6Sr7tpd3jOIenjqmP5nMjx5ZW71Fp/nYuz9Ruq/kqHFrp6d
sn4e7Y0QDj77nQxCqQZl1mJE1PLro3zbDzLsTbz22IBJRHemjtRezCVD21cP
1mQxCa3f3HGzN58Mc7kLXCLnMJR27ObGa4VkWA6qKO/MxxDcYXwZLCaD+mDQ
W6cFDA3ERpy1KSUDW8O51pqDIe/KncSJcjIUyLQ5Oo9iSJRY8sqxkgyxh7H0
6DgM5Yib7J2vJoOGu7KYoDSGjPUnO1zqyFBdvip23ZeEZl18PJYbyBB8wSFR
M5OIniQJiXk1kaFxYTX/Xe48kq/PKKC3kOGA3c7yltdzqGJJ62pAOxm6pXOl
tQxmkcWONhp3FxkeybCqY7qnkeA295+/esggMMh9QUNqClVuFnO734f7O/v9
J7Gjk0iR9/r09CCuN5U7JuuFR1EfDzs9bYQMb8IuDza+GUTh7PdWFuNkGPo6
wNAb7EPYMqG3bZoMD07ROP9aW1Aa6VnUszkyLG5IrSH5V6PLM6rGJ0i4f/+J
cEAoFxUNudcWLJPBJ1yp9Ou2IghuZOcls3E/WK4Za7jdDwdqUl3MuCkQ8b7R
tV5pGKbK9XcLr6WAcWaiovLfUUgsniL8Xk+BS5kZl4Q542CUH572mJcC2SH7
wpTWEICdpWZ5jJ8C0nlyBrlDU5D9pX0bVZACjpPPX+2NnAHbDI+eHGEKWN/r
arizZQ7E3m2JvCtKgQea7KOed+eh4U2x0c6t+PUTP2RzXxLBJ8Zi4/A2CvgO
csuP+pBA9TWnOkGKgvuP10JiHwZDz9ICL0rj+9HKL/iD9z8Rjw2O8MtRQJ/r
5SfKEgYnAqfJtQo4J9OOVDAxID98nhu4iwKl+u/cR5vwedJT3VlLhQLlFbW9
D/7/+ZRLh/KyKgVGBnqubvxFAoE7npOZeyjgSrC1Ch8gQoX91tSbGhTwYEUJ
3KibB3erEguZgxR4d3h32RmfOVC4dkO8X5MCP4e5MkPpeP9ymas7WpsCMXli
Qxmnp+Hp+fTX53QoMOq1R/P9HQIcOXPy7IbjFHiz1bC9yXoCSPoz6yv1KHAo
veJV554xeA8vqnwMKPBLJ47XunAY1h7s1CKdocA+YYM3rwrw+U7aUqnHlAI8
RTOyV7H2Y0ES3BOvrlIgPt0t8Mz+ArRfLOOd4XUKbO1/ozghW4cS+Ga3lFpT
oJEjUb+huwedWfey874dBTLka8hdrH7E4ux5tecmfv3vSnrOyjCyXb2/Lv0u
BWQI/JYykRNIdEG80sKZAp/zwuqV0wmofvaX3xY3ChAHEn/tezaNfCYtD7d7
UKAukVxpALNIdYR75dkDChRs2TbQVDmHhvozfpx4SAH+TX/iwgWIKKLn1F2W
LwW05k56ZEuTkF77rGJhAAXsuD1i+1dJaPX3yzHXRxSQvGD3WeIV7u//ehyZ
Ifj9Cu91RccxVGUkhYU9oYCs63QvG/f7l5d29zc/w9dzlvrgMoGhiNavjJTn
FHBJeudoFYGhB0JLj1ReUSCS/8aF3WvxfsZEa2NBBAWiFfwNYo+TkH5k0Cvd
aAqIpja7VJ8kIpXOetGWWFwfqpvEQXwebdoslHQ1gQIJO2pqlgpmEeXSFdmJ
RArc/rf5066dM2goJvmTSzIF/Lh3Xgp2mEI1PRNqjHcUQHM7G9g+k+jrFtX8
J2kUWCoaa55zHEeRZh7aIh8osN1+9eOkxiiy/Mt9SvkrBRi0u/3ve/qQvsTp
lvxMCgRG3q8Ir+pCu69HXDr+A49vIfPNms0tiDqww9osnwJPmuKG225koaHt
NwljBRQYOlbzycc0EWotvzs5F1OgMNOAnXK5FKJGjjwMLaeALf/p9hcNHeAt
G8LZVEkB5x91TWupvWBl+zv0bTUFJHLCTuxi/4OT6cL8SnUUOF8fVpbpOAKq
E1ej8hoosMY49YFS/hiI7HwvDk0UYDp+6BQZnACaw1TK7xbcbypKvBrDBBj5
qL7zSjsFThCWxF8XTEPd1P1vo50UMBDrJ/tb4f2GUtm+ez0U6P68pP+hdw6i
b68tov6hQGXW40frtuH+/3r22ON+Cvwd7E/myJPAei6qRmiQAhSrZeK1VRKc
VO0/kzRMAZE/UnZnnmOgdk+2Q3GMAheXcta6TWAgmuVoljtBgVlrp6RJvL+g
k34M6kzh/o3fHXpwEIORPRS7xhm8nrwN/3zTD4N612Ozl+cpIP9c8xF1EJ+/
ckJdR0gUaCFmwsQaEsQsNZPvLuLxL/pOTZqfB9/9ov6UZQo81fo5tjF5Dmw9
r/OEkCmQnnc79emWWTD8mfZMkIbXg9L1qTPXp2EPeUYokYHHy+t96E1XAmzR
3Be3k02BaRfB/PdmE/jfvaVyuKiwW/Mw843YGPymrVduWEcFVy1qi+D5frBn
yeuRhajwZ42Hho1PDpw5drfhkQgVbI5Ye/caxqJ9gbnGAmJUmM5uOBwgWYrY
XLrXFSSosJEt5v1EuxNN6D4d/SFFBb+d8Q8rM/6gpuC2W0ekqdAcEW61c2QA
Jay19LyoQIVr53NzPc6PI7bd1oMdilQQqBk5vcVvEtlXt6+eV6ZC7N4HmSEB
U+i3XHhB624q5MBdgxcXZ9De4BNe59Tx+5+vMK6szKK4UaZm814qfGAdLb9t
PY+YxwuoZ/ZTQeivsn1ONBHZvncpbjxIhducnD9Pn5NQA0fJx/AwFTYFhrgh
A3yesBrTrtemQqWbgE9KBYZiypMYBjpU0Ft6UkGkY4i+3bS0BvB48B44QlnG
kLW/oP8JPSosGq58ePYNn08G6nWq9KlQckx4C10WQ6pHH7GPn6KC19/TfgpX
SSgqSRuh01SIO6i56e55IqLQlwOPGVHhZ/j1tHzeeWRx7fvxMmMqVPu5dt9+
Nouqim9yH71ABYWcfi23jmmktE2mquQSFd4aB9mrTBLQK++/wVpXqJByMXHi
VsMEWvkTdaLoKhWqzrnqOwaOoWuaRms1r1Ohj/vYf62CI0iRXB56wJoKZ86G
SMjH9aAXpt4n82ypcD/2v/pP69rRUv6+DRoOVEgiW4iWptWgco+Mp3vuUIEY
WLFDd2csXFl89lzFkwpnB17VOKr0QanJCaMvD/B4Z6i7LQQNglw2k1/pIRUE
A8oHPxiNwlOhgpaPvrie+m47bckfB5Kzy6udAVR44qY3c3txEi63Kp3PCKJC
9nGPL9GcKShRGxOSD6GC7g9pRcLfGZB5mdSeGkoFz/CXMjv85iB0/nKkzFMq
rF3fzXAam4fZs4IX34Xj+WnS0AjmJYHJt3qRHS+pEMisbYkmkaCA71HX29dU
4PGVanV4jYHUHe0YySgqnPune9NkFsP7keXLiTFUGOsV5jZgYzCt9F1sWzwV
OL3yzI7fGBg/vdkb/4YK1q0G/DtNMMifko7f8pYK8qsmuvyvSSBx6q9ZbAoV
Wh9Jpq0+JULQxyhx0VTcH7ttLYgwD4R1Rn+j0qmw8Cw/LLFgFowc1iUKf6TC
7JMcf+2FacitKb8W8ZkKnyvUWhIXCCCu4C0p9I0KatFqHcKlEzAxNvuWPxt/
/dyzqF0Rw3BGL+PG81wqKGsvBhjs6ofs1Bs7+H5S4Yd+i6B7UDf4Wbe/21BC
hR1WhQ/um1fC5qGfaWtqcL1+NvqZLt+GXvH7+xfWUSEx/31Y8lwP4juif9Wp
Ed//YmKB4H8D6Mnt//bLNlNBSbpJxwsbQWsSOgV6W/Hzn/2FWXwbRwF1b6bD
O/D4RGOjjvsIiL5iXQ3dVFhteuZy2WcaPZBXSlnppcK+5uPpXoGzaOkC5v3l
LxWM658+GtSeR85BBZcsB6jA9epQwpVPRDSb5a++eZgKBud4Ep5VkNDNQX3e
hlHcn8YTFdwhGBr9j3/Cb4IK83YumPY8hiy0u8r3TVHh4+B96W+4H/scE98Q
ZvDzjL4+1vgdQ5fjbTyT5qnw1dxtr/B6DLXXKp03wajwpSyAtHYdCRmtYMrr
lqhg4iWdr/J9HjXIFa4tWaHCjM7nfRvXzCH9CwHDzhT8PK0XGyQ2ziAUaFAi
T6fCi5GH/c01BKSdxR/bx8T11LVD3/HYBCoY6HJ5yaHC+Jcg8fV+oyhLy3Yn
ZS0NRLv29z6v60UqjspcmRtoUNvG92D0aDv6GLfQb81Hg17nGW4GdzVKXg6I
+C1Egy0UceO91GwQlzt5N1CEBo4VMZmMvXUQYyJw8oAYDV5Xbz+p1d0BL74n
MZIlaFBmY9k9nDIEGwdsey9up8FRwoj/3RNj8JhPJWeDDA0+itC0LnNPApfW
4vNSORqcv1sVmRE0Bb63im667aRBhOLNHU+KZ4AcG6irqESDkC06WnMZc+Be
c1LqnwoNnoxigR+PEoG0JEB5rUaDhab6xUBfEtyR7enQ30sDkn/U9VM3MCCc
f5tJ06BBSuvj1vEhDGwD7MKyDtJAzuk5wQr301Cmiq3dYRrccrX+vlSCgfm/
xaPiR/D9kz0W14ph0M1bvLVFhwbMeNklDUHcv4eDlh4dp8Hle9nnznyZh+ab
p1oOnaCB8eWtyvqz+PMtVvDznAENpj5fiD3SOw011T3B7w1pMDYmpmftQYDj
S29vmJ6lwfqijjeTDeNQKmN/mM+YBl1aDc6koRHQPL97MzKhQcdS899Zv3+Q
679E9LhEg+10hx0OY92gnlncoHSFBv1Cy88o65pBkdcwIOo6DZaGP15YG3Qb
pWkKmZ+ypAH/LpFwimsZ2nGzdz/TmgbVXy4Qw0eaUWJMsmCOHQ3Sest8dlzt
QVuq7WccbtLgh8LvME3WPxS1uLtG4jYNvm9/YNKnMIoEZZZT2u7SINSfd99F
0QkUblzy8LEzDdZVGLpqVhPQOv9Hl7XcaKDme+mDt9IMyl+cpyEPGki2cTsp
S84h+5tX3518QIODj798+Fkxj0T/Veu3eOP5++pwQlSUhGrO75m95EuDu9bi
R2SFMeRZk/i6358G5v/dTfiGz7MKWusP2gTRYIP2k+UgJoa6v7v1TwXT4JXF
I7kHUxh6LDcY6BxKA31bOve9+xg6EG+4czWMBpk3T2iZfSKhif/yf/uG4/re
yj91MJCIYoKkXde8pIF760nVLVzzSH81XOzZaxq8Wasew6c+i1Zuk0uEomjg
tj3DRlZwGmUM2VjHxdDg2IGoLrOPk+jypZZ12+NpwFpz3jecNYbWNhz+lv6G
BnHKVxttJUdQ/tEME5W3NHBYe4kRsqkf2ecIkbNTaCBdaWB3KbEL1SQSjpen
0+B6K3E7TbUIeQpdJOh/pIHZ2vRSr08vQOFx2fOmzzTgSOz5ImGKIOReTG/f
dxp0PzNnbbfuAY0xjq9VNg1kjkXdCej4B2NX7soScnE/OcSW/kcdgaim3jqn
nzTwsoxod+4eB73jek7LhXh8WwzNMU8CLOV/F/YpoQFXwsY+nY5pSFPeVshV
hvvXQSa5bXQWLqY8tghDNPgUeG+O8m4e1mxe4BasogFR40seex0JcsOuf4qp
ocFZz+/xB4RwPzHrjCTraaByVpjI8//vO7hpLKU20uBUGgpgszComkyOV2qm
ga+xde/UMAbu13h1frTSoP2A/8gv3J9ybZ5jBztoUKIu25jjTYLOEyNhpV00
wER20rX3EyG46KzaiV4aSPw128uOmAMNtcLOxj4aeDiu+9IaNwNjqXLeJv9o
8MGGdP/dmSmI2vJq+59BGnhW2Ip45E2A3nNa1Y0RGsTUFVmfwuf1JY6948QY
fn8vhDGfDUKaZ7vA3Uk8/hev7HzC9Qe4LT9d9Z6lQeyrYz1BOlWQ3SnCZs/T
QMnM+9EhtXdgfSogPRSjgV794pXNG36iir2mpKgVPJ66D29cvdWFXD9URG+j
4H47eVJ9RrkfyUioar2n0cBeMrbU02gEtb+KH1Jk0mDTnt2irng/GcTD8/g7
mwaRO4q+1m4moL3ezsoHuOlgYHVRbHPENBqZ/9tawkOHM9vbz/f8mkURNgae
uuvpQBMc2Bz2eh4d783e1rCRDmKnO7RK15LQwhkpZPwfHS4UfS3V2oKh9yjM
vkeADlGhqzx8eL9ocmCZ12ITHYJo1bIv8fmQ64vljzEROgxU0csfd+H94fwf
53didOALsnr1VgVDL/ZeULcQp8MRPrXxYvz5dNHzN1Fckg46NE0CwXEebS06
8b1nO75e6h1D0WuzaIBR6hQlQ4eMvLzd60enUBocUj0vT4dP1aHuWhsmkWPI
j7n/FOngky1fU/lnFKnXK31rUMKvr1K9qVs+gFb40u6E7qYDdsdKTu1KDyox
llTRU6eDg+BXuwLlJmTQK/Dl1346ZLbvwIwH0oFPIszR+xAdJF2v678SqYX2
G1xKB7Xo4Ptun2mKcydYTC59zDpGB2ULnoXd70ZATtnp5l1dOhxD5yStV8dh
2mlyp5I+HVQ73ZmzNAJkZVtOTpykg+aPoN2T72bAY+VPRuppOvy9Rrn6798c
HD58wd7SiA6PCM2r3BlEYPv+lpc8T4em8gNPbRdIUINOjP+5QAcjG7tu7l8Y
hPOUpcVcpoM6ebvk/3+v1eTUIdsLZnQodD/cmlGGwZbnP2QFr9GhTLjxaOAK
CQZalUZ/W9BBeP78oOknIqSJpL0Ps6JDbEb7GhV8fccrktZ4rQOl9YZLO+Nn
QD0xRprbgQ4yx695hUwQYGVQYLjsFh3uBI4ev906DsWyYSk+d+hQjrl7IZsR
CHDgstS8R4fIgGgTqvlf0P/ycPuKCx3ynis9bw/sgPa9Tm/v3afDeK3SopFM
BMR5Tl5X8abDSui0kLZjGbIospSc8sH1sXmS+9u+NjQNFxKtg+hQsCNjpUxt
GGWF/DbfHkKHJf4b4srS48iz/sS2/lA8Pw+7dw9ewvuT/8r64p7ieqktpdxQ
nEEc40MJl57TIam1ufDrszlUE/XDbNMrOnQt97kkuxNReK/S1pYIOkxvZ32R
7SMhE4m03mfRdEjWU3xlm4ehLZaScSfjcL2kT1lhuJ4HUmNMed7g/tAfj+v5
haG0SQGxiiT8/qjRxR9TJOSoHNbtl0IHXflLol+fEJHaPa4YrVQ65D5McvVO
mUNL2Q8vkdPp4BZ/+YG+5gwqWlkSyftIh4vX2/e9vE5AAYedOl2+4PFufVTB
3DqO9P0mI1Uz8fjo2t66SR5CfBWWF2ay6PDkWecNod1/UDtP36aPOXT4qPeL
h2e8BV1//vu1dCEdTElWDm+TUkGm7cT5gWI6eCo/47qdUgsEkTLBN6W4/hpq
bM4f6QL3xB8vRaro8GKwKO+ixygUMhPDqmroYKmp1rZ1CJ+PLZ88cq+ng0rD
hcKvs1OgV+nmK/ebDnYvJu9mhc9CmPyN+53NuL/3bFZ6n4P3K6GGLsFtdDCJ
qv4hZkoCken9tzU66bD70sqXJScMzM5I241102HoID8xehmDt5l8N6L+0OHu
nt3N2CQGo4LkK3r9dGiwrE7/egIDRbdRk6UBPH4i6VulhUhwt6v5TNowHVpF
5DPNz81D9sEi/YtjdCB+vp+yYf0srManH1szSYf5CFEp8xNToE1/dTh3Cq9f
