Subversion Repositories svnkaklik

Rev

Rev 507 | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log

Rev 507 Rev 513
1
/*! \file timer.c \brief System Timer function library. */
1
/*! \file timer.c \brief System Timer function library. */
2
//*****************************************************************************
2
//*****************************************************************************
3
//
3
//
4
// File Name	: 'timer.c'
4
// File Name	: 'timer.c'
5
// Title		: System Timer function library
5
// Title		: System Timer function library
6
// Author		: Pascal Stang - Copyright (C) 2000-2002
6
// Author		: Pascal Stang - Copyright (C) 2000-2002
7
// Created		: 11/22/2000
7
// Created		: 11/22/2000
8
// Revised		: 07/09/2003
8
// Revised		: 07/09/2003
9
// Version		: 1.1
9
// Version		: 1.1
10
// Target MCU	: Atmel AVR Series
10
// Target MCU	: Atmel AVR Series
11
// Editor Tabs	: 4
11
// Editor Tabs	: 4
12
//
12
//
13
// This code is distributed under the GNU Public License
13
// This code is distributed under the GNU Public License
14
//		which can be found at http://www.gnu.org/licenses/gpl.txt
14
//		which can be found at http://www.gnu.org/licenses/gpl.txt
15
//
15
//
16
//*****************************************************************************
16
//*****************************************************************************
17
 
17
 
18
#include <avr/io.h>
18
#include <avr/io.h>
19
#include <avr/interrupt.h>
19
#include <avr/interrupt.h>
20
#include <avr/pgmspace.h>
20
#include <avr/pgmspace.h>
21
#include <avr/sleep.h>
21
#include <avr/sleep.h>
22
 
22
 
23
#include "global.h"
23
#include "global.h"
24
#include "timer.h"
24
#include "timer.h"
25
 
25
 
26
#include "rprintf.h"
26
#include "rprintf.h"
27
 
27
 
28
// Program ROM constants
28
// Program ROM constants
29
// the prescale division values stored in order of timer control register index
29
// the prescale division values stored in order of timer control register index
30
// STOP, CLK, CLK/8, CLK/64, CLK/256, CLK/1024
30
// STOP, CLK, CLK/8, CLK/64, CLK/256, CLK/1024
31
unsigned short __attribute__ ((progmem)) TimerPrescaleFactor[] = {0,1,8,64,256,1024};
31
unsigned short __attribute__ ((progmem)) TimerPrescaleFactor[] = {0,1,8,64,256,1024};
32
// the prescale division values stored in order of timer control register index
32
// the prescale division values stored in order of timer control register index
33
// STOP, CLK, CLK/8, CLK/32, CLK/64, CLK/128, CLK/256, CLK/1024
33
// STOP, CLK, CLK/8, CLK/32, CLK/64, CLK/128, CLK/256, CLK/1024
34
unsigned short __attribute__ ((progmem)) TimerRTCPrescaleFactor[] = {0,1,8,32,64,128,256,1024};
34
unsigned short __attribute__ ((progmem)) TimerRTCPrescaleFactor[] = {0,1,8,32,64,128,256,1024};
35
 
35
 
36
// Global variables
36
// Global variables
37
// time registers
37
// time registers
38
volatile unsigned long TimerPauseReg;
38
volatile unsigned long TimerPauseReg;
39
volatile unsigned long Timer0Reg0;
39
volatile unsigned long Timer0Reg0;
40
volatile unsigned long Timer2Reg0;
40
volatile unsigned long Timer2Reg0;
41
 
41
 
42
typedef void (*voidFuncPtr)(void);
42
typedef void (*voidFuncPtr)(void);
43
volatile static voidFuncPtr TimerIntFunc[TIMER_NUM_INTERRUPTS];
43
volatile static voidFuncPtr TimerIntFunc[TIMER_NUM_INTERRUPTS];
44
 
44
 
45
// delay for a minimum of <us> microseconds 
45
// delay for a minimum of <us> microseconds 
46
// the time resolution is dependent on the time the loop takes 
46
// the time resolution is dependent on the time the loop takes 
47
// e.g. with 4Mhz and 5 cycles per loop, the resolution is 1.25 us 
47
// e.g. with 4Mhz and 5 cycles per loop, the resolution is 1.25 us 
48
void delay_us(unsigned short time_us) 
48
void delay_us(unsigned short time_us) 
49
{
49
{
50
	unsigned short delay_loops;
50
	unsigned short delay_loops;
51
	register unsigned short i;
51
	register unsigned short i;
52
 
