Subversion Repositories svnkaklik

Rev

Rev 615 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log

Rev 615 Rev 616
1
\documentclass[12pt,a4paper,oneside]{article}
1
\documentclass[12pt,a4paper,oneside]{article}
2
\usepackage[colorlinks=true]{hyperref}
2
\usepackage[colorlinks=true]{hyperref}
3
\usepackage[utf8]{inputenc}
3
\usepackage[utf8]{inputenc}
4
\usepackage[czech]{babel}
4
\usepackage[czech]{babel}
5
\usepackage{graphicx}
5
\usepackage{graphicx}
6
\textwidth 16cm \textheight 24.6cm
6
\textwidth 16cm \textheight 24.6cm
7
\topmargin -1.3cm 
7
\topmargin -1.3cm 
8
\oddsidemargin 0cm
8
\oddsidemargin 0cm
9
\pagestyle{empty}
9
\pagestyle{empty}
10
\begin{document}
10
\begin{document}
11
\title{Cavendishův experiment}
11
\title{Cavendishův experiment}
12
\author{Jakub Kákona, kaklik@mlab.cz}
12
\author{Jakub Kákona, kaklik@mlab.cz}
13
\date{19.11.2009}
13
\date{19.11.2009}
14
\maketitle
14
\maketitle
15
\thispagestyle{empty}
15
\thispagestyle{empty}
16
\begin{abstract}
16
\begin{abstract}
17
Pružné vlastnosti homogenního izotropního tělesa při malých deformacích plně určují dvě nezávislé materiálové konstanty, za které mohou být zvoleny např. modul pružnosti v tahu (Youngův modul) $E$ a Poissonovo číslo $\mu $ nebo modul pružnosti v tahu $E$ a modul pružnosti ve smyku $G$. Jejich význam si vysvětlíme na dvou základních experimentech.
17
Pružné vlastnosti homogenního izotropního tělesa při malých deformacích plně určují dvě nezávislé materiálové konstanty, za které mohou být zvoleny např. modul pružnosti v tahu (Youngův modul) $E$ a Poissonovo číslo $\mu $ nebo modul pružnosti v tahu $E$ a modul pružnosti ve smyku $G$. Jejich význam si vysvětlíme na dvou základních experimentech.
18
\end{abstract}
18
\end{abstract}
19
 
19
 
20
\section{Úvod}
20
\section{Úvod}
21
\begin{enumerate}
21
\begin{enumerate}
22
\item Změřte závislost relativního délkového prodloužení $\Delta $l/l ocelového drátu na napětí při zatěžování a odlehčování drátu a sestrojte graf této závislosti. Vypočítejte metodou nejmenších čtverců modul pružnosti v tahu ocelového drátu.  
22
\item Změřte závislost relativního délkového prodloužení $\Delta $l/l ocelového drátu na napětí při zatěžování a odlehčování drátu a sestrojte graf této závislosti. Vypočítejte metodou nejmenších čtverců modul pružnosti v tahu ocelového drátu.  
23
\item Změřte závislost průhybu $z$ na velikosti síly $F$ při zatěžování i odlehčování ocelového nosníku a narýsujte graf této závislosti. Metodou nejmenších čtverců vypočítejte modul pružnosti v tahu.
23
\item Změřte závislost průhybu $z$ na velikosti síly $F$ při zatěžování i odlehčování ocelového nosníku a narýsujte graf této závislosti. Metodou nejmenších čtverců vypočítejte modul pružnosti v tahu.
24
\item V přípravě odvoďte vzorec pro plošný moment setrvačnosti obdélníkového průřezu šířky $a$ a výšky $b.$
24
\item V přípravě odvoďte vzorec pro plošný moment setrvačnosti obdélníkového průřezu šířky $a$ a výšky $b.$
25
\item Změřte závislost úhlu zkroucení $\varphi $ ocelového drátu na velikosti kroutícího momentu při postupném zvětšování a postupném zmenšování tohoto momentu. Výsledky měření vyneste do grafu. Metodou nejmenších čtverců vypočtěte modul pružnosti ve smyku $G$ drátu.
25
\item Změřte závislost úhlu zkroucení $\varphi $ ocelového drátu na velikosti kroutícího momentu při postupném zvětšování a postupném zmenšování tohoto momentu. Výsledky měření vyneste do grafu. Metodou nejmenších čtverců vypočtěte modul pružnosti ve smyku $G$ drátu.
26
\item Na torzním kyvadle změřte moment setrvačnosti základního systému $I_{0}$ a modul pružnosti ve smyku $G$ ocelového drátu. Dobu torzních kmitů změřte postupnou metodou.
26
\item Na torzním kyvadle změřte moment setrvačnosti základního systému $I_{0}$ a modul pružnosti ve smyku $G$ ocelového drátu. Dobu torzních kmitů změřte postupnou metodou.
27
\item V přípravě odvoďte vzorce pro výpočet modulu pružnosti ve smyku $G$ a momentu setrvačnosti základního systému torzního kyvadla $I_{0}$. 
27
\item V přípravě odvoďte vzorce pro výpočet modulu pružnosti ve smyku $G$ a momentu setrvačnosti základního systému torzního kyvadla $I_{0}$. 
28
\end{enumerate}
28
\end{enumerate}
29
 
29
 
30
\section{Postup měření}
30
\section{Úvod}
31
 
31
 
32
 
32
 
-
 
33
\section{Postup měření}
33
 
34
 
34
\section{Diskuse}
35
\section{Diskuse}
35
 
36
 
36
\section{Závěr}
37
\section{Závěr}
37
 
38
 
38
 
39
 
39
\begin{thebibliography}{99}
40
\begin{thebibliography}{99}
40
\bibitem{pruznost}{Zadání úlohy 2 - Měření modulu pružnosti v tahu a modulu pružnosti ve smyku} \href{http://praktika.fjfi.cvut.cz/Pruznost/}{http://praktika.fjfi.cvut.cz/Pruznost/}
41
\bibitem{pruznost}{Zadání úlohy 2 - Měření modulu pružnosti v tahu a modulu pružnosti ve smyku} \href{http://praktika.fjfi.cvut.cz/Pruznost/}{http://praktika.fjfi.cvut.cz/Pruznost/}
41
\end{thebibliography}
42
\end{thebibliography}
42
\end{document}
43
\end{document}