FxcP/hGegCALHw3bWTpQ7A4qqQeNQG25g6oIkQ7+H7ui/+r8BT7ZC4pVGB2q
+U9beXJ1gEnIURn3JTps/kbl+m+oAvpPbRbtpNDhtnRt+3HxKiT9lS0QTMfP
Uzl9mZbagez5ZzdosOiw58S/IzmTf9EX5x7uMQ4d1N6UsL3+jCBSewUjcg0D
BDUfz+TfnUD792eu6q5jwKLoanBb8hTyjo3HFjcwQLdiVanhxiwqpwTPpPIx
4K3rNaXc5HnEc815/IIAAy5i5nr///9iw1LzQe5NDMgpH3XPd8PQqx0Gf3JE
GPCTKROfTcZQV9DeDhsxBgTsLm8sG8SQ+Lhkk7A4AyJAOyxXEUM3DDbUVkrg
6/UxMK9uIkr7tFTutp0Bp8z31a4hzqEp3qEiWRkGDIv83ajzcAapOjXmdsgx
QOE/uwcjjwnIrTU/89FOBlx//p+Z3o5xVLD3/cd9SgywmXDmkc8cQrqrDxIj
1Rgwns5162hBE3piZhuju5cB9QefitNL8lBz8blXixoM6Pavj/a5lQ3CUlpP
Uw8ywKmzIfCC7G+4EqAQfOEwA1il4UqJ9T2QNCLkx32EAdxoRfmD8BCM6DHu
5+gwwJMk6Nk2OgY7PxBcbI4zQO639M/IawS4s6HztvAJBnzwlOMptJ6BH7fL
7CoNGOBiEtS0aWIOVpo+33AzZEAK993N7F4iaKvHmMmeZcAtB6uNxeoYBEYE
Xug4x4AVbavHceMY1CzdOfvIBH//0ldchxYx4DO9YrDvEgPuJDwsfX8Fg/OF
ujBqyoCyddh+sy0kiNmmphV5lQHyn+LMjA7Nw19f8f261xmQ13DteiuagR1D
PGqLNxhQ8Dvj/A1EALvjmGKqNQNqXfZsd9Ufh89p/TIX7PD92yQXX6gaAuLa
Ognumwy4+bCxdvlSL2jcyhHNccT3qzRfutL9G8p2P90o7MyA+PkTab8d8tGh
7q0tUa4MsP46KfX5ZhPK9vsUKerBgMvqeWelhXqR8k7NK3H3GZB4KF9geu0Q
SmupkxD3ZoCe0l/r/YVjSOrBleE3PgxYq26W9hfvH2J3ENIl/RkgKXxjN2PD
DBKsv++YHIjr88CQ6obQOfTUZZ2adDADjrK1eaMCiIhbPHbx/WMGSGcI74ub
JSGfCoUCuTAGfFMzk/5aiaEVx3yfjGcMeHVo7qQKXl/vCeuD4gsGHN9YQTNN
xRChuIvn8ysGtL2xeWn5hYSsbe0alCMZkNAloesoSUR/+ZZffItmwOZq/iw/
9iy6mBd8QS2OAYRk7nZni2nUdF1ky48EPF9VRqxs3Umkvzatf28SA8LP6t3d
XjaKyjP3vctNZsDJa1n69ugf0jSttDvwngFc+W2CId5dKJtlolSQxoBPf2wf
2L2tRSofR+Y1PzDAgs39qikvBUlROPePfGXALgPKm+KPbRD37rV2WSYeX0tH
ypJpHwgZSnOO/WDAL+K1NY57R+DpQlZ1RQ4DGNSXfp6T47DmzbGnevkM8Gtw
HRTUxOdT3VajmgL8fLm5P7hEZ2Fl5obwyWIG/NvutmJ4bx6co4g99b8Y0Gfq
U3fvEAmmtP0TT5czQF1Qh17pgIH1OL9VUwUDVN6vVU5ewaD/+Vv5c9UMaCal
9DzG++NLB1SnW2sZsPxw63sDRQyaB35lmjQwwHvL82ZGExFOhp516/zNgBDj
2ny+P3OA1P4dvNyC16uSqs08F2bgcO8dek8bru/ldA/vkwTIDaCXm3UyYCji
lHVd3Rjs3hUe8rebAYZH3+a8qB+EjLZthtf/4H5OLk3GbHsgXkarw3KAAV/A
ptTe8xtsamyIHRligLaVmEEDfyEKd7t6zXaUAXxRdTatuS3Ir8pr3IHAgB8+
T7qFl4fR6p0Nn6em8XqR3PfPpGUcOW+Od7o9xwBT69UTjoen0PQvxX1zRAZ8
9NGQ26w0i2zsC1adFvDzrKcsCb6YR/38J0tISwzYnSAruXCFhC7/7AlwXcX1
+uPJWrcADLXccDixRGGA/66nvDkMDJ1cv7rBk84A1aeeKTZNGKrIety8ymTA
6NL8oxEiCWmZiUZ6cfD6EB8uc+wWEeVy0k1p3EwYzneq3ANzSPXzfgnftUz4
YyYRSAyaRh9MqoeY65mQUU0MZGpPoh20i+kBvExYVPphQggYRQmpY7e4+Jkw
7XHJpqyyHwmfcVcNFmQCfc3Yf3mkDvS+Uug/bWEmbFvdc2zlG0J7tb7PLG5m
ArbXkloRlAYo+0zDly1MOC5RWq3AaQBjpemPNtuYcOq+RcM5614YfBcauk2K
Cca2+UpF2cPgtFXevmMHE7x6YPbEtglgvKrQeybLBL8nwyt7e6cgfL2lrK4C
E2bc2/1yV2dhWwCDQ1VkArhKp520JcLn1YShbGUmvNYqNlrhw+DwvUNljqpM
aI/ODmnA62X9RFeSzB4mvE3vddpPwOCKhZtP3z4mrO29wKUnjAGhS9A84gC+
3jlXy9zbRLh/NlPTUJMJof3W30Zps7C2+vQWLm0m/KRkXInumIJo7amVwqNM
WLN4ujRq3QTI5T7ucgEmWIjFqthaDkOOslzuLj0myKoEmRn86YHjqShiWJ8J
ZvsihphO9dAmfsMl/hQTKq+13dAXiwHLCPq582fw/b/11bYKqkL+gQf/Q+eZ
YM+1RxczGET8lM6ZBxeZIDy7+t8s/nx76+zaoG7KhKbq1JS0LVNoN0HgE8GM
CXHSZsFl92ZRyY1voSnX8PgQHXyF+InodI+h/ZUbTPDsXxC/PkRCfUYEPUFr
JkRpUvdP9mLoVk2IbJ0tE8i6T6QmiBgiH5HlCnBgAluytrFWFkOheeVDBx2Z
UNyZ9eCMFxGJ7rYoI95hAvO2qZ47bRZlpNGSPtxjQrV5yGed4im0XyLe54Yr
Hn9DQaIu7o+qyAPmYh5MmDiunLMrbQhd5O3UbLnPBHlB33Lxxm7kSuVfPerL
hB+Kd/omBH2B4/K1a8WfCYgnTZF5ow5eTZ3KzQxiQpnLiR1l6T2w3Woywj6E
CWN7sbde/sOQ2RvsIvWECeUu131faE3AEWMZ4+6nTEgIuifXJjMNv2vLVF88
ZwLF/VIun9kcXNO5/p/+Kybspirq5FUTYSafOsOIYIJlw+Ph+UsYeKvGNeRF
4+stu8QrMjDYmLH/0904JvSv850My8MgXrIjVP4NE45tcjivFkACxWhn+39J
TIjcePzoPrt5+MnHfyI6hQn8Ql+2B7nNgH7wF9mzqUzwryHZe5dPQhftJBdP
BhOS6Q0XrzqMgq3bxFDJRyZoRJ90o/P/hcXpR2XuX5jgpEcdnNjWAkHW0m9V
MpnQdZYzeaM9Ezb1lfqMZTFhT0OgseJoGXp3/pp5Yg4Tur9QAsRNO/F5k6J5
MZ8JeVovM90/D6DyY7Fb+AqZoGwaLcHeNI7OFWisVhYzIbVhKyHnyBQaUGvv
eliK66ujedg8bxa9mxP250F4Pkw3SQwfJCLbL5cUX1YywZBqxmu0REKKt2Lb
ttTgfvX6FbVmAEMzCn+839cx4V6GSefSHIYyx8TlVBqZcFio60GfDIZc319r
ymvC9abkPWISSET7Ld966rQyQW3r+n8NwnOILDm0vb6dCbzGQ0O601Oo5K90
vUkXrt+ne4ewrRPIP97Gtb+HCSuU+gd294fRcdP0bfZ9eD65Hyq1DfSgtZsn
q4j9THjS3aSSaVKP6tsVnbwGmaCz/cfeLmIkCn/lKMY9wgT1bzVDfXNVIMw3
f0t0kglVAl6W3QmD0F2vJpwyxQQVsaZ/s2fHISHUpWTXLH4e8Zp+Ct6/Xz+R
Y5czz4TaxYXA1vhZ2MG9zH8EY0KYu4Pfpj1EGCs/UFCziN/fGe3pRybBB78H
VsYruD8q2rkfj2DgqF20sY/MhLnY9Y4l+HyhSqXl2NCYEG9zy0R8HQbYzyPX
5xhMEHo2wS2iT4RcD/+199l4/T1yuT0gaxYe7EPf2VwsvL8Z+H3hyhRoYVxm
T3lY0Mi1Z+POS+PAzNTjElnPAlacU8iBkEGouPP4S9JGFuTzqDkqh3bBScIG
ZpYAC+S/Fkf6bk5BvBmnPxzexIKzhjvVgswbUbPNc+MqERZ8uX9v/7Ydf1CE
dAvlrBgLNif7v0EeI+jSoGBqz1YWkIedbtYPT6AtSSZnrCRYUBreZVecM436
r0YtT0uxIFlYwNWjeQ4lb+l+6y7Nguu7lPdzieP9UrfYSaYsCz7Y+e4yC8aQ
QpQZFqrAgsgOM/UlvN+aOv8mQWgXC6hy5l/3v8DQV4F/um+UWbDwNvnuG2US
cm6SmpNTZcGz12f2lozOoX3PLGMy1Vng1oLxCtROo5WT73UO7WPBnaxv0b6z
E6ho7RgB7WfBmU0yjyqdR5BvlXzE6UMs0PVY0Dky1YuOBTlodR1mwRVbg2u3
fBvQmmOfxiyOsGDwk/JdecVoVMuYfk7QYUEJbaU2qqkanharHHQ9zoIcY69+
LL8bjLychmh6LOAJWR/7jzAEQgezwkIMWHDsEvH0b7EJ6FzC9goYsiCmf8KT
KDUNcdn7+uPOsGD912/LxY5zYO7sESJzjgUP0ne9SxoigpTqT9Wv51kgNe0b
4nAHg5EZcs/+iyz4y8ia+P/voaR/OhxYdpkFPkS3/SNxGNx08FE6ZcYC7JOw
58kDJFCRL+1oN2eB1esz5jqjc0AcYflcs2CBUrTQfosf05CdAgoTliyov8RB
ZwsnYNlneYONDQv2rHEtKcD7wUNmn+YG7VggacIODzfrhV9CQnl/HFnw1It7
hVgXBOy5qrjLd1kgLK0h/WlfLTre8MCn4x6ef2vWkT7HHhSSoWJp7MqCoAen
jAVih1Fd0JBukzsLTPk/b426OYE23ojaaXifBV1qhkqTdtPorNZJ3lovXG+7
Eq380+bQKzH6vK4PC27KnfFav5GE2he/t5f7scDe5XFpYRCGNrfa5B8JZIH6
3Z2rHFwvV76KJRQ9YkE7vbCchr+e8KTR9+BjFtxoE+akryehf7b+VrlP8Pie
C27+lzSHdsC+E3uesUB6o4v01kvTyFpyUjHzOQtEj9HfjBpMoHRKAp/yKzze
3I5XdZSGEaHLiPQhggUO8dFPVeu6kVI2V6dcNAsGgikbjdyq0d0X+T/fxbKg
2P/07mzPRFjQl/J/k8iCVUdPEV3iH9gv2269JRnPx1Cyqp/gKDxghehHv2NB
Upv6P9W3k1D0V1NpUxoLCCVvuiofzgDj59x/LzNYUFbTfKXoyTwci3qH8X5i
gSCPdaboFxIEOV/qevIFz7/ydy3DVgyqz2wo5MnE/avxwHdgDoP1u34lBmWx
IHu9kP8AhwSneVwCWNkscBq+7UbdRIQXw3K2PnksCJ29ccZGfRZaf/UaUH6y
YCX/XKCFCwGEE8KVPYtYMJozFBW1NAqXPY8JLJawQEizyEu75C/EmSwt3Ctj
Aa9XgLqbQwtI8V4rulXFAp37sgotqxXIalLg7UQNC0RqtaZfDnShtMrKQJt6
FuT5qBfcSBhCE8n37YYaWfCfOMt4QWkC7fJRPnW9mQVNQ8P8165NoztXBlX6
WlnA51J6v+jXHMrUiBQ07WDB8svqtzv2kBAmaLDU0cWCQz2DLt4pGNKYo/YY
97KgcHx+5joTQ/frM4ub+vDrrbHTkfoYKkq3Tjb8xwLOI+IHIz8iogeKPqod
ZIFC4/1GsdxZpGPRYK83gsdn/6yQJYuAgg77GaIxFkSvDfxV5z+GqkT3qh6d
ZEHzHwEF7fx+tG5xXKh4igUnNULLTZityLAlfvngLAt6UWKz88B3FP7l7J/c
eRYsprML6swqoCWUU7IHY0H39XSH8NYu2GSbl5K5yILTSx86gmqG4OKxW8HK
KyygaJj7vzOdgFgJyZsfySy4IK94/2XMNPSRW0/L01iw46/Y4HHqHEh0Bau9
Z7BAa6Kq4KYNCW78OCS8nc2C2Q2JO4yLMSi4RhVs52JDE2sp8OwsBoLrS/hD
eNgQNt7lNl5Hgls5vnyH1rNh+Gru3JD5PFRY6Gyc2cgGnnNGAbO/pkF8I2fd
2//YkNOl2ZUlMgFueRU85wXZsKWdpZi/YxB+WwZzrxFmwwmNJ23n/7aDHJ8+
J38zG4r7s1SL6rPA5+c61q0tbNDqKTvu8q0KdVnX0yW2sSFhYeMWdflepMr/
jNoiyQa1LcEaodyj6HHhGXLQDjb8rgs1F9YioAFb/pX9smx4IzzjIR0wiw4K
ti4S5NmQNGFU8u49Eb0qfo29UWSD0rQrvcQPn8ftLxCNlNnwvVVcLgDP/7FN
m+c4u9kQcMvfe0EcQ/G/uqdz1dng99JZ9kn/PFq4GUdw2McG8ZJHzlNXZ5Ch
yNUJ8QNsiG9LnuAvmUDvy7aNNR1iw8e3n5udbYYQzfHfcIAWG6TexaZ9XOlA
X5Hlv4ljbBhpnN36wqcS1tyV+RuvywYfw5EXH7t74PqWsd4z+mww+ic9sMQY
gfzK9G7WSTacFPZa/nGOAPz3HDqzT+PxED0z1Z06C/biu9rtjNjgqxh/PbWW
CGXV0y1bzrMhb9N+1vdoDLa4fG1qvMCGgzk8PmWrGDhLODX6XWbDGe+Lt8Yn
SVBXq1a/x4wN19Vjti86z4O0G1YzZs6GdkWtGpnMafCWyqmKtWDDc5/yR5z6
cWivd68wtMI5IUJXd/UfKHkcKGfYsOHtwM6z2VKt8GgH+VeWPRveBU4+vywV
D/2NhcU2t9jwaVf5N8lHDUjj/sNC0Tts6HrU/zTl5l8ULnPkZ70TG17ohPdN
5Yyh8SZmro8LG4IeqpCku6fQUa/ybDV3Nuy6FKrV9m8OxcgFZY14siGU8Jk/
Lp6EiC26mdFebAj0oXqcm8Tn24c8X0/6sOEloyqrPg9DKQq1n2h+bGDTLPY2
8pAQpe3Jh8xANohRv1nsnp5FJr6G6VbBbLi7JnC7QigBfVbkSxUJZcME78uG
QsFRxN3ZlFIbxobxF86Hf7/oQdf8X771DmeDUKvVmGIlQrlK5xN3v2TDk7F3
FutOF8F/3ZsShl6zgXrvzj0W7lf7wM7YyCg2dHwQLpAxHoFSlZho/Vg2uJgt
uNwkToJor2kkJZ4N/LIpwc0Bs3Dv0dbXXxPZ0Gqk3evSQIQ61b8vbiTj8aMG
x7HfYbCjLzF803s2HHHw+4LNY/AgxOJpdRruN9lArjG8vrep73jy4AMb7Ipq
DwtNzoFS/3CI8mf8fLsMLzSgKQgKTX008JUNAwtHdThOYyDgteGMzXc2bFDj
aB+Gv5DoeE+E8APfr7mLyGeRRlC81tV/JxfXk8m9mxVeYSjvrFY6lo/vr+DT
wgitCR3XeXfXs5ANrsp7hNw+9qNm9XUHaMVsiKj2OS4oNo7MZe4y/UvZIKqY
3TK2ZhoRhDtq1iA26H6iyj+emEPuPJovwypxPwdIxWi8JCHOyltT/ho2yJhc
zssfxNALwpodkXVsqN2XI9pXiyHxPkeCWCMb/MVdvpw1IKEPja1ZiU1sUC6w
Lqi/O4c0fh3wkm5lQ824mEjg1SlUnpkIGe1s0Ozy9hs8PIbOpnBtVO5ig5ll