52
 
53
	delay_loops = (time_us+3)/5*CYCLES_PER_US; // +3 for rounding up (dirty) 
53
	delay_loops = (time_us+3)/5*CYCLES_PER_US; // +3 for rounding up (dirty) 
54
 
54
 
55
	// one loop takes 5 cpu cycles 
55
	// one loop takes 5 cpu cycles 
56
	for (i=0; i < delay_loops; i++) {};
56
	for (i=0; i < delay_loops; i++) {};
57
}
57
}
58
/*
58
/*
59
void delay_ms(unsigned char time_ms)
59
void delay_ms(unsigned char time_ms)
60
{
60
{
61
	unsigned short delay_count = F_CPU / 4000;
61
	unsigned short delay_count = F_CPU / 4000;
62
 
62
 
63
	unsigned short cnt;
63
	unsigned short cnt;
64
	asm volatile ("\n"
64
	asm volatile ("\n"
65
                  "L_dl1%=:\n\t"
65
                  "L_dl1%=:\n\t"
66
                  "mov %A0, %A2\n\t"
66
                  "mov %A0, %A2\n\t"
67
                  "mov %B0, %B2\n"
67
                  "mov %B0, %B2\n"
68
                  "L_dl2%=:\n\t"
68
                  "L_dl2%=:\n\t"
69
                  "sbiw %A0, 1\n\t"
69
                  "sbiw %A0, 1\n\t"
70
                  "brne L_dl2%=\n\t"
70
                  "brne L_dl2%=\n\t"
71
                  "dec %1\n\t" "brne L_dl1%=\n\t":"=&w" (cnt)
71
                  "dec %1\n\t" "brne L_dl1%=\n\t":"=&w" (cnt)
72
                  :"r"(time_ms), "r"((unsigned short) (delay_count))
72
                  :"r"(time_ms), "r"((unsigned short) (delay_count))
73
	);
73
	);
74
}
74
}
75
*/
75
*/
76
void timerInit(void)
76
void timerInit(void)
77
{
77
{
78
	u08 intNum;
78
	u08 intNum;
79
	// detach all user functions from interrupts
79
	// detach all user functions from interrupts
80
	for(intNum=0; intNum<TIMER_NUM_INTERRUPTS; intNum++)
80
	for(intNum=0; intNum<TIMER_NUM_INTERRUPTS; intNum++)
81
		timerDetach(intNum);
81
		timerDetach(intNum);
82
 
82
 
83
	// initialize all timers
83
	// initialize all timers
84
	timer0Init();
84
	timer0Init();
85
	timer1Init();
85
	timer1Init();
86
	#ifdef TCNT2	// support timer2 only if it exists
86
	#ifdef TCNT2	// support timer2 only if it exists
87
	timer2Init();
87
	timer2Init();
88
	#endif
88
	#endif
89
	// enable interrupts
89
	// enable interrupts
90
	sei();
90
	sei();
91
}
91
}
92
 
92
 
93
void timer0Init()
93
void timer0Init()
94
{
94
{
95
	// initialize timer 0
95
	// initialize timer 0
96
	timer0SetPrescaler( TIMER0PRESCALE );	// set prescaler
96
	timer0SetPrescaler( TIMER0PRESCALE );	// set prescaler
97
	outb(TCNT0, 0);							// reset TCNT0
97
	outb(TCNT0, 0);							// reset TCNT0
98
	sbi(TIMSK, TOIE0);						// enable TCNT0 overflow interrupt
98
	sbi(TIMSK, TOIE0);						// enable TCNT0 overflow interrupt
99
 
99
 
100
	timer0ClearOverflowCount();				// initialize time registers
100
	timer0ClearOverflowCount();				// initialize time registers
101
}
101
}
102
 
102
 
103
void timer1Init(void)
103
void timer1Init(void)
104
{
104
{
105
	// initialize timer 1
105
	// initialize timer 1
106
	timer1SetPrescaler( TIMER1PRESCALE );	// set prescaler
106
	timer1SetPrescaler( TIMER1PRESCALE );	// set prescaler
107
	outb(TCNT1H, 0);						// reset TCNT1
107
	outb(TCNT1H, 0);						// reset TCNT1
108
	outb(TCNT1L, 0);
108
	outb(TCNT1L, 0);
109
	sbi(TIMSK, TOIE1);						// enable TCNT1 overflow
109
	sbi(TIMSK, TOIE1);						// enable TCNT1 overflow
110
}
110
}
111
 