xrLOyz7U9/pm+/ceXD+LJ8+eF6tH9o+aEzT62ODIWJemx/seFt01bAr72VDq
vPvJtZVWCLBPUD46yIbqj86JOvoDwHeFvVgxjNeL6wu1mybHIf6UfYnBGBsc
HO7WHqqaBgWt38G/J9iAoGNkKnAeslX2nj0/xQaBdwJn9RZJoCMVt7l7hg3N
jhJPzagY/BZg/rs6j58n15ecFYbBFY5NxiCJDZ29Fzz50okwvlDvZLvIBmO7
VXMbq1lwHVM7OLXMBskqc3WhsUlgdkWz7pLx9/+9fuGo1Qg8q6XVLlDZkLEp
WFdlTzdsKbR6dZ+B6+mhPd/A1xJI/1x7hc7C/cZFyi0oLEV7E3dLB3Jx4CUm
sfonvxuVPo+c4uHhQFxOwTv39BF02p/y4+k6DkArUi7ZSUC9zje8BTZyYPXF
I//+5Flka119PIqPAxsTfZ0Tu4kIu6DMu1WAAxruh0K/pWLI78TrjiQhDpRQ
pBsLiRjiPbj6RkaEAx68T1Y/5JFQnOJ12w+iHKh7/7yQm3seyYlXqqhs5cCA
sMrfwNUp9IN313LWNg7sJ1pIpFaOoaOMF7/2S3Hg4xGF7jWn/6KG+aWQoh0c
KMzTystKr0djbeWiVfIcSL/ktHJsfzu4VCoMnlTkQG31jpcx9oPAzA3/0KSE
n+/IyhXj2Al4mrFwz2Q3Bxx2Gkmres+AWNyVQz1qHHiWNDgaIEWEtLBStvle
DgT8iBbYjc/36g/l6oc0ODA+45XZjffXv+48fW13kAOecr4CfmIYGFqQzKY1
OdApRtmqnDoP3ecuy9zT5sChZweuvUHTYAMl04tHOZBMOGG++H4cSHtlch4A
B6xu6H9m8v0DH7knDxm6HDhF6swJm/0NG0TndYP0ORC5ClIzR8NRzLqLfOtO
cUDgfud5DcVWJEMp7Hx2mgP+SV+MNsYNoO/T25MEjThAeCDo7mo6gUy+RPo3
GnPgp+7jIL3CGbR0e5314wscULu5Uzw1kohiVR7qwWUOBKVVVvR8wtDhuXkF
+hUO2HUxv87+wVD/N+sNP805wNTh4qZJkZC/U/eMiwWeb8Oc0tLXs0hGzbBZ
xQqPrw7pjKXDJKoi/sqatOHAD905xOgbRPZZeyLf23Og5vikxTu5VrTBJd3j
+i0OfIkWmtQafwxf92y9suUOnm+Nkbzya+1gtBB+uMMJ3y/3sbACkWEgZbMl
XrhwIHZqen5paRIi3dxZJ9050BjyZ76aZw4OaBCGue9zIM3F9IzIHRL0LplX
lXpxIDQtOluIhIF3XkuGlw8HZJJ8UOx9DCQ9dcM0/DnwR3dzqfB6IpQf+Hmb
GMiBI28GS31rpsF6VcnoczAH+A+/07m4PAZrCt6q24VyoFIt+K/D4B/48GCT
8I6nHFD/4fGfXFIFGGo+Xu4L58D8n12Ry4cRmqVQeqJfcuBODSbd6PoHvSi6
W2QcwYGw/a37bFvG0J6Hw4m80RxIebZMjsbn306tS/41sbh+tjmnqfIQkSe9
ziowgQOiPyJvPH+Ioa2/tPW0kzhgm794a9cshkp8sxRWk3E/baupfnOWhCyO
ym3Ifs+BVzuXpJ4XzCIOM3bmTjoHTE6LaTnbT6K0Mt7mnR9xfykXyey6Ooj0
A/yzRj5z8D68ukxysQlNHVuMSPrGgVt2HCG7vDQI59h7XMniwIdDGTVNIZ2g
WtFnKpzDgUFeso8nGoG2IKPDzXkc8HoUMVOkMAXuuhUSYQUcEDp/2/TQ2nkQ
XXOApVvMAWUxVecXvHh/WfVpmPkLz0fmEetLHAzMQySrCss5sHAwTIDWSQLm
idcZ7pUcoEuu8zONm4OUtTxhajUc2IptsO8MIMDx2ge3p+twvdnyUExrhmE8
dPZseiMHlOz40idt2kFpQ+embW0caCfwcbt/bke/6w2Wuzo4YAahL0J5R9C9
p8U9r7rx/Tok1AZ+IaBNp9WKTv/hwPSTx/Hr0BzK5U1NXNuP56eyrfEARkKX
f4v6owEOZDTz5czj8yIl/KmVzzCuv5tcw7IDJJR4lql7cIwDU+JmyVmxc+go
v6vCwgQH1kyFKzywJ6Ch5vH136Y4YEn4Qi03GEaPXprNOMxygFF2Qdddug0p
GDc1yRA5MKsoMCOrEAN1gpD1D8P9q3zxpQ9PJ9xuy42IW8LPIyOfq1w9AvwR
ih4XVjlwzUjCvP7qFGSZJJryU3E9GnB+7zszDxeEBQ/X0zkwcfrNAP0IBuHr
1kgO4HxU+eCbldMY1NBWWQs4H2QZJt01w+DQ2GC1BIMDUUHrgtpdMXDp7fi4
B2fJ7q0LZX4YfP5d+0wfZ2qkV8WupxhI5H0/74yz33uvfJdkDC59StUIwVkv
P/XBuU8YvEiKFUvA+Uqaeu/HbAxqXz+jZuLMkq/95IvPF+wQ/3+VOE9kHahq
qsRA09utvBfnxTMP2HGNGLg6OaTO4Vxo+V1zsB2DscvnbokxOTA3byPeP4j7
9bTuGRWcSRVcjyLGMbisc1ANcG7Y9texchqDl/uUN13G2Ys6/9OJiEHdzu3L
jjgn/nYyiVrEgLNNuNcfZ0QplNPA++HDguuKo3B+6HBjmxH+/HVfQ0v6hLPp
kqT8CB2Db+T5gFKc86bG9pKYGEzMjth04Dxi23nwAV7vdwx36xP+v17+kV3e
uJ7Nuhp2MXAuK0hlLv//+4j1pXybWBxQkCz+MYNz469sogLOx7Mcj5rjvCY7
o10L59qoxvd6+PsdyUjIM8ZZ2mPX4Ad8Pc+EF3F2OKt+5VoJxvfz/UXQQ2+c
r9iun/1LwYAQ5GnxEufCb1J1X1cwkL7vCGn/X+/ZtcjVBQyu3raQK8Q5bJnX
rATvFyNvmKxrxvl19ycF2hTeb1zQnx7BOYYyzps7hsHak4ebVnF+sPhefHIA
Ax1t1Sw+Nr4e14p9VC/eb6rLRErj/GxYYV1JGwbZcqKeB3A2jvkubNGAgdx/
TC1LnHUiPw8IFWFwnYNJeeAszrPxj+wPDGKWxzlhOAeSE35mfcBg/UBTbQ7O
e2z0f2hFYgDt6HMdzmZZHVsPP8HrdU3e8384jx26z8nxwWA2M+nCOg4HLgbP
scVtMZBPfX1AAueo9E/315tiYBEbsnUPzn5BZ5VdT2HQ6n938CrO0cO824tV
MNjgblVxD+fmMNeWBEkMjt+8lB6Ms0yuadLqfxjkGh+5nYnzVRGup7vmSDCn
t8eoEueAf9eVWH9JoKApv6cX5zp/mxmTBhJY7t4qMofzU5ejwvIFJIiX/m+V
g3PE2NFpj3QS/A+zRqym
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
PlotRange->{{0, 2}, {-0.99999997978316, 0.9999990968351022}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]], "Output",
CellChangeTimes->{{3.451750558865103*^9, 3.451750637268157*^9}, {
3.4517507250356207`*^9, 3.451750847483366*^9}, 3.451751014349174*^9,
3.451751499571013*^9},
ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzFvQnYZlV15/ulvq+qQEQERTTRaAzpdOwkmu50p7tvctNDbt88uTeP3fd2
0rmJncR4TWvUOE84zzILClomEQdKRRABmSmGgoJisBhKZJIZCmQQKEFwQM/d
/33Wf5//Xmed/b5vFbl9ngfqe/d73jPs/dtrr7X22mv/4Uvf9IqXv+alb3rl
y176vP/9DS993Ste+bI3Pu8/vfYNqWj5Z5aWfuYVS0tL1z1vCX936U/7Xz5e
if/ZB/t7n/zP8nBO+pT//+L5vl+Lf/LXq4IzV+HTmhmX2CX4fjn/f6UqS8fq
4NQH7AePPfbjUraXlT3yyA+HZ7Gy73//R90Pf/i43Ga5u/feR0bn2TlStrq7
887tnR733//9vgZWdT/5yU951u23P1SdlT6XK3znOw93P/7xT3I5/k2fWQHB
067gst3jj/fn33LLA7taTSyzRvKRq3l5wWpcjb9+z0674PxbusM/dmF39dXf
WfpVK8Nr/N2nL+1+9KOfLP2clR3xic3dfX1llUq+/rr7ui1btuVPT7Gy8869
iZW6tJuVHfWZb+Ba+dOuVva5o7aUB1trZeecc1N+bXwydrpTT7kuN1xfiX3Z
hrO+XZ5lxcrwuzPPuKEqu+uu75XnW5bzjjv2m1XZN7fe3X3zm9+pytYffYVr
kjXdSSdeUzXvo4/+CNdatq/XfeqS6utvXX0PqoIAbPnGnYpb99mjttjddum+
8PnLS/nxx19dgMD56a3IxFeO2VpOK8W7dl/64pWleOPGm/O/1157b7f1qrvz
35/5h8us3ne2y/1v9i6g5h/+/rJUAz/uDj/swm779seW/pld7LBDN3VbU42e
cvJ1Sz9rZdu3/yBT8OUvXbX0NCv7yIfOZZUVeg7YfyNrudDzrnee2d1003et
pvqyH/zgx90bXndyVfb69Nm6aaHn3e86q7vhhvvsqbtC46YLbrEq7YoYeHe6
j5adveHG7mvHf0uqaDlTt/9Hz6vKTj/terxrVfamN55S6oz0vO2tp3V63Hjj
d7vPf+5y0vPav/169TU64G23PUh6vrj+SnwsXx94wMYltj+YttrIx6fXXdI9
+OBj+e/rr7+vO+Fr3ypi5eOHX1TOO+xjF/ISH0+NiAMNhTvj2LTp1gwtjiM/
sfkJQuj37H1/9KPHu08eeXF5mIcf/mH3uc9ueYE9J97p7//uMr4PQbrk4tsh
qtJXlxaQACIatSNIq1D0ZPv2wAPO7y5Mb9IJKhAM73rHmZDDpew1rzqxu/KK
u+zp+rI3vP7k7tJL7rAm6MsOSM3PuxEV4Pm6vv1K2clfvzY17xapnuXuxm/f
3+339jOGslVoGxVNL/mzL8sv1nR/+efHdnqgS6dOw69f8+qTqq/Rn1LPJzR4
zuuSIOCRECzQQMS86Q0F0+6Qgy/IYxTvkoRKgeaD7z+7nPfhD53LS3z0I7kn
5J9R+J1x+g3d5otuy39/4H1nE5p+rByYWACVvoeh6rpuGKRTz+m+970f5E//
1F732zfcX+Qfng3N+yw7HzIS4whkIcFB9STkMMwu7W5lGHLRbJDOlEC4z+fS
/U488ZoyfkG+Hn74hd099wzD+FvfchrffZBASaqcv/EWe8K+7MgjNndf+tKV
Vrl9GQaL//Hy46syiPvU8exT/380De6jZRjPjvnyVVX9oHlf99qvy3lruj/+
r+s7PTZvvg0ygF9DhIgulZs03Y6tbR/L129982kcmfPd0uei7GSY7u5huvzy
bajpAtP73rOhXGO/t53Oy79jv9wvMkwf/MA5+e/UObqLLuxhSi/dkkC5zia1
TpIkQ3SpqWu+dQ9aO38iSRiDTMPIYjC1tpG0UqTS0V+4AqrinlYMBQfgnHbq
9Xh18rRt2/b8C9QAebo9yfGzkg4DxsgTuEmjIzgvPL333WdlnagTnj7y4XOz
TtQJT59ed2l+mlIPqezSS+/giFPK8JYccZflPIouE0lJ9eG3aNc3v+nUqr5Q
ZiSVMghYjN1DGca701Wx7Q495AK8JdsbiABAHn+d4Fe15x1vP8MutUs+11SA
XFFsxozdW07rT3tyNYTy75tv/m4mFQdwQr3jePWrTjSaIkPnP9p7QZ/g2M5a
/NQny6C19MvWDhiCeODhEz+FF2Mrt+QtNz9AXjAGnZYEG4RDUlHIC3RvPGO6
YuHlmmvuya+dOCq8QM4CtdQji/7806Q6H3zg+fnuLMPAfuxXtla8QLf1Qxgo
p1xhGc4hVyQCz0EiWAa+TWkoRNzXN2FVhub6v/+vo6syvGsaJ6RsTfeWdH0l
J6PiyLloIAeSg50V0uPtbzu9kIPqmIOcl/+/Xy2XS2Tkf/Gz9723l1WLk4O+
/NBDj1X1CR3O3iskBwfaneSksSqXQeFJ/ZTkXJWEMPQyYHHx5ttJDqyYb1x2
J4RQT84q6DPpCzEuChZ4oU0X3IrLljI8GiQYRn6W4fGoxRAf1KEJwfJqqBwT
7KXMxJ596go+SegPZasGHXg5tx70sq6rofmD3z+qKougeeubT8VgXCoy6Snd
eefdTGigkaeP5eu3Jdap7uBfDC+EBpeGbYsDD8weDxU1ycr+tN27l/5Fr5vh
CRUajmQYvgWarGb0or1JDh6cZaxK2DDUIqbIwQjzTPsOqiTlzrYkw5K0WCI+
5yY5dOutD+bxOY0kxAcmHW4DBWk3V4ZLU/BAmIC8dJlCCer95JOvzb9lGQQH
h1WSA6XNCx7UkOmXpQzE2usVcmCOWXckOUURXs6m0duNK1ICQfyH/8fnqjLc
DfJjKFuT24so4ACf6TySc/BBF5RmxIHbQHjjwM/2KwPVPpkc6kggx26VzyMi
8BpMofPud2X4s4RGheLA9+m8Fjr/wd4OgELwaJ0DBdb5P7Gy+/ohqqoZOyd/
eoZd4b77vp/tGByw11K7FIxOPOFb+Xt4y1Jb727FeGrggMulWz/Jro6h6u67
v1eRBNUbFZPuUKi5+eYHujPOuCGrRlR5YOyjQlJzlzKIRvxeqYFaBPVIy2AK
8zyyotKDZRi+zOVTagQNAhVMy/C8L/mzY0ZMARJl6j3pd8oULF1hCiJUmQLY
HKZuueUBfF6IKXA0xdT7+1fNrwexvyBTcJWYMCy1n6zvct4v4f+rMPKwLtHr
zXNZSIKzQ8Uv2pckgVjaHanX7+6Kv3rcN+FfIkkwdsydVEgCbHjtJHELSZdv
2ZbZVZJwDi6biKhIolJMalBNh/cekVKG6vMyCX2A0kQdh1Y/hRA4YUgmy6Ba
/rc/+mJVhvv6cc1Lp098/CL0JlWGTEPNB0wnkmQSpZAEbxisMRwbBkE4IumP
/6i3E6G/KEn2CjNJyiCRH9SFd+qiDagI/ZKVff2kazl+l/qAkrvNXHokCSqO
mqFQmEgSFSYcSWshScQVl0vVTpKg1+DJBvfocvF9gS6ShLtdkaoN6jff4IEH
Hs1VAGVrjVyPIx6pwZuCrmQolzJ89jIJ16IMUZJ4vVXyLO99Ty2T0DQv+dMv
V2W43oEH1AYZBi6YQzzQ/Ok8JYmtigOtrSQlkVZIEk9HlmMf+mBvsIMk6tJi
J+byv3nFCflvaLMkCdW9AzKJJnhHplaBa45uNvRU9QHPnqFfSIL1BfOcBziI
SBKZRFUaTonrrr33SXJHXoEkcQIBnkqShCrD64MuUgNxf3QvMyr5ytFI5Q9k
H6qIZdCxKGuUGlNYSxmIi0gyB15FknX4UgYXOOUjSXrnO4pLPh9HHnGxkvSx
QzdVJL3/fRvya+OAjy6pe4UkuEOVJBN/+fIc0aCuKEksxyvQQsMj8p5/9dLj
4P9ukfTv7e04IuATWwnuPptpKdJJtaOiCyQFGnpNJ0xh8kPmD3NLkylV2BMp
ZIqoZbNuy7YWUxRkqY3L08IsQGWlrjQwlbSoDeZgGqTT5YUV8sPuByemakxk
T5nyjiMdN1kjkM2wuH/6U3GvJVuBXXuVXM9mHApTKm6kQVVjUqagYHEYwL/p
54UpGKLn9n6zSabA0RRT7+mVvuqe+H6Ysm0yhTmKq/pHK648kSdL+7oW1hrs
vYhZyBSm/LyiMqUTh8IULw2v+YWbbiVTaFtegUzRTFQ5hUrDuAvOyA8qDx1V
ZRf4sTcr/ODp8XtUVu+UxW3VpURJRJIgxbzujTsdfND5FTVomje+/pQRSUeY
i5wkfeD952SnLo8jPnGRkvSZf/hGRRI0JiXpAyKdQA5mH3DgXyXpVX/Ta0ag
xxS5EUl0ZO8gSdAoOHFOkkSKhCQtB2V75/+vptZRDtXC5XzMmXnpdGUaPFNl
kyRyl1q7sudwqO4EcxCVotTQnQnNbY1cz+tOGOUzSXc/XI2CXnfS0VJHPFq9
yhRGRs8UhhAtw7PUPK6pxA0OaOHCFG6lTH00CTNlKnFQmNr/oxuL7YffcBZN
Bt9KOsEjrExBwOLYQaaUHzLVc9ZHxvyilcGCO8A0yJXgt3tbzSg3ODByptp8
qv1Qv05P7LHCi555xg1Pcmej+hP4nnnYberBxK9Vb0L10FFO/wdMSLPdShkI
QhOkKq/IqryVeSJkRX7hRzvYs2BP2YGeCSGRVJZSNta+1mQInBWjPGFGR3mC
KFSePvzBYbSD3q480aqD0flXfymjnVl1Ogpe9Y/DE3QS3L4TnqDEmUurmmDg
b6d4gnGbHiXiKf3tBzyzy8gTBzc0bmomPxrDo6Q8QfNTiw5VjRbFOEh2oDEe
m/RwsLharud5whNxUkSlkj1KKQNZnGRRjxLIulcoAtcgC82Sy1ZBheLcLQCx
6AVWDTR38gRxdWwf9ZSPg1Kbc/LNGCg8qW8KlUL1A5Wh2hP/Bk/QuHHgIS0+
ZlGe/p1wcqL5JjmywN3KSU/yhLiGTRbX0eJJLTkc6LU33vjdnqfVFU9ommQ4
Lj3ZLsrvTIQQKlqfeLnt23+gQhQHnKSE6viv9rFcOtQhIg11qQDRnaCCC/WH
eVWFigB1M6CKDD606ec+t2UAyKBCRNBQtlbdE/mAvxp4pXOL+IJKJRFyma/0
mdP/UHto1GVNbifx+us+MCJfS1UqC89aBC+IJtig+ERlRpXz51sZap5uzxZe
nz2qVqnOPvvG7pyzb9zDvoYfQnV083yRMP11YsQPg6Y9kTCq7xBRJAytgBZS
Uw/VBCUL4o00maMdoqaKhMO5qT6oqqeHUPULUTPKFZR7PwyiMY877psjrnDe
3Xd/r3CFWlZm0C9sKrdwZRyVcz55xOZ5ucKlLAA0z1EpV3Q96dCnf+NadGFJ
F1uEKzQyVagWV0AWvb0TruDW4VzxFFdwoG/ceDO5yqPQV4ZoUEjM++//PrlS
kzG1MrmiiEKT3Xbbg+SKr6vDIU+F+4Fc0dUA/pQrXE5ZQ8gdqhSxCapeRa4q
iABPGCecSRPc7CBs27btpQz2Pd4S0pGE9fcYxD0qCZ8HwtDjvqGErVK8Dtz/
/CZeHM3we4YuSjxWEy8ofFbH5f7/z598aYRXpotQKUCESvUtQiWwlApHIByg
waenWxnCtbylLXN8Foa7hiEspSLhS7r9tgdJF9nAkW7tx0WIzhu/fT/pojCD
5CFdPFWl1ln9TSpFHVOGKFepBWUJOovSFZmApCv1ttFYqRWAczBODyQtMwJn
RJf2K9KVXpcKGVmqqDpUwlXw74H7byxUmRmZv8P1qbu3qNLBMKIKduMddzw0
j9BSPzr5wmW4SoJ8KXOscjziZZf1sbHkK0mg0bwylCcEvnTCF4OceOBVrr32
3pnSqx9HEbKW7k6+eLY6sKi/qN4Fdz+kFZgjS6jPXtmu9S68HEJjbFRMX6sh
aKZnoQrdz8c/4RzMN3mqoIV7qrQ/oeuZ46OMivieL48DYiG9mQZbKmBpJKu0
LQXssI/1cd6Yz1LAbP4oSww6ITKsB/TGoXiFM2B4hQZgv2tvjD7CyFQGlWCF
COP5WwIMTmybMi6AYfoKv++kn6uQ3N1qDEErFvSdD/Ot72Y1Bt+G2VwFE1LG
GUDjm5RRiQM9XoqpyYjKhgkDh5enTMvwWzgpMTbVY2Q9xYwGhFqjvOE80wWr
aRqMiZ43PI/yhq6sGlbvQhHecliN+ys9NSSNQpY+2zX3GkHGHonzFLL93n56
qVpChrCejx9+YX8/2Nn5JRdhDHFvDNInY6Yt5U9kTDlhjX/3u4PAImMwo/2q
IdX8yRjOu8Jm03HAqth0wS1kzGtoaHwyRpjwk1RJZCyafGa/18lnrhCCbqaM
QT9TVwXawtz2lVPVj5R0tG67c3sp02kgdbaDsWR6lzKYKJ6xPkCwhIhkxo7p
g+E8Yzazo1obpq1j0vbJMcRKGi2iMWl9CB5Is6j6/IZGWiXO/uK/f2Ve1DRG
gajRv9jNQI3x4Z2gpsZoC7VsjPb+tHxgbiYJBaLm1TV4FogaawjSNNXAWiuG
BBxmqC9jMQk0T4iCBODg2lDgUO0KHG6G8tT1Zqpm9JepoOPMlwcOqp6Bg7VM
q7laj4+frQ8N0YK1MIygK34ErfQz+D9sPdiINwQBkTeZpurDWI0xi43If6sT
Q3nzRuWcvClHXM+k4efPszIEfnNWhEJCOeKCF/hSuTizxRsePamQpYrNPUXe
8JWqb0Nceh95yjdFS5x+2vVLpEsm24ESizkSG2UKndUdFw3lVTIGHU5Vx4wN
slTZxHfPBX9KW+TIwEXPP/+WgTYbzuF5HMrW6kxBPlAdAC4pmE1DAKCx2hBA
cughm0JDQGHxgm0e0FifOwnaQTYv0Alo8FJw9eya4LcETQO8WqDhlTEG88Bv
0qsTNExfbxI1DooWQbN4v1yOS0AwkCgsfpTaZDH1EvM5EDQKvUG6rdAA8KAB
mwo0ey+chhAvFWZoOkVOgygUuUsuuX2EHJpUkVPZQxSA3LCyc/cs49Rvi+ei
9Ie4V/wMmVCDmxe/l7/sq+VaJpTyuG4a3AL0KRlPDspIH4K8/XooWsCd0Ien
ZwBqiz5Zj1FqSegTCzcfKuZg6bLCbEao0AexZ7MVaDgv5vCzJIRJGqE0u9vE
Fxo/7kY4H7GjiuDUvBKdcOOFXTj7yivvyitECB7USg+ewkAIvpZeoIDnzIW+
EvJDIywj5m2far4ct6CDocUbLYbMW7H5SxDSPCbD/2pvqlFfXP+At0SkeSfA
qSnQGldnxV/wHmLoh3H3pMs8HKXWhyiL1TnqjH5uE5eFPC4sxJG6Poupi5/e
e0BIHu9slK1YMeYFcXOTkoPo20JnbxXr47nLIu3i2wfuluIIH3y2+fqqDCb/
LAIRdTcHgTrVZAs/QgLxeJHNCvucq3HwqK/v19NWBKq9++cvOWZeArMi00/A
FjrOPPPbzCBSCERtWMxuIVC9cS0Cx46ROOZMnS+kDKOueY/zAecav0MLmBjO
Vs1AYP8dlWlUDSIB++deKYMTqu+uu75HDNm4FW8ruSEwx5sdKvd932OYKste
dKXonPA0pSvomo6t5ihuOYDxGU4ETyKlJ0mE1W6rAvIxIjHVsuQiyAceV9cc
/oOZ2qyHQx2SplxVWMGRQSQt1LH8zfJewF5UfkudZo5RmEjmQIt+zXbBRQUg
kcw+9e/2M1hEEgj99Kf99RYViuqEbiGZ5wckwY4KRczU6pJQRRJKJL+zEb8g
yecxY5RIuqGaSEJpR6NjuiQxqKMvkAQHRNIkM6FW/Lb2vsiZSNJz00JSgr3z
gd9gcBDhWAyQXSuozJwva0dqGPcqWq3VZhlDcN4UjAjOxIHJyEP7mQz16SEY
ybOYUSSBuCcpIh1Q7TH/1wmBoMMvKcEqIeaDWFQoimeg1LYKWVJmoUiltlUh
tFatvlsr35FACzMqBLI9IOiFQBbbLUmgccoAWxWK6JKeQAhE3DCZbTo8c9hV
Aul35vujnuYhEPWk8zXwvMNlM00g+zYJ5CiM4S+ZwSGB4rXM7/5e0QtBIKhR
HRHXDAjE13NKQ2XnKUHZc4MysiicNFmENLKFb80BeszimhL+yKOPmHy8f7PV
2W6pNcgtFY7Q0HCga2FqgTjSM23GK3Fkm1k4ruLIubykpSiOaF2P4wm94YAb
Ko4mvKtBwhvKNtVf4QgHxUUX3jqUiVu5n5+sQExVjLtpPJiGpEDQKI7491PF
rbiP+jErnVQXGDA8Fy87gaOuNF2ER5VbTwnKnhuwQh41FKDFI2Awb0zhUa/H
qhUvQ8Wj2tK2VIk82gxv+bpM1q4a1LMS7E0Y1Qtx9dXfIYyqR6baUxjRI0yS
6uiMB0udrcBospIdVeUgIWt5bYACzttQPMyRObO2sk5xTCGp5yhaeBtEYE0h
qefuDJL4LTv+HEj+jr0yogSouOxhZRGSiosGQTLbVgtJizyxyhrfo4WkRaKX
qrWhl0iaS7h8DX2SIlIN8A02UUEqKQvNTiaVdLUhZ4JQaQKWAlWdhjZzVKg0
HZIgt6iMRCR1xrMclbbcYjJKakzlL8yk8pgvb62oxMtz2ZunkvcCye/qc+xV
VKJmkGiN1zIzZkmdiaAyWePzUInX5aq8FpWRoITywtSALSpFmhUqEarI81oD
N6qGeUD5yiXGs7dyMFfHY4hq6YWo5iVRKjXcUahUESpU0u/uqBSFv6ISoTMW
nqVykbS1Ft1MUVkN5qIjDgP3kIBur9znvG9beUQvUx6ZEACH8NgjlVssvw+n
OLAyGMKQONLAwaUwM9M5HF/1yhPysDUHjqefdkN3xeW9oCOO6AnU+55rZYoo
cbQMLfnT04LzNCecJWosOB56yKZyXgtHnafHYUOi4qhqpgpJCeThEF1w5GXN
LFrtiu10xZF1n37hcUR4juKIh7LBv4Xjgal1vWHNobuJow3d6nXEe2xMigV6
BieVnWeyNzTy/EUfbX3ytdkqxRExaS3Zc5VT6uaX4oQG6gLJ/yIm2ZAyDGRP
T4mKayKpZgeRVN/jc61MnTBEEr+j53wvKWOEH5sO6iZGwq5rq5Kam4pIaqgb
a+XOO7cTSY6oPFRC6sQ1YoLQSb02aVqat7Qr9lYY+e6RpBAqsiCdihX8uLEp
FH7cLkj2gKyh64LXyf7dkhtmmMw+e8ONIye4TVAUE27AcY+Ro1zjY8gjv0e0
GIM6uiLc9i6PxEqRdElNIHXdngNyHiGpYyyJ1IwNP29lcPAwmZ0PL8anPa2M
+n0nRNqcWf7U0iTH8zHjNUQwqFITkUhbCFS+HoRkn/iIvoBs6xBHNg3iegRH
djpElgmObCyHo0weFhzpH7KxPcKREsy897y6+n441eMNcP05TWKjqDflVlcQ
mgJoP3m+pqAcQZld+MeUGc/KfNIB31yV+W8PJdbyopNARimUVELnl5IRkxAt
TDJOJu/s06vlT9Fq/z3lPJ+g/F5Z69ZyRqqLfIrJvOjnW/eQSW/8qJRU35FJ
kpF1g7a+cNOtXo809VKxhN5/lRYPWMLrpFgijg3P+a2r71F/bM3a4Dx3WOJj
hOVt/aynqJIWHiIPPEhKP11YD9hTLIoLvL/DoESagphf7NPpcRAjw8WafJNB
Kx6cka/466/tjHxU65ssYsKSobAtFjGvZnl1C4tc19p17amZSInUAHYckN2l
l61WGZEP9Y1z2S0OxkP7CUOTOxGLyVBfCYqFRcpZHbEZu2jSVJXIiEUIE2hy
wiJmiDyL0GXqsrU6B6Q1k4cI77PcLdNchuy7YyKR468rKO1dvlPp+CnRaUAt
HRCKJLnQ0KK/ffVJIyQzkb8tkFD9I0wK53Os7OLNtzMFR3OgtlHO6rovg3FM
sBkNhJV1LNOgAjOkC4ic9uSRdb3NtymIanvrNOGxvcOyAKcgUp4hW5SASGvm
vPNu6r5+4jUEkRIcN//GZXd6a2bY92EA8fK+HmaBSAe6gMjJR2/QeBAtwUB5
RUN/iJxdhQYiiGr+5BlPB+JXj7tatJqdA5HyU/VX6JYzZCORxPQuU6O2kNww
TB83kbRx1KjoRjKPcd94fL+RyHEDQ5Oy0cZBRVKPYfV4LTdpEXhrBgkz13/h
Cm/N2JzKiis226fl7zEhnCNh038lnMziLk495bqCJEQRkUyjnkcSeT1Zhj6B
sq+fdG1l1NhPCyQOyfUaR9vP/4Y8qkajK1zWSyjEFI9YsY01B+TxSHPkBTzO
gSOMXob0EynFhzjqOuAWjjabYUR0oyGdOGJZAlVJTSqI5Z1dN602IhNwqhni
6N1Bw5LgHkebnmekmT3Sal0FUWIhyCR7gAk7z6TFZ5A/vVJqOhZfecW2nLDa
gjL5iofarhUnyBYn9KMbFGrY1afWoRseS/JEgYDVNjOwPD3ZAVNY4rK6vEJN
bGCJIQ63YlZcmt7EkufLOokFsMQV6PNpSUnN3drCUs1azarD84jlNrG62Waw
lvhbYumzvpjXmVhqCgUcQ6LpOoMHRz1iqSsOTFqFWKZeRix5qxzJtulWH9Bj
TcBiIGlp+AeIe64sRHgWlhys21julvVCjyWekQ+Fnom/i2aZfiNWS3EL8Hww
BOfyMIyjr+e0KBVvcLd9yuZQYTOsX39Fi091kwPP1FfnGcUjxmhcdsKnMtbi
U8OBVgfnkU9brWSf+v/LFEzh0ydbh1hNrUE+qbTz0HALnUezuYqKTw0jP+bL
Vy35odwazps5Vqx8ch8w4ZOhR7D4HJ+M0FA+4aAwl7/yWZ/a1yS7k7JmAcb5
ITyfwkn1G/ea1dShzD5ULkr9nU2K5+vn30/wyX4AGYzfwgtraWznATQyo3MC
WUtPTECjdFiQQMjRor9F96OgbamZyJtqsWMFUMYhdl09ragHXvv4468moLra
GYe6g/SnxnUBFGqFArq+rPYb7ByLACKgrClbJeYDgHCkXqyAYu7KlAMF9MEH
H81ZTRVQTv0IoJaCrQJ0DG0Pm05nmRO3PO8Y0J9dBNDqXNk2owmouS45M6CX
eaTfoWRYH7wwnogB47aGzwnOI55QprkqMNINWvKT/oxO8OQCgq4xvltlE0+V
kTiGXCH1+M42JZ661MYqb8l70q2uvdppxRGe3BOLsUl0XXZdHZDGDkFAufzC
ZqH8qWlMGgGazIBJQBnsqSG7NaDPV+dir8ice9NcgKpxkxOPJWAjQPns6hBY
jND/xd4Yfheu7+XMYU7nYCkeSKhSRkLxVlwF0SI00kCZDKsTQnNevyv7SXnm
mBMEq1Zi2Rq7k7fn1ULyyYeG4Xx1qVEew+L9mslTTr6OqHI8MMOZqCK9hCyC
H6FKfVttb48qzzPGeCoGx/rUqGz3uVCFCsYhAln1vLHEdbw4UKm8hr3WJKpc
tTeFqp7PgX+M6rAhoUFBaPHv9PbFpBmeQEsMXGjGFCA96C2akSUb6006oVnl
ckveavIU0gwZTxWBNMt4X4kslpFmn2ZMPaJqdNVjf78KTWnGOO1XT5gF4xVX