111
 
112
#ifdef TCNT2	// support timer2 only if it exists
112
#ifdef TCNT2	// support timer2 only if it exists
113
void timer2Init(void)
113
void timer2Init(void)
114
{
114
{
115
	// initialize timer 2
115
	// initialize timer 2
116
	timer2SetPrescaler( TIMER2PRESCALE );	// set prescaler
116
	timer2SetPrescaler( TIMER2PRESCALE );	// set prescaler
117
	outb(TCNT2, 0);							// reset TCNT2
117
	outb(TCNT2, 0);							// reset TCNT2
118
	sbi(TIMSK, TOIE2);						// enable TCNT2 overflow
118
	sbi(TIMSK, TOIE2);						// enable TCNT2 overflow
119
 
119
 
120
	timer2ClearOverflowCount();				// initialize time registers
120
	timer2ClearOverflowCount();				// initialize time registers
121
}
121
}
122
#endif
122
#endif
123
 
123
 
124
void timer0SetPrescaler(u08 prescale)
124
void timer0SetPrescaler(u08 prescale)
125
{
125
{
126
	// set prescaler on timer 0
126
	// set prescaler on timer 0
127
	outb(TCCR0, (inb(TCCR0) & ~TIMER_PRESCALE_MASK) | prescale);
127
	outb(TCCR0, (inb(TCCR0) & ~TIMER_PRESCALE_MASK) | prescale);
128
}
128
}
129
 
129
 
130
void timer1SetPrescaler(u08 prescale)
130
void timer1SetPrescaler(u08 prescale)
131
{
131
{
132
	// set prescaler on timer 1
132
	// set prescaler on timer 1
133
	outb(TCCR1B, (inb(TCCR1B) & ~TIMER_PRESCALE_MASK) | prescale);
133
	outb(TCCR1B, (inb(TCCR1B) & ~TIMER_PRESCALE_MASK) | prescale);
134
}
134
}
135
 
135
 
136
#ifdef TCNT2	// support timer2 only if it exists
136
#ifdef TCNT2	// support timer2 only if it exists
137
void timer2SetPrescaler(u08 prescale)
137
void timer2SetPrescaler(u08 prescale)
138
{
138
{
139
	// set prescaler on timer 2
139
	// set prescaler on timer 2
140
	outb(TCCR2, (inb(TCCR2) & ~TIMER_PRESCALE_MASK) | prescale);
140
	outb(TCCR2, (inb(TCCR2) & ~TIMER_PRESCALE_MASK) | prescale);
141
}
141
}
142
#endif
142
#endif
143
 
143
 
144
u16 timer0GetPrescaler(void)
144
u16 timer0GetPrescaler(void)
145
{
145
{
146
	// get the current prescaler setting
146
	// get the current prescaler setting
147
	return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR0) & TIMER_PRESCALE_MASK)));
147
	return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR0) & TIMER_PRESCALE_MASK)));
148
}
148
}
149
 
149
 
150
u16 timer1GetPrescaler(void)
150
u16 timer1GetPrescaler(void)
151
{
151
{
152
	// get the current prescaler setting
152
	// get the current prescaler setting
153
	return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR1B) & TIMER_PRESCALE_MASK)));
153
	return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR1B) & TIMER_PRESCALE_MASK)));
154
}
154
}
155
 
155
 
156
#ifdef TCNT2	// support timer2 only if it exists
156
#ifdef TCNT2	// support timer2 only if it exists
157
u16 timer2GetPrescaler(void)
157
u16 timer2GetPrescaler(void)
158
{
158
{
159
	//TODO: can we assume for all 3-timer AVR processors,
159
	//TODO: can we assume for all 3-timer AVR processors,
160
	// that timer2 is the RTC timer?
160
	// that timer2 is the RTC timer?
161
 
161
 
162
	// get the current prescaler setting
162
	// get the current prescaler setting
163
	return (pgm_read_word(TimerRTCPrescaleFactor+(inb(TCCR2) & TIMER_PRESCALE_MASK)));
163
	return (pgm_read_word(TimerRTCPrescaleFactor+(inb(TCCR2) & TIMER_PRESCALE_MASK)));
164
}
164
}
165
#endif
165
#endif
166
 