K/ZRbzjSL1nMLImVmlt7rJRlBAw5lilileWx1I5ZxmSdsowHFEXWWM57I49Y
5vVQzgnWKZY5xTQHy2XuCOXYVVIUV3MK+j01V+LiaKtNci27a1T7q/K8Z1uZ
xoaQ62t7GyN/anEdqbms9E641mHX78/RdXEMCbn2Bpnqu6psmNVcuBb5mY9I
oUA/D7g2e1+55t5JYpDRyWlBH35hlOcap1sSUOWay+6Ua4aT9mUvyJfEq8DD
h4OMN7jOf+usG26vTityzXM5GEo800yut29/LP9r91GssdhSsDYSeGShbK3h
kGa4RVWef503O/839hn5W6jpRvGd3Oxctk8r5OW5/zP7kTVy7Lakti0YG55q
aZkJWap7ROuDda8l0u2NvSEv9vi7IVnjmO4h1d5KhUUyHL26bLT4MDwcjm4s
ba2U62HkUWtO52CF7nFHiIT+M4tyS43B080UELyed6Py9vwMGmkRFous9zbI
Thch3GhJ+DTptUOLyRuXgYjJTttCe5LkCYl9lOx202IasywWjlh4QyVh1X8n
TKsO3WJaZm4K03Qh6T1mLSBZY/9X3dkaGz5xIh9NTCjWmMUZfzcoI9b+xJrj
QwPrdIpijZs4rCkZB4OsxvqGG+7zuteiWNPPzjGO2lJgE+bPnL1ThYNP77D2
TjRgDdOCWOMnvBVuG+kx82OdK355llodJVdQgAizBmIRNIyJVk0FZlVT1Ejk
KlPCHCXauHcws0abpXRdvVKSZYTZz7JhjvvBBx8lzN7dMaQCX10AGn83aCC2
I6LXQAwGUmsqRv5Kiuk9dDCL16DAbF5jKi0e5kGcDwbHUWWn7xeOYOb0hbME
JmGm81r6mcKcxZl3SvBv0MzejGWws2imkTwfzZEK3VKrZyUNIddwVNjSzJKQ
Vc97qpVFigcCY8kwucZb+kw4NsDnT1TdNZgsWqtPrr1ykfdmfOgH5NpP03nN
2i/R97qHlftAGse1ajFSTNIq+zLmmmA5rjkErZNscsJI0ax3lGtWD2+vjjrl
WrVy/MvW9lwjA1SDa07FEetNm25dGnk/ctMtzzILp3J8cUqZ/CL4kMEzLX4j
5x2UZJ9cUQMQ2aCaxJr8PjIkAyvnjZcvrBkJXmu5Kb1alQxdxI9D/XfKfcmg
P2Bt1pryy71QU0VM8EtWMXHE50rV4RG2yDGvU7QR3j1XziyEabDhGJwefbzs
AghrvOy8BHNTMY8w5vYbvuZ/K4gwTJG5NqEu2NKQgutZEhO2KK5IXGumdcFV
7Tfdy5plXBQg+ekKrqM9LSdWwgiu3nk3mHM9rhYKzAYquCrmqdy7m62hfIyi
na24Ij27w1XjJNZzUd+AqwXnelwx3+MN3gHXp+bzZNaTiVlGuGpuiQpBeMef
M5fA1dSw+BdipYWrhptxPRaWVi6AqwiEgivmRDlFQVyRpR7odIKrSjmGhmOq
hZqw7glynS1ZJa6KtW4JyTLiKq6sgqsuUyCuyM6rhwVSTGm9RQNYpUiME2DU
0WU4gItXfnGkhyKetqwmFztq8TrW6kqt5SlfgNrImBsWu/TUEjMcjL/11Kr+
jnOKZ6ynljVCavFqPJVqt5/0YCTGFLX+fJYvQC2Wu2HBdCfUQiAyQyOpxdtQ
ByW1KuxIbdZLv9rrpX6vpG5CJ2gJWQvWtk/9/8UtXKhl/DEPW8BPav3MtQpZ
dFLNsgIgVuw7bWgcCOwls3rNIFgHh6BM72HArEwDKrOmFOBi3uWiknbM8VOz
OIuYZa1zGZ1ntuicPbPs6xDm7EHu1BGD7Jv/iMxieo5hYWRWFxWSWRVCkWJA
ZmUqtto0jjZcSzGIJK1FedunupWGe4ydZdZiZNbv86l6LFuDBwx2ZfY42SYO
v/PKrJUrs0ySKkoD9ck5mF22VbqqXAsiwyx22cqvcjBEsE6F7HgC2U/UcdCi
ldXeohXNGtHKxIUL0KpW195WphT+bFDWohW356S1buvLbfRaekEkYbHI28em
jSeZx8E/NkswNVenXgNzo5bvBiLr4EkcsMhIq6rGFKWaaqjOND8kxDCpzWIN
f+OOK/1l1mpkHh+tPOK02/cFBVruiD4LWsoYfi/LJHjtUoa5NT1XEwR4aE89
9foCLb5z0HJeDsXYNcYzm5Ftkaqa6aKkckq/E1IluW1TF4jkqoyshVQNkZjy
b1m9TvkHhq2EVldyCMdA42pdj86mCPVXEaCi+ai4JSyOUw2iWFeWt/acesdb
5L1l2aAdvFATSOfvGHczxSmfgYKavxXBXcq8h0y9sWgXhgNgVwvlFPohOZXd
ECt+d0K4qluVyCrGLWQ589IJsmo4EVkVpJPCdVW0grUTUL3pb8kuCKptiV4O
VQA2iNvH6r6AqhzhUJGq7oF0ex/QYLdhMdY3TYDKlKNlcB8uYqy2JoPHYnbf
Ci07P99Yl3hArfeo8jN/q+P1PKiqIxjnGKr9LiW7FiK9wotyDEBzkqq0LaoG
wAsGb1gnpGLR7VVmVJFURPPT+CKpKkhbwlXjfSlcxzE5tQbZGeME9sD9N+p3
VdRCdiPcMqTEwoyYAmu7SrOKZ2msmyUVoXBMZiwiyAed40iSKQL2/I23tDwD
U8DK2udyc/6eMptelghYqEUtYPU7WQS/o8Ca+tAClmE20EIYavAMK5sXWEh8
rlkksJuHvGcFWJ2xWtT9iuth1WEnwCrYFLJ+0Y+tVZiysoZNKsd5s1Rv9ZHA
8CgMU15VkjMfgIBDlARiY8URs1JM8G3g9swOC8eWNa6rMAtdi9k07Mohs4Qn
B4Oc+W2fUnYuZjUpwf8/zFqWxPyJzKKBGVpDZqMtWWGx32ZJKsnshiHybrRf
oP422lpTB3z+FvEtPvA3CtWR/ZdKa+oaIgLqjS7VEGRZYD7URSBeNbbiLFWW
YVWuGGczFZZQqrO7JSPB0AMm4FWja1y2b6bCw4tpOU134+HV+S/eXrUAquge
XrX8PbynKbwrOYxa0hxxumtBduFx5YJFsqu5fJ9lZfDC0vCNlkeQXdt2PH8i
f7PUYLKrVhV/iwq4667v2ae6kTphF9KEieTYmGK9FD5bZpgukbWGKuxGwb1k
V+PLUh/3k7I4JCBMnyCNHBG7TrvFV7YY2gcORezCW9yX7V3YRVJae2z+Lv/L
+P952e0XssM43L3JLoZEc4bnc2CQIwkr4aUwrxIZDvAm1OeBF6cyjIDw6r6I
hBdR11QqCK9lWMmfCK+u/PXbAXcz4I0EL5Iq+NjdKKpdvFEVvBvMZUFAfSCj
arqaDcNaoIJXgxyH7yY1XZne1mI3+6DwMixBmKa5aFR5rRaB9dPa795Zk9B5
DQ8vv+Nn7vg9BW/fWWp4ZcZ4pF0ovFvzvgW92kB4B+2nT0wHiYwynDUHvUoR
6UUAtPXVQi/E32nmeiW9cJ8ycw3p7celfs07CVQVoaU2RKL3hCG9VuiiJb1i
+Jfm1NwNJNS7clVtoG+KB9BQep0TKtR5ZWWwqtCiCivrqR/6uFscok2c1aY3
msFVelEW0aubRCu9HAD4mdlbNAmZ0osFCV5x5ZqhReilU4Llc9Krcoz0QsFj
/mzSC1lMUkkvOiqJJr1KJQmMjLzIUItkr2zQV+iNYnFoanRCL8r4HlOKg1ps
aktZlRZ6NZgAh1psE0qvJEjRYqXXKb0T9MLtbXH1O0LvdcOirDIM8lzQi0xt
nl63K5JTqAd6lXQm6KRF+D+JXkRGU4UkvbrXAOlVbYL0KlmR5sAgcA1AJIGR
7BUDp1J7Kd/5W10JxObU4PMpeocIxP478/OV70ivj1ycMtmSvPbTtzjERzZB
r22eZhe5TOnFRaoIsaHzDyru7qXqKUAswN3HnvHGVlVgajefJbK80jS9K57e
fq7rSSN4MRdu8OZyGFXZeltfpWtgUnFjdzRLRmDVhjKwK+ieaWViMBdgNaaL
wCqchE47BYFlnrZOoIvErZYRWF0ZoVt/c5sEtqqqv5pS1PsiVPlYtqt6sNVZ
xnAWHgrvhNrLuVxX7M72MV6ueALesW9h92oAx8HXng3vnpXzDGb8FLxoaoZa
uGDHJaUX5j0X4WWSNw8zG2V9dE0vHzWg1wnef22VAP8sc82R2Yhj3JD5caJ9
faN9tSKllxzjxW2f+6bg1TLNhcflavytTtkpxz6ZfcTx+B7jeFz1m10lzicc
U+Zb6uN+rhdHEqssVnXZccxAHCmmL2cnOTbtTyePrTrGHGtcODnWPd7Z41z4
Y8UxgyTIrm2SHXHM4ZiPiliu+TiG44TpklscQ+xzx0tyHO3HFam/GidLjjUy
cVF5fJK4I/hb5lDqhE9aEZ3j2KJcwxQn5NhN1FWqsA8fU0NuIoDcUif7YpX6
dPQyhTwO5bzP4/SdvFGdC6TI/6aa6l/oV0OKEcOtvjmdDsNBT+4silWKF4rv
roN48S9mUhekGKdzsTBuBctwPoppJHRCrNLJMnRBqp5PhDTO/qJz+xgdkoin
59rKljRWj/AQAu432dBfRO417VtTMtiza77ufGh0g/PoRjNsEpLrjD5hdxeW
le+pS9980wPIA8aHl7QKS55dXbSOn7sVb/lfHw7GyaVF2PUqsyaJXpBdei94
yfnYVSbJqWrJEc8tdiONeLyhx7LuF1yxS023JYElfqb8Fla0D4EYa7rLGk+4
kEaMuVmlOI7fGa3siSh2xTyS3kGVwXZv58U1RBJmqeU5mXZG/Ga18wYOcsyd
cvQ7ihYf1ojwhhbHQIIZZwgd0cE5Uxwz5hd/W2aVbFixjnYM5EhtwACGYVjL
5gVZz1sr12MZQZZ5oQKj6I3ltxoGUfL0IQzixhpkGd4rn4X/rXrXWiD7hPxq
2rH2eSjIqkpIVig8CvcZdFJa7uCDdHAkyaAgMzRtBsg6qOOABUF57kHmvx5k
v1SSVpGuaqfQ9v5jBRkCXuHd2u9tUBwWvKeCzL2kdg5kTRDZAlkld0sn1lgb
gqw7QSjIfh5af6sg+99yoZSeF60mVl3cr5UZzovjJQiyThLjSOeGtt2E8jvh
HnYgw6J3xRMg15MNKNt3BCnne2aBjCr0IGtCfV0zPC/IeUyBrrRrpYx4js3z
VNYAC8ct7zBBjlRgLCHlIsjI4GuBrGXq4eXSNoKMV2DWVcIoU1nTElniIZd1
kC+oRjuRimY4Ct4azmu72Dy+62bHUM6Bb6ovH/9gF5mB79g1sW95Jf4b4ctZ
YMUXd9XtWHSubha+WBXTxPcpTXx5OnojL23JSBr0/pZVAuYNuGkU5zE0v16L
3nkVY9kirNCrqaWVXpbxt9xeuhMWdeGbrpL3HI/Ntp5j7kjV0id8zKWad57j
IU54pcp/XTiuE7bauFmWBGmgxvo6ijKAGX6VOWH2Hgq6NfEvXE36HdvSB0+y
rqdg5sDP+B2V29zlHkvJF4R5vczUmeE4B8zQHeDP6ARm3Q5vUZgj5RhPCMuk
E5jPCiw1FayRj45Ayrxp1RGgL+h5kZUn08VhksopP5sGtsu98jFl5SWJGF3O
w6w/cWHshFmKqUJOwDyscd8zhJkwyoqk6l8Hc3Eie5hZZ2qOefeGzVoQ/iXS
DNg5L6mLkBegOcNMhsW9XhhWf2qLYeWVW+shrQvnGZjFBv0B7sTOMez9varv
DrHFY71Y5+lKlp2Tx6koxwpDvWJO25/emimB7BULjcUEN/wd1CanRYT9Apmq
pkAW8YtZWokxjkBOtT1t6u058glHIEuCqPwvXUE1yL8wAll9b/OArLN9qpbg
b04kRSCj3EBuqchkGrwx6S7j29Vei+aoybQuLCLTuu0umT5naJjCNM65z+zJ
wfvLX0Q0qpqr1iFnZVqqRTQ7gresw+LGW2QgqniK5HVlM8lxogcEFUXXtMYq
JGuOQDfxPIPkUhyTzIdxGyCUxcF2Pm+c/+VdTYwYyfvMRTL10ohkUkl6heQl
OszxnA2S5wAZAwU9bdG6TUYH6e7lhPZEWXDEMkxNUDkhlnhq2o4EWfaMrCbj
KDgjF7R60DzSun/gpIKRq60sAUlvWWdhbU/fifjPBxzLUyAr5H5CI9VYAVnv
Jys2FGQJ1FSfcBPkF4ROC1zVZZHgi+R/vZsYOZTUG0dFWxVsuqW9pw69dw6Q
yTG5x7Z+O8ZxtEguinKD8OS6YjKr04Asw0NydytyfLk42sixDuxkUZM7RMFF
yjGV+2gqpaVkyExDEc1Gl5w3TqeK66fBh3BGaz4U6mNdShN+p2n77Boh1OvH
8cR2KQ+1rb7yQSI7CrW6jAGpn/Oj8qWQ2pOV6xJa1V12AGquWeYqwHP7YKU5
oFZoopWfhBphkJxPJsAqdFkGrd5vcs1I1k6gVm+vRq5R6LasP9VkFGofzhn9
VrVzgjBOAD/ONYHd2xIECrUZtPlAwJBC7ZfpR9LfgpBD5Xl+qKuzI5fGC4pr
gZ2cuTrwoMgEYC/AS+V/vUrhF+HPA7X3z3mo0QHxZphqSs8WQc0pExH+Owh1
JKmvkhVKBBhDkoU0ljJo+oSGUNMJ2XW6Q8AAXIl+H/ZiKVBHbglNsLa6XG8s
laPfqtuEIKhpSqj96ibT6xRqDbJXaYxh0ydJiaC2286yCHGaLcrFU7FYF7DM
gNq7LSg8VE/id5T03nWxKNQQbPod8/hBmKmeLS6LnYf6X1kl6LYXzISGz4zo
IdToTV4qY7qem7WwDM5HTjATas3iQ6ijbNbiDK2mW3ieQk3zm7+NAI5iijYN
E9AV1NxqjFD7SWxT8ggnU53wUAPQJ1RRqHWO20OtYUzrxlHJdqlVVo3aPfiw
skpBqH72QlRPeZc5x6VUY0WF/r6suAKdz6guqZdTN4iGI3F2G+22c1RLipBC
NUISmUmVVGMLD0Yrk2Dbw7Iq06jmXYJ7kOpooZJG4rc8d9zMV38bieoorEO9
3qQa4bv1NMxY/7BaVovPr4dSqjXrijr29LJZb735gVCpLiGbc1HNvx2lhWp2
7xbVmkeVT+ep7n0gw0ZGvlc4qtmF8ZO5qTa9ZeeohhKBsNVOqIb2bIlyCtU5
Q//2nnQSjMURpJBl6pMj1bbRlTVHN0m1yuAoXwDjOqNFq/MqILKWuVA9niQf
5xq0AXSKalVAfF6WKf+HdbB5TMUdoBrrwUm1OiJwRFR7mc2Fh55qfu+pRqOU
xQE91XrpRanm7ZVqxPbMRzVaizNsmepV0JTph9Z8LDqPYvtelzLdCWMXOY+M
Riwz8EJ5JN9wjXhprMo+WZ5X71DFWVlm2AhZ9o68/Lu7K5Yt+oQEFF5l7XY+
EJLE79Sb4lnWjPMTLJfcALtWvYJDESreVlaK3+PZI17nYVkm9rI+M4tl/Fux
/LSZLONS3CgHXUFZVgt1fZlbjDLyNqFGnWL5Hj7lHQXa247232Tb5dxzbgon
YaKJcE7MHHzQ+SWfBkFXYZzvuCp43FWy+9hkhgt6z1kWZTOcV1HRpSzaDer4
0zWjiRljdiq0aVBUir9nqFx9cfSXodZXfCxqf+ra6vpwdLIfDOpH3RHUwS0O
PTv310pjaEdAYg8Fma/MEVM7As7zHYGrNIOOUCIro54ANLUn6LpY6Qn9BkiG