166
 
167
void timerAttach(u08 interruptNum, void (*userFunc)(void) )
167
void timerAttach(u08 interruptNum, void (*userFunc)(void) )
168
{
168
{
169
	// make sure the interrupt number is within bounds
169
	// make sure the interrupt number is within bounds
170
	if(interruptNum < TIMER_NUM_INTERRUPTS)
170
	if(interruptNum < TIMER_NUM_INTERRUPTS)
171
	{
171
	{
172
		// set the interrupt function to run
172
		// set the interrupt function to run
173
		// the supplied user's function
173
		// the supplied user's function
174
		TimerIntFunc[interruptNum] = userFunc;
174
		TimerIntFunc[interruptNum] = userFunc;
175
	}
175
	}
176
}
176
}
177
 
177
 
178
void timerDetach(u08 interruptNum)
178
void timerDetach(u08 interruptNum)
179
{
179
{
180
	// make sure the interrupt number is within bounds
180
	// make sure the interrupt number is within bounds
181
	if(interruptNum < TIMER_NUM_INTERRUPTS)
181
	if(interruptNum < TIMER_NUM_INTERRUPTS)
182
	{
182
	{
183
		// set the interrupt function to run nothing
183
		// set the interrupt function to run nothing
184
		TimerIntFunc[interruptNum] = 0;
184
		TimerIntFunc[interruptNum] = 0;
185
	}
185
	}
186
}
186
}
187
/*
187
/*
188
u32 timerMsToTics(u16 ms)
188
u32 timerMsToTics(u16 ms)
189
{
189
{
190
	// calculate the prescaler division rate
190
	// calculate the prescaler division rate
191
	u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
191
	u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
192
	// calculate the number of timer tics in x milliseconds
192
	// calculate the number of timer tics in x milliseconds
193
	return (ms*(F_CPU/(prescaleDiv*256)))/1000;
193
	return (ms*(F_CPU/(prescaleDiv*256)))/1000;
194
}
194
}
195
 
195
 
196
u16 timerTicsToMs(u32 tics)
196
u16 timerTicsToMs(u32 tics)
197
{
197
{
198
	// calculate the prescaler division rate
198
	// calculate the prescaler division rate
199
	u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
199
	u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
200
	// calculate the number of milliseconds in x timer tics
200
	// calculate the number of milliseconds in x timer tics
201
	return (tics*1000*(prescaleDiv*256))/F_CPU;
201
	return (tics*1000*(prescaleDiv*256))/F_CPU;
202
}
202
}
203
*/
203
*/
204
void timerPause(unsigned short pause_ms)
204
void timerPause(unsigned short pause_ms)
205
{
205
{
206
	// pauses for exactly <pause_ms> number of milliseconds
206
	// pauses for exactly <pause_ms> number of milliseconds
207
	u08 timerThres;
207
	u08 timerThres;
208
	u32 ticRateHz;
208
	u32 ticRateHz;
209
	u32 pause;
209
	u32 pause;
210
 
210
 
211
	// capture current pause timer value
211
	// capture current pause timer value
212
	timerThres = inb(TCNT0);
212
	timerThres = inb(TCNT0);
213
	// reset pause timer overflow count
213
	// reset pause timer overflow count
214
	TimerPauseReg = 0;
214
	TimerPauseReg = 0;
215
	// calculate delay for [pause_ms] milliseconds
215
	// calculate delay for [pause_ms] milliseconds
216
	// prescaler division = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)))
216
	// prescaler division = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)))
217
	ticRateHz = F_CPU/timer0GetPrescaler();
217
	ticRateHz = F_CPU/timer0GetPrescaler();
218
	// precision management
218
	// precision management
219
	// prevent overflow and precision underflow
219
	// prevent overflow and precision underflow
220
	//	-could add more conditions to improve accuracy
220
	//	-could add more conditions to improve accuracy
221
	if( ((ticRateHz < 429497) && (pause_ms <= 10000)) )
221
	if( ((ticRateHz < 429497) && (pause_ms <= 10000)) )
222
		pause = (pause_ms*ticRateHz)/1000;
222
		pause = (pause_ms*ticRateHz)/1000;
223
	else
223
	else
224
		pause = pause_ms*(ticRateHz/1000);
224
		pause = pause_ms*(ticRateHz/1000);
225
 
225
 
226
	// loop until time expires
226
	// loop until time expires
227
	while( ((TimerPauseReg<<8) | inb(TCNT0)) < (pause+timerThres) )
227
	while( ((TimerPauseReg<<8) | inb(TCNT0)) < (pause+timerThres) )
228
	{
228
	{
229
		if( TimerPauseReg < (pause>>8));
229
		if( TimerPauseReg < (pause>>8));
230
		{
230
		{
231
			// save power by idling the processor
231
			// save power by idling the processor
232
			set_sleep_mode(SLEEP_MODE_IDLE);
232
			set_sleep_mode(SLEEP_MODE_IDLE);
233
			sleep_mode();
233
			sleep_mode();
234
		}
234
		}
235
	}
235
	}
236
 
236
 
237
	/* old inaccurate code, for reference
237
	/* old inaccurate code, for reference
238
	
238
	
239
	// calculate delay for [pause_ms] milliseconds
239
	// calculate delay for [pause_ms] milliseconds
240
	u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
240
	u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
241
	u32 pause = (pause_ms*(F_CPU/(prescaleDiv*256)))/1000;
241
	u32 pause = (pause_ms*(F_CPU/(prescaleDiv*256)))/1000;
242
	
242
	
243
	TimerPauseReg = 0;
243
	TimerPauseReg = 0;
244
	while(TimerPauseReg < pause);
244
	while(TimerPauseReg < pause);
245
 
245
 
246
	*/
246
	*/
247
}
247
}
248
 
248
 
249
void timer0ClearOverflowCount(void)
249
void timer0ClearOverflowCount(void)
250
{
250
{
251
	// clear the timer overflow counter registers
251
	// clear the timer overflow counter registers
252
	Timer0Reg0 = 0;	// initialize time registers
252
	Timer0Reg0 = 0;	// initialize time registers
253
}
253
}
254
 
254
 
255
long timer0GetOverflowCount(void)
255
long timer0GetOverflowCount(void)
256
{
256
{
257
	// return the current timer overflow count
257
	// return the current timer overflow count
258
	// (this is since the last timer0ClearOverflowCount() command was called)
258
	// (this is since the last timer0ClearOverflowCount() command was called)
259
	return Timer0Reg0;
259
	return Timer0Reg0;
260
}
260
}
261
 
261
 
262
#ifdef TCNT2	// support timer2 only if it exists
262
#ifdef TCNT2	// support timer2 only if it exists
263
void timer2ClearOverflowCount(void)
263
void timer2ClearOverflowCount(void)
264
{
264
{
265
	// clear the timer overflow counter registers
265
	// clear the timer overflow counter registers
266
	Timer2Reg0 = 0;	// initialize time registers
266
	Timer2Reg0 = 0;	// initialize time registers
267
}
267
}
268
 
268
 
269
long timer2GetOverflowCount(void)
269
long timer2GetOverflowCount(void)
270
{
270
{
271
	// return the current timer overflow count
271
	// return the current timer overflow count
272
	// (this is since the last timer2ClearOverflowCount() command was called)
272
	// (this is since the last timer2ClearOverflowCount() command was called)
273
	return Timer2Reg0;
273
	return Timer2Reg0;
274
}
274
}
275
#endif
275
#endif
276
 
276
 
277
void timer1PWMInit(u08 bitRes)
277
void timer1PWMInit(u08 bitRes)
278
{
278
{
279
	// configures timer1 for use with PWM output
279
	// configures timer1 for use with PWM output
280
	// on OC1A and OC1B pins
280
	// on OC1A and OC1B pins
281
 
281
 
282
	// enable timer1 as 8,9,10bit PWM
282
	// enable timer1 as 8,9,10bit PWM
283
	if(bitRes == 9)
283
	if(bitRes == 9)
284
	{	// 9bit mode
284
	{	// 9bit mode
285
		sbi(TCCR1A,PWM11);
285
		sbi(TCCR1A,PWM11);
286
		cbi(TCCR1A,PWM10);
286
		cbi(TCCR1A,PWM10);
287
	}
287
	}
288
	else if( bitRes == 10 )
288
	else if( bitRes == 10 )
289
	{	// 10bit mode
289
	{	// 10bit mode
290
		sbi(TCCR1A,PWM11);
290
		sbi(TCCR1A,PWM11);
291
		sbi(TCCR1A,PWM10);
291
		sbi(TCCR1A,PWM10);
292
	}
292
	}
293
	else
293
	else
294
	{	// default 8bit mode
294
	{	// default 8bit mode
295
		cbi(TCCR1A,PWM11);
295
		cbi(TCCR1A,PWM11);
296
		sbi(TCCR1A,PWM10);
296
		sbi(TCCR1A,PWM10);
297
	}
297
	}
298
 