/xiavuFl0pzkK0V75P9P7FG6xhdn7TyJkRb90bSkOv16+kc5K5aGzW76p2Gc
1VLZm2ym7h5ZmgP+Y9SjkUGWqS4NC0isPkbbTNsE95Sag0ZNRsMqezouJ2Vt
qvIOZZ21ndp3aegWtfiXORt1sBdrdBHqX1hqgEiQOq70tktX1/LU07LhU7I8
ot47Xgr1dz88mlKfoH6QHIObpTSlVFvdI36m/7Y1IMzRLXQXSBiDmIxu9QWV
8FEUK/uCSxw/T1+IssxpupjWUBBxXw1G9n9xoZShAC3BHVCmNCKTg1NfGyDa
KzilhZdFvFU0ivhe4VT2qFeU5QW7Vl2TzhhbM5P/HnbI+43QGeNzzczbK5T0
Wb2CwS5oW50x5VLfqV4hY0eRK//zOgYOTH0s2jHGqxlX+62W5ukY6ripMtFY
5EDLVIh0pGihpNirVccgxiTfh2HZxNmUW94S67BjIL+PdoypSdIFOsYoLWls
+bowwdIxdHEMjkU6BoXJjnQM7ZBfS+VYLsqOgeuh42jHUJP4H6Fj/EtrZJh5
1sS2KVljg1VyMitvdEuPUmHOLuKk6zxdRC/D7oCsqD7wJfYMzadHiRkcZjyd
8ndak7fcodJFtNP5LkJDwo7c7JEjX6ahtIuUwNvFuggf2C/8xTGri/D2URdB
XepGJ60ugnJk0dAuwt/gb4ahaxdB+6N7iEnxRHSRnI/MViROdBFLlqTF+cCI
vKiZHa0qVgG+ao7eoTRrhAJDdp4IzSrasVj1oCnVCZPWi/WOizffXnqAalbS
tgz4mRWQIHFwam/oIKcbYiNfsZ066h38V3K9LNQ7gBXdT9HvWr2DvQuDhu8d
J1jSVekduYasNz6hvWMVfAB75b8Kfvk0czVxt80oV3urD4xzTa32oVpL5YaV
e0k9aKRcV0207OvIoxqpTvpbJR+z0sN5Kz7L+yrF3q/6NJvdzPWLkjq0zLes
/E70FucWU41pAnidlphhYLslb3blXx8BLwNWKfPr8hmtqMCraeGBRzXzfFwb
EQkR8H6CYAL4PJO21Csv+LnJnD5SpzNk1Lk0Ifoh9tFP8ek5VqZyb1HlJ8p2
otTtEvyWMl3XJ2tIMKPTWKbGQ7RXQUvjmSKbWtWU0LZI+FZYQ2qpVfb1lm9s
6y7/RpV5DY5lHzHTP8RW7o45OR2miJco4d+diTjLVP62EPf/Em38i+wbsxDH
vzyfXlbKNPy7COLgSM/HtcUv1VqiQbR188znSBnnE7iJIZyT3MRwDyubzydU
+0xbaI+mxqoVy8pDS0mJYuG1c5EvTPZ6oP22hwbAjIgGAq3pIHA475B2B5u1
DA1d0eJxBWuJAfXfDcNx7pQJOfWV8m/NKGyLaCstHIfOBpBRXaZEpnlei2nt
J4gb8ExDFkVMezG/A0yr2kCmMbHC5ZtkWjV6Mh2J6yhHq96jxXQ0z6XJfDT4
l+e1FBE9Lyoj3br6Y0rZsHg/fu0zWyHhcYNuW5tCupVJ6zazViKFusoeoY0q
o09INzXYXqP99eq3XgJ7ujnnRreO95nOolvLNC0F6UYzzkn3DsKt2xkQbnym
JtoS2JEuonpCC+5oFotqm5ZFWnaki6gzchbctsnbpC5iNd4Mdajh1ulZZ362
4NYbT8BdIhr2qEaYWXBzWcnOwO1NzicKbk5WqmMGfzPkdRrup/ZtmY4/wf/M
tqRpmHQRYk8VuuoGuwdl0XnEB6v2zHgbufZn/VY1hOi3fbb51bmbWffjq5VQ
obzd2L2P5LIn2/nOl76khuvYoTl4mSzTJHukWgIGauV5YujNoF5d7s4fXmfY
4aZO78WqMGzVQ1ByVQ3nxb3wrLItAs1YeYQ11eIQHLYRFbue5miiFRzMt+Vj
2HF0qltWFVTGnN8pZ+sVNXiO78mf23aYvEz1r++Kusib7nvtivo73ovLzdWw
tq5YvDjscvyN74rsutyjl10R3sgBuXCwiXrZoj1PA/EX7Xm6ZXqr5yHDzO23
PVTKtefZesWq5zkVp+p54+VcAy3mk2DPG49J4563bdv20vM0y6PvechS3+p5
lafHyqJcpRp/yK4l0eW8xrDJ1Ljn2Wf2LtlhYmbPGzyjdc/jntau55XQj99q
9jyVMPy5qqHebuHvmB5Xe96DDz6Wr4HPPF9/zzr1MxbSk/rf3/3wvD3PMosN
eQJtHifoeIyg/k1rTcgXRms+0xHTiRalGt3TrAxm9EMP9bkHqPnpOkdm/Ndw
O26cMo7FGBrOtC52gmhy4bTTBmRals1UuBIcKFqmTiyFnwG5WlbDX1tA7BDe
vrfsRXSHSgx4PjSONuoBNo+SjyFnTdMJy6MMSb9VxvGoB+jcnF/ypWVeraMm
rT1A1cLIm2XqRasHjOI2eE3uUNHqAUgwON0DuBs7e4CmTWj1ALVf2AOi7bMR
6XOFLYpkD9B1CuwBY4N96AEmT9kDoslnVVei1OtRx10OfusUr/ypRftUD6CZ
xB7gFTRrKO0ButLd9wDoidoDNAR86B0rlavB9QCLHdYeQGp1LyG/M7H9pDy0
pKus/tUpCJ2BnuoBumqYlTjVAzDrH/UAhKOrgcSd7X0PsB400QOoY7MH4E24
MvK5VhbJ+4h2zHUx3R1p16QjpF0apChCeEquk59WjnpcYQZqWbTxVjR3JnHO
TUs/2m02m8amHCrqtUY0DmFFC9x443f5NZbjBahHJj+jvJuCfK3fnkAn3Oyn
LyqXjaYWZElqhbosna/+9cJ7Fup+cFDUde2aTjU71LmFhs5M6NgA6SmfA3+W
VVJFOVv9uVY2r0xXA52Ua3wDKUeOL79lp2Zoj9LokGjmXdSyiPJIpVHpGQn0
KavZGq8kixgWrhe4vT/L2oxf+4wlTrXXX9tKngK3Uixwu1m3AvcwRfyiMiBO
wc3RYlG4IaE83H5xJX+HtvFw69gQwQ1qBW4We7jd5wBuZi5qwa1lLbgxW8EF
6oQbJgEnegm3pv4gyJpMUEMimMNqdaMsctZGc2q6YDLS16c8r5b6RNfXe7hd
rOxOwG1NGc6zlQTCayt1xQWXFrijSWHWi8JN4aBw84UiuOUNRmp7NHnMBQ26
2IDXItwQMkrxEwK3xVUWuFVTfq6VzQs3ZttpexJu5NDjtBjhNieONZOdt2VI
MMWyaBe5SJpHkjuaUjMnZFU2Pm8c4mB6iMJdb4g0Xm1mQSkKt41V+XBwa7S0
hztUuuv1ZfPALZt86W34m/yv1M8IZj+rrFMICrdKbL1fgfs7Mdzrj75iXriR
NGQ+uHFg19V/YS2ngD7PytCLKS0juJ8alBFkKOOcomMZ5kqYvoQg4yltC6Fw
j+VF4Y7UkvGy9lrlmlJLULunnXZ9lBklkq+dBXAo2bo03pGtd8OdTjrxmlDh
LtHMY7KhKOEYyP7tKu6BXhM+ZbRdjDpFpzz7TbKdSPa/W5DsMpHm0aYO00A7
k02g1aoj0FAd6GNpAa1WZySZWSazIgVezQyiQHsnSQT0vKrIeG17tI/HeM2j
1anOFXoXul/Ygte7amBaUtznw9Lbk2k1QW1omGVE6hSFKjrKtBqRZJodWL0y
vJYy7UM0eS2eGzGtOvQg5Qe/ScQ0g1yeYKbFGwcP4T33PPzPrfUgTSHvOwEc
/l1u0rKoxIaLgv5olm2VbGuEOVJR1PCbV2JHFBJ6VY1a6ojXtW3nZyZn9QJ9
fYkoXlOptWxDiYDwARKDT2Ocg2pYgDjX0saiqvxKCLZOEHkDEp+Zg21K6Hpj
cxbY/BejfQD2ku5IauPU3GCjk3EHDNTgBNnA6fTTrifZiAPh+E+y4Yqkhbeo
6NYswCzjbmidUKwTgEo2UwC1yMabM65UFQbO3JDsvAj3iruq88ZZYMcmIWpw
w0B2kMC1Sfajj/5oiuzBobFal+TnQ6c5VbYL2TnHvs9k8itFb5dtqCqyOZWk
ZMuK+Pwv70gLQslG0tIpslk52jP4mGOyn1zIZmjmDLK5f5Lcdgrsvn4vI9iq
dBJszLHQS72XlXFmCp/2tDKFRL3ZDFxmmeh4lf5humIp40YmnUAcBW+K76sA
i85JH4aCXa+BinZ7HEdd2iwgwfYSXfPs3Pjt+z3Y5TtOV+h3pFpTKOCYmrzn
MgmXn6fA/iuVIqxUw22v05l8cb2MX4Hr5bYqxXhi7vTjM7Hp7zis1Huf1vJ6
imqWS5hM/o5YI2/WfFgrNsRaESbWOj/Xwlpdxk+S39qytNAJovakD8fUMYFl
sodywVUnVYi1MLeQJmIrwIm1p36drHb1sSUeaxdiX2ENTz8PRNbMmJFfEGvc
IVoFq5eZshV1oyXF2gdd8nc6sx/M2k9izXUsU1jzO3E51ljXoUwIioZH+zes
dXWs/4WgjBzDr3HeeTdXZRHbUZmG/egmz0zNxjLNaTwse4onKinulW0OC2Rb
TeTp1STxsidh238NwaFsW6RDPlScy7KAfAzRjOOtE9bLXLuMSLrH0lm2FBqH
sE27bV62TxySaIVsSybRijEof1Ns818MC4uwzXsq2zph6dk+7GObWmwjLdvZ
Z99Y2FYWyfZBB51fysgxcmszlIRlkQWpwVQsU6dZlKBVZ3CYwztaps0yzXFG
Zs3qMw76Mk2K0FJHvCJtDmGy7dayVrLZx4MUmS5ewFqhscpYivx5SrUqKM6X
4V0iqve0sHYGaP6X9aHaAQ7uiBS5/XCwzrRb+MyC+Jdtir+RfgznqDtmXqzX
u4UiNdXokPBkv8jaNcfS9isJlp5vZap4k2BIPpMXpSyyHpV0Tt2oHyNK60Sq
EbTTWoId7Weqqfa42RipHq9yirSR2C09pWHDe0GkJcAgHwh/8kjvUlmCmKrm
ExhDJFciCdRgdA7nvnifCmh+zRVKspI93ww3VaD9TggOaJOvvzgJdCTnfVYo
Ao3fQjBpLCx/AyymgHZrV1tyGgeschINXwVJINGRDpLHfdvAqyWntTfsFpwX
LXfSYCm/BZ4SqETXad+X8zwPe4MSzVn/lg7iBbHNIhLqaNc8Qq3zeThUhm8d
9jJz301srFRnmpGUfuGGeTHWvIIPGyFSlsRwMu6JmU+4p5hijZBCVsYU1rg+
xmCP9ToX4t3fA1WyOsLavluexnrNCGvEsW3f/tgLrW2RUpGUkGzVSkgxnhJx
AFoWkR3JaqV9TVBGsqM0SlHyAdDvZxPVT06yOeLpeePZyck0SlPaNYY6JRsh
6DxU8/ZeQFiHC5AtxYqukB3FfcwiW4aD8h0OWvIDdWOyNRmMF9wkm9dYhGzM
eSjZl156x0yyNdkLAusuOP+WJTKtu0C3pLXqCyxTj0akVQ/6x6AZR8vdyDQA
QdxnJ/xG6Sd1uQRZhZea1iaZZvCvnhd5QyKm0yg2j1btJ1dUknumh+8G97Q1
szJ9b5+Gf4rpopsMvMmu3Yxxq27OdlKmo1wwizDt0xhD9uwo01qO4a1fvzsw
jdDoOaS1bZpOslVqkmw8Nf0UkWRmGWYXuR1CS1qrbRilgCHZuBala2teRnfE
0+nziGyqiy09JAqyTqRMKde6dc29wyPnQ8mWhJHuu0GZD8imAvz3f3fZnGSr
9s0rKNkaSy1jQf6XI3NM9s9Pkj3lufZkcz8mlkFZ0N8edOD5Fdn23Aq2aeyt
rBkMoVfSfi1ocRIO7dRr1ZGOAl2GM4WRJ5uEq40ZZYIh4dm963YXG03QiGW3
XCLAOuFaN75paSEeXNuJmVz7ID5l10+vKPPetz1sjzpwbZOOBFjie9VsVP9d
KX7RwlxrAIvXj3kOW4O/3xGuQRK5ZiUo6/bbSGAPCRd2iGvb9jB/ItfKDbnG
DCxmN7oZkhsS1BYfFa6V4RbXel9yLYmnwriQat/fzfXMy6xJS9bBeAnOOLLJ
LFQS7ifcW4R7L6Dt0+a+G3KVmk7TnIWpCS+evphwRipEhKsj0cdh0/rjNfl7
tjsTxkWOa37295ki3O7NUFXWIZpLOxaaXgifA3BM/VtGp6VftTIEEdkNl37R
yjRkJHLw7Snncf/TltIdqSZRWqQou2hkSGp+Rl1kUAM+BtfWiPFrr2tbZU5p
JIMdOJ5l0W1P1btt+/WM7MfFuS4q+M+FXPMKW4dU9SHXnk8/qaI6clc0lKdO
erABIeVmg+ue5ZxwIYsYNW1VNVcH9gKSGxAzKTXBRrTXBvNKEGykPqNV15Lc
Or/X8v1F1mSUnlEhjhYTRCl3FWymlJwi12qdX/s5c9t5jGAHO3ZMgu2n2wk2
J2QisE888RoF21Q79B8Wy8KMAey1pb8yOrr8nbejBIg5IKIJNgXuDLD7yw01
6TSaVUae3gWZ6htYr7Nw1AhrBBso1lDmGlhHKwD/mZXBwKbDgVgjowcXj7QU
bdTp6b3Xq2TwkmmIMNPXsMXAfPJapwqJtUZW8d00ZHCQ17V3w0wZfu0FsjVx
5O+ztyroyurgfKgvUKdurJ0L1nwi84S3ZmJ6orJkqJT+KE4Pf99xx0MjqLlz
6ZS3j1CzfOegZswipR2eOqdVjaFGMKhCTa1bQl/ngdrukj8RatgWXCC+r5Up
hHtYmW4+wNgo9RYTao0LidKkR54/Qh3lYAj3ug5mFMfLFWKo03n82gtjUzQJ
taowlLkr9mwKdPo7mrWxm40sR8dzNAWjPGvPm+K5T2Ew8Hz056/IIZotnn1s
KdGyNp7i2eROD+pTCs/0R+uSc/5MI2EtiU//87Ujnrncf06eoW1RWSbPytq+
QRl5RqyRBaIVnlUgk+c8XWH5R8lzNJOuijZ5jpIq6D3WyD38fKL4siZ1D/Mn
Tn1tl4iUavMqFJ41omRBnuGWFZ7DiZcVDSFXTwgvogHZlPBoXWoqqEkQfeAB
G8sCMh8x7dcBeE8Ip02VTQQiq36tZS2mi1gHqU8q3QCdxzMtA8ccSP/wh48T
r4K06hP7BmVEGisSEICLT08LziOWmLzkvnDDlnljOzHKMDoOR6pzffC347yD
9STTlJ1oXWFKglt4xiCih6/JJ5F2glORZv4O6z8FabfD7hxI049RkB6CnNTV
TSGvVqVqyTYZMZK2RJq1xB1tvGatudLUjKAOwe/mQDrXqXf64T4w6E7IWaQu
m2I6I82BW7XWF1iZKhYt4QzXHb0bJFm9IKTx2iEXUZgIOsrtF+UHJKGq0PC3
SrdOH3qS/fygyc4pDdouEWnQtuN2KJwdyXTwcd2itwkDkjH1i0OmX5TkknBh
91KTSjL7wgTJ5hb4tZHTQibwyoNFJKuasgjJlFVKMv/2JJ9lJK8/+goluaVx
aEJkatC/YmWavfaXrCyCGqHDjPJvQY1hklseRho0tWBo5LwvtZXxLMlyWf/W
CdSaiDKaE59SKSwPDb/2Myw4PT1WBDUJjTToBFrktcZPTj752lA8n332jc1J
lhrqIrV3r+w5m9utoIajlt/XUP+yN+qqjCB8MFyDoi+C+v77HgmhRoQCjHXc
l/t2D56+y0dQM8OIQZ2esa9dB/UcTCNKGl6hTpi+KvHHzApkOlI5oLDDs9d1
8QpHMq2xGmQaT8q+pLtLU9juKufxetHKgGg7IXondcAhtD7DvokQ2xcsYnqJ