298
 
299
	// clear output compare value A
299
	// clear output compare value A
300
	outb(OCR1AH, 0);
300
	outb(OCR1AH, 0);
301
	outb(OCR1AL, 0);
301
	outb(OCR1AL, 0);
302
	// clear output compare value B
302
	// clear output compare value B
303
	outb(OCR1BH, 0);
303
	outb(OCR1BH, 0);
304
	outb(OCR1BL, 0);
304
	outb(OCR1BL, 0);
305
}
305
}
306
 
306
 
307
#ifdef WGM10
307
#ifdef WGM10
308
// include support for arbitrary top-count PWM
308
// include support for arbitrary top-count PWM
309
// on new AVR processors that support it
309
// on new AVR processors that support it
310
void timer1PWMInitICR(u16 topcount)
310
void timer1PWMInitICR(u16 topcount)
311
{
311
{
312
	// set PWM mode with ICR top-count
312
	// set PWM mode with ICR top-count
313
	cbi(TCCR1A,WGM10);
313
	cbi(TCCR1A,WGM10);
314
	sbi(TCCR1A,WGM11);
314
	sbi(TCCR1A,WGM11);
315
	sbi(TCCR1B,WGM12);
315
	sbi(TCCR1B,WGM12);
316
	sbi(TCCR1B,WGM13);
316
	sbi(TCCR1B,WGM13);
317
	
317
	
318
	// set top count value
318
	// set top count value
319
	ICR1 = topcount;
319
	ICR1 = topcount;
320
	
320
	
321
	// clear output compare value A
321
	// clear output compare value A
322
	OCR1A = 0;
322
	OCR1A = 0;
323
	// clear output compare value B
323
	// clear output compare value B
324
	OCR1B = 0;
324
	OCR1B = 0;
325
 
325
 
326
}
326
}
327
#endif
327
#endif
328
 
328
 
329
void timer1PWMOff(void)
329
void timer1PWMOff(void)
330
{
330
{
331
	// turn off timer1 PWM mode
331
	// turn off timer1 PWM mode
332
	cbi(TCCR1A,PWM11);
332
	cbi(TCCR1A,PWM11);
333
	cbi(TCCR1A,PWM10);
333
	cbi(TCCR1A,PWM10);
334
	// set PWM1A/B (OutputCompare action) to none
334
	// set PWM1A/B (OutputCompare action) to none
335
	timer1PWMAOff();
335
	timer1PWMAOff();
336
	timer1PWMBOff();
336
	timer1PWMBOff();
337
}
337
}
338
 
338
 
339
void timer1PWMAOn(void)
339
void timer1PWMAOn(void)
340
{
340
{
341
	// turn on channel A (OC1A) PWM output
341
	// turn on channel A (OC1A) PWM output
342
	// set OC1A as non-inverted PWM
342
	// set OC1A as non-inverted PWM
343
	sbi(TCCR1A,COM1A1);
343
	sbi(TCCR1A,COM1A1);
344
	cbi(TCCR1A,COM1A0);
344
	cbi(TCCR1A,COM1A0);
345
}
345
}
346
 
346
 
347
void timer1PWMBOn(void)
347
void timer1PWMBOn(void)
348
{
348
{
349
	// turn on channel B (OC1B) PWM output
349
	// turn on channel B (OC1B) PWM output
350
	// set OC1B as non-inverted PWM
350
	// set OC1B as non-inverted PWM
351
	sbi(TCCR1A,COM1B1);
351
	sbi(TCCR1A,COM1B1);
352
	cbi(TCCR1A,COM1B0);
352
	cbi(TCCR1A,COM1B0);
353
}
353
}
354
 
354
 
355
void timer1PWMAOff(void)
355
void timer1PWMAOff(void)
356
{
356
{
357
	// turn off channel A (OC1A) PWM output
357
	// turn off channel A (OC1A) PWM output
358
	// set OC1A (OutputCompare action) to none
358
	// set OC1A (OutputCompare action) to none
359
	cbi(TCCR1A,COM1A1);
359
	cbi(TCCR1A,COM1A1);
360
	cbi(TCCR1A,COM1A0);
360
	cbi(TCCR1A,COM1A0);
361
}
361
}
362
 