37WAdpumK9AICeVPkAvEq9DGzQygdSXZBNA09hRoP8G4I0BPOD0yIpDEKu3Z
/LgfgWZzqQtcM5B4uHcOaNWhCTR8dzbyFaChTEIQdgI0PC3M89oCGrlVEMLf
CdAwJ32uPYiYE034toS0OHgL0EFG4mC70bEfA9e64PxbCK3XPLCchd9pXyCd
kQLtJHRxOd89F9ASz6JA6zx78VDvXrmRFWhu3lbmEy2P7TxAc5z1QFOB1E1V
FGiFcxbQ0W/wN5osAhrxGQnTBtDRNlH/1MoAL2Ej0KiRbSaNCbTGOrWMQqxT
pP+MQGsCyMj3RqAjP4fGXEd58wn0PFqHBRoRWq9pYwYwgt0DrbCLHq2bSlk3
FCd0ZXiJdy7XWzXdozgXyncvTySLN4uEV5x13q3/7b7lsSgrMUGli8Y9zl6r
fiJwhnSx+9Nth16Dn6kSTQ/pHDhjpGRgNHFWJInzpZfekTt918W7o7RwRhAS
0zEQZ3P9V8+iy7CIc+TjkKy34ZKwQT6PFQ4vgK3lI6XCGqngrO4Rm8oJNeh0
C19sKHuLsMSfdTXJerUJkn0WXhwkOZoQx1QbSfbuZ5LvyaUWNUXycbbdSkQy
g7Bwf7aDkix/k2TcRkk+9ivfXIRkqM1cAEiSVVsgydA8KAz3CM5rkYzHYkIz
khyFFOWpJFvM2xLMaC2mpyTJ6tBuqc5e09jaJ1oirT7Rnmoanq8pktMje43a
hpKI5FT5I5I1+55lIMl/C8kqD+cheV1Z2/hrc5G8QXxrUyTTykXde52Z9z3R
0tbgoHvaXqWSz/ibKDPVzTHHXLUIyhDIVnMFZRVmRBkKbTLK86dFUVakiHK2
uS0tGJ9FhS1RHqUKy03OK0cZ2CPNwht3lgyNkPqFtapZ6Heo6/M33lIAVvDT
bb0GbQj4CLut/ZLVpj95pQr9SD0iQpjZ2rn6wSOMVUIRwuxgRJhiwLuHibDG
UivCiqNHmJKVz6o5rD3ORJj3nhPhaArun1iZJuoayh4vcXcthCO7b7QDcrX9
pS4IJ7jRHmq6uSBlcLT95TgCL04qnRSyebQJ/am1aWjtpRdnMbusZeL2hp5l
d1gA4eK5WNbFI0sixddo3FVhOY0lHl/+S7ed03yqz9CcVV/YUXwjDRl/o5V3
El8gCddFJ6jiUTil98tWNmtjbuKLR+D1og0CKYERfwJLrxMJjBhmSuVJCWzS
m24VgvyRD59bzmNTj/3X41A5k0IKMsdmHFPKhA0WBWRdVRuoxYYoQaaub6N/
c0akBrkUL6tKMAbZT2uXDrBvCLLmMODqTt18Rs00wIZ+MgUyrNZZIEPmGz39
bPbaEccAEy2BFhhN95FeRGEz3wbpRbZH0kF6ldRo+23SSw9JJ/RGW2NqTjzS
q+lMSa/GEZFemtNd1zbqxjk9xrnuLNkyCfU5R1WTUPC5bmKGUffRj5w3nL75
Nq8K2xhATHVh1vphwlps3UE6D/SWbWMiemlxCL1+WyPSq5vCKK0RvTff/EBF
r045wrjC+cixj88+C4f7W+lFMenlopYZM3zkWONzyLFuL9GSwhHHMAWYgb/F
sQZlaD4Czq6Q43H2/tqxEW2T4Vt6uEe856pwrE5Yq/BQnbDF5IVjtRTFpDvy
iM3l9PSfn9mzIaDpIF6popKEY9bqoOnuUoxdTZBEbbeg/PRKMOLwS0qmUGYX
cCj3KO5TvoIjC6f79BuQhQHJJaudosweMAfKkSij+aYmWIQyN2bUuGbuVqyT
eJP68FKd9o4oWx7g/KklkmFa+nSmkXE3Xnw1zhyNarvttgcVZTKAA6m71CU5
3KIsT6zVYrHsWGWOYxWFExyLWqwcl5xgy6pWVhwzqMxzXBKYrniOe0H+lBHG
Xp9QneG6NF4viDH+ZQ+OhDNuAxZ3EGM0K0y2rovjKyLNghhDOyKKxBgGGvNe
tDCG+9ivZdWsvDo/zWlEjd5EMJG+RzQ/Pc7yGGOcWo4Yy0RNPlSz0J/aQo8i
kVXrEAOPT4XGFZKpF8M4cCQzNd4EyWLg8drDhnTTJCPPjlzRZUfqSf7limRk
5eQduJDAa7/ULYCn6h0tlKfm8fBIdPTtIMq4LUN7WhIZahB3lSPKUHS5VzxR
vvSS27tTLTi5ZeIxWKQTlHu/ct+tiHKUYDRKWBrNTM+jXFh8N3HVxUZWy6Fy
YZrlLCWZNWmneyXZNJvYr7bFo2zLBxVlmygMUbapWF1uzSuukxC0jij/vF9n
Wx6TD6C6haLsZz7AFFwELZTRXlXk/tpJkjEqzkGyqsmM5FTK6EKGwEQscCck
QzIxnThJhqnLJYORmszfqqAeIk0HPYckq76hAW4+Paneo+U49rm6zIekJNPj
imPQLeo0XxbHUEjW+T0hWfWI1PZeTW6QLOYeI52rhElD7KqSTAXFh1z05twW
9Vdo+IePsJ9CWXGdhTKuh3tgZatuOtSYxIPw9yhbCokWytHcAZf1aWZcooxx
z/YxKDhieGQYEFFGyhRMReo91LnL30Y7AWkZUVYrkChH2WXmncTzHmJrdOIq
zhNWeOV3s3GJ6mcYXRHMgdjpXlN2KOuCQPG7EawJlIckvAPKTMOIg+bc+mEh
N7MhzkLZbx63AyhbToy82UO+ry7k9rN7XMBClmUHlzlQhjTjXDFR1nR1RFnn
rYkjXMBwtXSCMmqIVmCkKvO30SJr1UOIsjrmiLI614iy6hItF7JXlbFOWFBG
A1i2kHykXlihTD7MuTW1us8bfQ2UUz9teilWyhKDKjHSsNxrMPqGPDTyqKO0
RfaImuSssMzhgjsfTHkzoEh7ltmiWJglLCvKrekQRRleVlz6U4MuPQfKuk0V
UQYqxJsoY4aE+QKIo8587G1l0RpUWG1ABp/ow4ukskpRoqwzJERZ1eJWzFuE
sleV8Q6PP/4TRZkhlPZ1QVl9zVwOOsRQNK2+c/qFSURZV2t8h9ssT6KsKbcC
lDFdoCgjBHeM8j5+7WG1BECza+HwSi6fjDWKvwXlkluO302JZc+y5qDBtcky
laQxy/mfVSXD4kB1zrqYv1hdf5E/EXddkEHcVdIS97xs1ZwSxF1xauFum7rm
T5HLWhe5sIy4b0zKkBn+TckduZ3HuMcJndfYd5fL9jtWyUvqxFPWk90wteLP
s25dIzILHeu234cq01yFj6SKjnWYN16Zpi8CJiMOrj0tvefpWcIq6j6WM0Jd
lWuibtHlPc27la8w1OJyBEszNdoll7h81Sos/zeb9L6pq41VhnV/E8U19IQq
ys0YQQ+jjbkHIkOwBf22bdu7M8/sDUtCr/eNkh3x+TQOqaV5Rw7qCHqNTMMB
1x2hByE2f5oPtSA99EjKEk20JIkbQZ/6iIfe1lt7/RqHg54juYO+jlReVuhL
mawWsbJfyGhJGsyQesg3VtUU9RyOgIV+B6NNpj7LdaELWTNNYv+pT15csP/k
kRfz+m3sjYFxbqTV8m2lmEekc5lK5LybV7zDZqWDsCXe1RYl6eLXbYr3yMaM
SF8vUWk4kORZSWcTWRNUpDOTuKWpmaWVu22rPOkGK5E2+U3/VUT6ySdf60mH
4TAP6YOje9dCVYN0U0GelT/zXFa7J11V7Bbpeh7XcneF+rX5PoccfEEh/dD0
N5thB1GfEO+YeKWKzK1a4BzhYlSuCt8Z6LdeVfbCLtAr4C1rlMssuydIvGPh
oo9YIvQ+Vy70nWhi0v4OI0vTe3lVx0GvccSJ9EhRX8+licsF+LPK9uTDMqBB
Zg85pNCJWWbxgNILdi2Ksieegm6KeH2Zy2xiBocnHvmzZhE/Vm964g/Yf2P+
LQa++YnP1b08pbuTI00OSs6zj9tmep4IzrGEzrbMaQp3HVT4fFmomUOSbR8l
XjeT0+pufA/l1SY3WeeFc1t7WL7DGpApzh9++Ich56K78/a2g5J3uRjUyjn9
fl/+0lXKOSaClfNxZP+wtE3LxAdT5TbAuaZWjiL+XTLRHeKcqmCLc91kkc/0
gfednZ8X15mf84juSHFnQkaVktw8ERXPgL0W8ZHirmUk3mae86eW4q4zOCQ+
yj4z3sBrjc5t5sNmsPqvV+u+XflQga6TLqzkaIreBoVQi0mP7outj3jQj+3j
Dry6YoJdkxZybY0HXYV3C/R0jaKsywCRn8LHizC1nzdRFfRNF9zaBJ2GPpo2
mONZYipeHHi/GaCPvDG5vTQxTQi0ZsYj0ArbEyHC83rlfrZ7Yf3cJJp96iZE
+JqRaM75FI79JoHWwHqrsAK0ScjynUpujQQ17sK4ElHL2d3wRPff/32f1dGu
4oE2V7UmfY+AtsC4EdCD/t0DDffmAPnaFtDVOQSY1gKdD6vgzF7aowKaTQjz
SYFW2GE2mZ1SAY3v8R/mXRTowz52Ia/RcJUTXsylM6CpBS9EEZeMM40uJB63
+36GlUXSGLkNmBeB8Krkbc3FS5K1JRVVPI/wSuxfPuDrTLWv8OrEJFL2E948
HPcbUudjUK9XGAbICmcx29i0N29Ommrhzcn1fdQMuaUENMnHt0PN5FWLm24d
cTvseLtMczP0pHhudcAZc/vMiltNhIsDXGEaRtaRVROzU9zKNSNscRvFdr4Z
HmKLGRp2LGKr6BFbtCujm4ktUkkxKyOxxUwOl5UTW50JmldtjrJOR2GnxFai
r/Nh+ZaIra7xt8qpsKW1hGNY47LCBQW5PD0yi3XLIMFW9YeC7fCu60vu0mXl
dUlVZK4I47vCwWBRQhWwBtYI2GG59zzA7pufjfU5BSxjDRVufHfSSdfMAjb/
zfcH8BWxm3tiP3H4RTy3QeyQTH8g4uetDKMtJ2SYsBHCmI4P/hbxjdwAgMRC
v+SUe5Scn8SCbEaYRmpvtHPLqqCMxMq6l3zYkKjE2uPnAyrhFLHD3EydJzGN
AyxWsyj91K/TsmbRIR8H0kRr76xzJ/Vke2JlKXYp40K/YTZyuag6OuxT1djQ
IFZJI7G6o9yUS66PR7m6EHv4YRdOEsu/uaybxHJd78cPv5DnzkEspoYZfkdi
4ZrgSi0Sq8kD+Fus3mK4P4k9V/YLahErIZGlxRA4xGW3vIdYQ6V1xnvSrtGl
B9o6JFa2fcsHNiIlsZZNsXynqoHF17FCPbGmgHinmzm3+V5ihhdi6fxVYlFm
q9VGxKriKhN/IwU3IpbE3WnuzIH0mFg/8Ms6x2LYowzssFLhMOZ1QKaGZz+x
xCJUiYGgJBbyldH0JBafuasffwtVikGfJJaxX50QG63dEudUaTG1uqINVaIo
OxKrOa9wmDpIYvEVghF4QCsksTorjGNwLawwTD+Xf/D9Z7OYDJp49qakH/5x
YLjWwYTpZfjyeCmuTlRcLZBuhOvgOBhwHQLzxriOnRD75sp1eyJO4qpoowxW
TISrnod3inB91zvOLLh+7NBN+ftkXowWu0bZkp8TQMCNUKLtXlUlJaTwptt+
TAVSHeAJKTyOmNDuBFKN6iCkUS6BkViV7bHrbY7JoUx/50PdXxIZyNrqGe2j
epZLFXdFZ6lT4J9x+g2eSEyH++l4T26doKsvm5dS2L/eawAjQi2teSiNLC2l
FJ9blFoS2ElK8TcHVaX0rW85rWRi3v+jG3luQ6iSV/XXLsqrnkdet8lmPi2h
ipxHmPnqhFfUKHdCibZhY+uMt2FbM5o6NilKocpEDzzUQ4AuxwqGp+/gA88v
QnXrsGsbfuM9BJbhXsd2q/qCpuw1Vk05MlGM+uw8rrLYtMLVrOyR7bWoUPW4
ql0EXfCE49u4UqXH2l0bDcN4Txy4LlxFuM+b3nhKabDFcIXFf7tF2j/bymxb
1/yJOwQqmtEmaMQVjivqCi2tVQLPSouhs556ar+CcDe7gk9abw6uXY0bN9eb
JSIRhSPKTxvYpEzpBY/ollIrZarVTmexW8TpPRlg3wtYkKMU035SDbWik5kA
NLKOCJVt5COvwNrcVkjjPk1mr2fTPi3BxVnpy4+hYOqpV6XvFEw8HfWliWmE
cg6e/tWvOnEHwYSxbsl8C5gYj+mKIpjzylHMtjJTbQtMqcjSWDDhzOVZwPRJ
KUyB3dW+zlZeHyudD0tDRDbVM44DOinZlGaCOk4IdbpXnFSsdRPIY9VzS8Wm
JWkaSc6IzT6TajewqfMP3Dh23ZAVIGJTlIb8M3qP4XPQBahiOfVs5mxRhU0E
dOJQAbt1ms2laHcnHJ/4+EWz2GytY4oWYfycleX9fW19UgtOLdsnKOOi0QhO
oaq0libCGqRmnVwNUjm9NuG83UlG80IpnN6MJ5wMmTJTX+GUdXEKJ/zERpif
udAhnJqXB9Z2wZwNp/g3+BgRnHiZFpw1wCsVPR198zWcNIU8nJ//7JaZcIIk
+rUIJ0SVwol9re3ceeAEOFx7STgBGMsIJyZiuSp5UTgjiwmuPkrJkrRKlm4Q
Tp+MCrX+9ZOuJZyitObD/DZTcML/RDipGto5pNBSZ/N0FtsKJlZzS+fkYm2v
c3IEH3TOLTWcS0PAIsDuz1ubq0AHeobp+omoSy65/YmCE49LkYIyLrHH8fHD
LgzhVKAJJw6F87CPbeK588CJEYw7cxBOHa4JJ4Z5mt/zwsmWgc3BiVYmHVTT
na2lS+QIp0+7agYJ4UTArNJni3oIJ/ca5LE+L5rtqoE6m8KnXV/gHCLG0CYs
5iBlyX78sK4uezqAvVPUw4nfoj9GcK4rG6D2ho7m/R47ScdwSuIoO2fvPFQo
5NwRFwfuCwMnmlhCGWLCSSds94FOaEqz6USANp7tYBOdc9KJV+UqNdKp4zDp
zLNO/e4lZeod8RTcT+OZVhbRiUAH5gAknZhx8jEnuhaZdPqkqaiis8++kXR6
T1FeenD3w6TTOzvhZCKdrEjMrp7FHTpWSrtaHSqd6Aom6zydqmDS2avETtJ5
0Ww6IeN1qOdLwQgjnXCng06L1AgI3ruiB4fGl1CzbNFp63wdnbjDmE61mkAn
3Qhz0skBVtc8PsvKICOZdefXrQzuZa4wIJ15w7qz++yWpFOjmlbkt8yN9lQr
ixaaIduBrR4odPrEDaa6kU6oNdpyFjmtdOrXmKchnbodUdJ/iaECLSYRM5CZ
sGvRyTzmWoaR0bxdIzpvytt/dhWd67kDbx46va9ejSF8BpfkaszliueyR2oY
0j9rWgcOnMaagdkKLBnUM4Wlzijh3ycAy/XpEe7tt3cqWGKC05aDFyxVQO7a
v1uyW/iLKNsI5gtt5qYJI0Q2QwqnBvK8LHDLtl6XqLP9M250F7u5Zq5OWhsh
ZLUZ1gqhuD40FCpD2Cdc8tolhjGW8VTvgKcmqWG1WNmrEHLVbhvCYVFNDCEE
5nDO3lnSaA3hs1o2RwmFzKCHAwQphR/64Dll2YdSGLmLcPzVXx5bKNz/o+dZ
C9S7iGcIyR42z0KASifsQQwxtv6FATW6rxBdnxSJEYVw3XBvjBaFWkYK/f4p
tk6HFOqScbOVC4VuCxVPIar/kotvJ266u2qqMaUQ+X5MdrVsHFLovZmeQvyW
S999RPOw4Xi/zb0fqLGsdxB2/TIFiAphcUkA3tsbOCMTW0HU7/BAmGm82XRI
TJIvAuKf/smX8jXgd/rgB84pldUQh9Tl1DdErNTCaSEJScStVFpIIgkV0V0U
SfpkeFiE0pPsBio30xBMR7vKxPS3N2osKoSOVWoCkHJEkRuzmtXlUcSctqII
7733DzHPngpEnHvLzQ+MUPQWjb4XRbZHEfNs/ygo7vf2M4pMnAdFTIwTxT/+
r+vzNXDtBVFE/dDrsyiKWsbfwkThOMt2UUWQKEZzjBocRxTh37eQqXzYnDtR
VOGZ/iaK7GBmrHnPpDkziaKKOh89Z2KspSAylFhRxOvRVFEFkevFWyjqaMmX
sAmXMkJDn0eqQdJExbnMRgqXayszG9NhwqE5c/q0ongaaHnk8D3vPkvzP5Vr
qJn+9redXjj8b3/0xR3lUDKqFMcNnHLc3ORFVjYvh3AO2dqKSj4wJLklEnWp
NTk83ba342ELKcihetOTZCOHHLzNFe4taQSZpPry+yLDX6kcwo0QcIhX0TlE
DWlX0YlLJIW0cIhXttepOEQgA0Z25XVdWbzZOb0RdwOBSbucNkyEQRWwuNuY
wd3Kd8qgyEL3ROtLBDzOIYMv/YtjIwbnQLDfqLKPiCSCGEU5Y0MEdQ+/aC8d
IqgRm9HC5xaCej0iqCHoOGy5HBHUgSfhSAR5JXOhE0EOv6jam2/+rkboW00X
BKHgMBzrzju381Xg/YBo0jghukthmHsEoQyqgsi11dFKfnWWM8wgRhDW+aBm
rhn5bExU9V8/vRpBSSEcgfbO1SZXoNCM1hGFZvkohDBkFELo1Ki296ef4kh1
0oCQMOgYqCuACBwhhHvQNkwOc8ERQrWPWxBGyysi1dCH/qIy0uATycHUeITQ
5e0jhLypjYotCFGT0CDtVHUdMn0myzTunGXAAH1ZIUQXwO8feODRIarn7odH
EAozZfzV+Wi+AWaAFEXvhjSnef/1nlmMeBQlXn8Iz0uPBBS5MrZWDoeZGI21
ENdOZhH1jhrEgM6anQNGdC7uYEoYNdiSMCI7HJfDtwZl9TBGKyd43yhgcgzj
ODUVvNW72dXV05h+60m0+FqSyIHa/IIkkXqkrgSiT8+yJyuJkBZKnTl2qhEZ
z2VCtxppjeRR0O5BB55fkWj1VcWcKWWo3/XrrxASgznAMum9toQ04gB+n/n7
y8qM16pBe8vPoxjCXrFYE6VQoyjxN4Xmf/+zYwqFHzCJOCeFmA1BFBs+cUWv
jtW/YWV5dyaja62cx75L54+uEYpyCrbGZRWxpBCT17aFYz7Q2qRQ5WEwKJva
NYT1DKt0hUJd0kAKOXtlp/I9kCsN1awDMGPf/aBMW0TzJdqgPopyRAcw3+E6
7tXbz1GrDzB7GR17XCVuh7D3vFSbNXtHypTeOgm79ewh9JbTimqLTMEH+5jw
cT+s9c31D3tKnbCMaVivkiQ3ZE+TbZM9zMwxtJbsYRhnD56lE3LIZ1uopCR7
to6htABsRLKn7ozAJjHT04c72lQx2SOpOhYzPZWdqvYH5sLhJV7p27o3f0Uf
q+LfmVJKfTUW4zMCcDCQe63QnitcJ47DHN4YPQuKKuo6hyJmh+HiZs3gs6Ko
U/Mvf9lXQxT1+ooikPMoYoaAKKZRZg4U4fhjRg+iiFkNS2q49M+tbCovE9ek
/6yVKU7LQRlRhEOWDscWirqfFQ6Im2gwFjHI4RUGbpKg3mMIIZ3q2S/BUDHI
MDWzhbwpDLHFMvOG5/gDNaNphwxTI7rgqGJPvl2b38kTB4E22DR9aDKDtHGs
14Cz51UhCdCzDj1k0yR0AIfQvfudZxboPnnExZV7mn+rxfJfXvyFfA1cm9A5
mzgzR9Sgcloiy4Ka6n1ETUdNthJGYJg+naCmo6ZfC90V1Nb0AkF2oLAo8z70
YjUXqpSvlTB1BB5y0AVe2Jmm6GdIUFmPPfZjH+xbls8sDdl2zeNCcmySrTI8
uGpHy2jpbt/+g/LqeNZajVsuyZLg0FG1kPHIZv1KtCLuZBNphTcFiu+XKpC8
fXrdMJuL91LeNPjL88asAjhwi4g3+AHJ239+8edn8eaE3F72UjresgzzVnQC
/AvXUp2Qp+49khfpcAhL5vX2tCtwdT0PRMMmwUfy4IE2FZSVFZKXHt/PhpjB
7HcBGwJmB8E2WBn9uIcuOEyP9C2OSXz4B8kX3LlQw5U5VI6FIxaWQHzlzFuq
l7VMOv3SU+J6KsGRSe3IT2wW8lY8eeKneV41a8Z8h+zmOm577PZLSCl2vAYy
gxK7d77jjNHYmrH70Lm5LNXVHNhBRjOfCstsUMqfiJ3Gw0YrrVrY4fpIHNUJ
dlAjLUisr4G7s4QjdojE11m11N3DIVUm4ViX5iz0iA0RM4P0VsRU3WIZV0Tp
9BtVwIJibwOuqfJ3SfsSL+rJwF/RrNS5ysmHOwO2pIIUMadA8SapPsgbpKLy
hu066U7WXCueNyyRingDr8zmr8Oq8va+927go8zBGwZ7S2tdyjTpFXnL7me3
wH9e3m4TZwt5g+cOIxcPy8rUh0qsVLGD6e8ZqLHY5hI8asBFd9Omm45YceuF
UkZzQVT0kXNYvSv0rz3++E+onqWHVtXOC7zIk4eqUxsWvB2ReBuMkDFvBhF5
Ax9MUg4ePvSBcwpvasbCkaG8waSd4o1/gze22OK8cdtTtcCo5GkQAnkbrzuu
h9oWb3AAUl6St7waSwL1cf10Dnlzs7fkTfMAiuuOvhTz2WqeTATHDlH+vRfd
Aq0Lb9TmdaNJ2gQ6ejK/qtoJfXKcy+1TN4JJ82jxPBNl6b0Gx4kKNShGChkS
M1iYZj5w/bKZ5JMrfwaGEgCgkLHX4DUTKP3P9qoYA9bk6vAhnr97x35nlHOU
Mbj4cMzHGPPx4xNtx0ds6yh8+k0rw6yF3+BcVTIGVcPepW3LeoOjmXFWZAzn
aESzjalkTL0g6UXImOnkuVgCB3i2IUie+rP7jQV0bwXT0irG4EUYsvUNMaBq
i2qGPJ2ioMBaljLP2FiIxVqb5mLHETGnUAlIEXN4NTDHGTH1uznm3vj6YRxV
0Yk8evxb/SZkDsY8zAgcqXbnYA7+EMaLkjlMY9uU3tK/tDJmkegbuS9DRAoi
UzphDlKcUQOrpIypSPqxenUFFRbbwZlP4HTtUmpzBQ6XMQ3ID6KoGwGON0W0
nAo6ZrEhXPRv4zyWcYWyjpVcUyn62jrm9V2mRmafuknMIN5MHy0IIVgiwGzZ
voacmSRsbV7FroRhgmrYkaYYJiRsiYgBH/rcVd3TodMjhmugHohY2yKl3wPG
Bjf/jOL3iBiEK8tYrxdsvKVE3hMxRJxzdRPrtd9T9yf2bt0IMQTBJNG6FMm0
9DcRQ0VixLWRjnH9HE6H6ZblEvSJFWdqmtqC+ErZZFZA1f371WrDrBbzemlk
KH5HN4fOuXohh5rjtmasEVnzWEhDJ1bSoMx+6IPnkLSPH35RRZpNLlCW6deo
DQx6VDJw1c8eNSS6EVnGtAk4ABfTWuJvG8XyDP/OgwYwmAiMscuwB+Ckwad/
ZWVR1mWNdiJoEAM2NRBOokag9Vt6PT4CDTZvalqCxkQiZi0SNIuJyhEhBI2T
8WoNQKNk5hgFjUagggZprv4O9cmqdtYaJVlWL3joJkbOBFqqcfXa4jmSYCJo
Bx6wsZpzsYn3CDSI57e86dQKNGj6OFD24j/8nCpqChovoX/DGKDUU9De9c4z
c9l8oMGrylcmaEiATlgIWpTnUOelCFreYdPC9FitBx90QbnvXnYF1fbTdfaw
YjJ2zz2PoNbJGDy2cDTBVD7zzG+TsSzjUpFnDF4U9amRMawfU8YoVMrAeHfZ
37diDC2lwkymMSvGzHRsMiau1UmT0jGGZAOaWgfQHP/VqyPGcLw5McbNrUCu
MvZ7/+HvIsZ0YPaM8RyEjnjGktQfzRtwVh5SG3uG4hPXS2qAMcmCwxK59zxZ
JIZkwfNbmVPOHCVZKsLS956sG2+8P2l615AsTL2Bdfu3SK/jr87R40qWRZNX
bjMQBNqS3VhlB+N+RjokwhZQ25J2znq3jIfZqKO4N5bBo2m2dKkMCTEqZGFR
jCfrne84k2ShZypZRx6RtSfGuEO4wevE4/WvPbmKfydZaNLf/Z11RSF7y5tP
LdgonXDdzUJrPjuTkN3TL4PKn5gJBnKWPey3rEzDQaIwj2fbW/kFs2j/p9uv
ZoAFZ/yll95BsLKoSvoBxNaVV9xFsBg/CfFEsAAQwvIULDyInVvAkhR8lXj6
8pe2YkKi6PzQo/3adYlTrMo4zLKsDijrqmnONd2HE3Ym3fOB1b/JDiyD4f7n
V8EvJteIjJdjr3nViRVOkEI8fv8/fabS74nKYYdeWPLkMG4FxxROUNlwtHFi
PBtqlxYHE6ChA3BpInEC8ESMNYeoe2q4z5E35mHzlwUn518lThBxUP/NNCBO
THdv0z7EKa87veSOCiemWlMfGAyXCzfdBkFbcBJjrcIJJtQw6bmchQJtY74s
5r9wTS3DfIZJhBZO6bHIi/c4oMHeO4x7iNjWiD5cPFlQROagA86vcPrbV59U
cMLzfmrwc3Z/8PtHVTgxalWRBE5EC/J153GCd8snKUXn5Hn/2sp0GKM0h9eC
i7KJk0ogeDu+dvy3Ck5oSZuNUoXKrEXaeMSJORcx1XnLzQ8QJ3oLELVDnGBK
YKJ9SDnV4wQaEdulwUGUMMQJohjZaL70xSsLTqJrFEwsqmxU5hFD05kDvAo/
8Ur7fjL/jCMbYG89nWB9yIFlHBIebsHG441vOKWAhauqnPo//+Cz9t3T8tNx
3vgjHz6vAot/49oKFjxA9nS5rG/Gn1hNh3RxOQIqm1PcbEBkGaCT4d9YmUaM
s9J0LknpsvNoL4qw+kZ3a3++0oUhFZcxyjgCo0lsz/LyZHAw4HQ4p4gW09jA
C295T5Neu7TMPBYVS3gNjn5kCbXJqDqeB89AxJflOi5lqKZPOe/D61/79TLl
oXyRa/IFYx7LG3ggJCqp3eQLnlXlC4OW8JV4KgnKcLz2NSdVfB16SLGXsIqq
8IVIH/J1oAi/Fl84sodjUKuy03cOvhC+R1cMWxG3giLeCV9oAG4CoVYOHWXk
SwN6NvTiqPCFMQyhs+YzJ1/Mm2KDIvmCqLGi8mTwNSBpv2rsj9jO62oL4img
nSeNfEljaqkIES1UttcYDxr04YIMODeZXsokV3Elurjr3ODYGmvsGl7Dxkuj
DtF6zatPrNCCdE2DFvGB4NOv/+YVJ1RoMeG34VHQwl2JFmbI0R4RWszIrmjR
szUHWoz9p/can9gwsAFp0vxbK2Pgi1aaLoohWojCZY/CgPvooz8qaDG7iU2B
023LxCVgg+Ypujo5IFd0qquGBSmJx0i3Ko8PjQvqMWpAZ0s9VxJXULjCgOJz
SGaGDtk0Kjuk31CrlCWtR5bO9WUI7aLe0eLqv/znz5MrVYpwvPc9G3A62VH1
Gsdf/vmxhStUbosr7mr1oQ8OUtFzRfYQTcuno64FR0J6tHm4wnCIjpcaqDQC
xBASlqHst+2RNRLfNhlaeq41CcK7LDQHjbe3FWMGGdIQhloSScTooYd+kH3W
ipGESFUpRjl6ESOZqyhPC0/X6/7261UZ+rgf+dDsV1mzEyMsOmNmR+IB78qh
DiOMXJYjsJS9xpJgdYIRNuas3Vdryg4tPGD1pAZXjDR0Du2caoyoQKPnCjsc
r3rlCRVGR3y8KMfdK/76awUjZJjh/DacEsQINR1hRHRyau43n5b/xqTauefe
RIxyI2SK7HXrvXOntl5k7D4ULXZFtsnRR/fpJ/GJpKHdbDanrDnzOyphyNLl
fRjGkmpUJjHRAehQ4hD40aRfkgkyBm2ZE+xkDLoGkyySJ3jrX/ZXx1VlYJFD
Ed/nf7z8+MIEGUP7cx0r2UGXwKChZQikAD9aJnBULncqrCzDtWqRtqYMODze
l+RTagN+zRxMPNA0ScKTLfg6eYCzIz+x2a78jPxU+jPsLIIDShwTguEprbdl
7Yycve2t/W8xNfOG152c/8Zbn3769YaZDSMVQ319xDvaulMZY4PqhAs+CbNS
ndChvmjN/TvWSBhETzmlj7E59OALuOUtqifLta9sLaRBIrHVMmk5YkplmOcL
dc79P8jXmwZdtrAE19dL/vTLVRlUJM4LqAyjFkC+oHbRMNE83x94/9lVGRQR
W9FdyhCRwBWKZAlh1Nw9h2UYDRB8NJSt6d7w+pM7PeA4/Q73Jl+T616HR7xO
+Xp1DnLgAYm77pNMFPLU/EY8bGLf7rCxu3xLv5Xs8bIDEexgyrrEIGNq+YBo
yqRr7CBeeef7Z9lL4YUwx45h7dQEDZ4oWfr/zq6CmUysujjuuG8uESR0HjTF
tm3bC0gQOTbhXUQWqpjNTZFl+R7zJyIFccKmIFLvTY9kmwIWfKCFwTjTMjwb
nQFEChHAfpoKNcctaogK/PE4V8tgw+zX67KlDMoEY4GJDxbCYvWxlsEaqW2g
NXk41gNjYTIU+TWkPPc+xAF3XPl6NXW/fEBgJ7ulIKUOCPBgllZ39Bcu77Za
BDGeUrZWLFuPJnKJFGQ+DrB+5hnffmIk1rPt4j9JYx6eBf8lFevfS0PCuYBP
z7cy9gJ8omMfEpULnAgVTDwGxRIq9CamkyFUMDJ9TgbIBZZRZbftL6zCx/dl
mXT8ApU+M8tkf4sCBvQj24y6QMXNqfU8eDxoMLMMXoU66G1FnxnHKvyIROH+
usMs9I50fxKlaxZwq9TvymVtCWM+kkW7yuoT4xzcADgwS2ZLv7J71boZ5v95
FUgCqOCY8ynx5jsLVP7/i/szhr2DV+/YBaJnWXEXnf51ZHro9/nvV9qz/Mz/
B5V4+TI=\
\>"]]
}, Open ]]
},
WindowSize->{640, 750},
WindowMargins->{{58, Automatic}, {49, Automatic}},
FrontEndVersion->"6.0 for Linux x86 (64-bit) (March 13, 2008)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
 
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[590, 23, 703, 16, 45, "Input"],
Cell[1296, 41, 71741, 1183, 241, 39029, 645, "CachedBoxData", "BoxData", \
"Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[73074, 1229, 622, 16, 47, "Input"],
Cell[73699, 1247, 83818, 1382, 231, 42349, 700, "CachedBoxData", "BoxData", \
"Output"]
}, Open ]]
}
]
*)
 
(* End of internal cache information *)
 
/programy/C/ix86/echo
Property changes:
Added: svn:mergeinfo