362
 
363
void timer1PWMBOff(void)
363
void timer1PWMBOff(void)
364
{
364
{
365
	// turn off channel B (OC1B) PWM output
365
	// turn off channel B (OC1B) PWM output
366
	// set OC1B (OutputCompare action) to none
366
	// set OC1B (OutputCompare action) to none
367
	cbi(TCCR1A,COM1B1);
367
	cbi(TCCR1A,COM1B1);
368
	cbi(TCCR1A,COM1B0);
368
	cbi(TCCR1A,COM1B0);
369
}
369
}
370
 
370
 
371
void timer1PWMASet(u16 pwmDuty)
371
void timer1PWMASet(u16 pwmDuty)
372
{
372
{
373
	// set PWM (output compare) duty for channel A
373
	// set PWM (output compare) duty for channel A
374
	// this PWM output is generated on OC1A pin
374
	// this PWM output is generated on OC1A pin
375
	// NOTE:	pwmDuty should be in the range 0-255 for 8bit PWM
375
	// NOTE:	pwmDuty should be in the range 0-255 for 8bit PWM
376
	//			pwmDuty should be in the range 0-511 for 9bit PWM
376
	//			pwmDuty should be in the range 0-511 for 9bit PWM
377
	//			pwmDuty should be in the range 0-1023 for 10bit PWM
377
	//			pwmDuty should be in the range 0-1023 for 10bit PWM
378
	//outp( (pwmDuty>>8), OCR1AH);		// set the high 8bits of OCR1A
378
	//outp( (pwmDuty>>8), OCR1AH);		// set the high 8bits of OCR1A
379
	//outp( (pwmDuty&0x00FF), OCR1AL);	// set the low 8bits of OCR1A
379
	//outp( (pwmDuty&0x00FF), OCR1AL);	// set the low 8bits of OCR1A
380
	OCR1A = pwmDuty;
380
	OCR1A = pwmDuty;
381
}
381
}
382
 
382
 
383
void timer1PWMBSet(u16 pwmDuty)
383
void timer1PWMBSet(u16 pwmDuty)
384
{
384
{
385
	// set PWM (output compare) duty for channel B
385
	// set PWM (output compare) duty for channel B
386
	// this PWM output is generated on OC1B pin
386
	// this PWM output is generated on OC1B pin
387
	// NOTE:	pwmDuty should be in the range 0-255 for 8bit PWM
387
	// NOTE:	pwmDuty should be in the range 0-255 for 8bit PWM
388
	//			pwmDuty should be in the range 0-511 for 9bit PWM
388
	//			pwmDuty should be in the range 0-511 for 9bit PWM
389
	//			pwmDuty should be in the range 0-1023 for 10bit PWM
389
	//			pwmDuty should be in the range 0-1023 for 10bit PWM
390
	//outp( (pwmDuty>>8), OCR1BH);		// set the high 8bits of OCR1B
390
	//outp( (pwmDuty>>8), OCR1BH);		// set the high 8bits of OCR1B
391
	//outp( (pwmDuty&0x00FF), OCR1BL);	// set the low 8bits of OCR1B
391
	//outp( (pwmDuty&0x00FF), OCR1BL);	// set the low 8bits of OCR1B
392
	OCR1B = pwmDuty;
392
	OCR1B = pwmDuty;
393
}
393
}
394
 
394
 
395
//! Interrupt handler for tcnt0 overflow interrupt
395
//! Interrupt handler for tcnt0 overflow interrupt
396
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW0)
396
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW0)
397
{
397
{
398
	Timer0Reg0++;			// increment low-order counter
398
	Timer0Reg0++;			// increment low-order counter
399
 
399
 
400
	// increment pause counter
400
	// increment pause counter
401
	TimerPauseReg++;
401
	TimerPauseReg++;
402
 
402
 
403
	// if a user function is defined, execute it too
403
	// if a user function is defined, execute it too
404
	if(TimerIntFunc[TIMER0OVERFLOW_INT])
404
	if(TimerIntFunc[TIMER0OVERFLOW_INT])
405
		TimerIntFunc[TIMER0OVERFLOW_INT]();
405
		TimerIntFunc[TIMER0OVERFLOW_INT]();
406
}
406
}
407
 
407
 
408
//! Interrupt handler for tcnt1 overflow interrupt
408
//! Interrupt handler for tcnt1 overflow interrupt
409
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW1)
409
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW1)
410
{
410
{
411
	// if a user function is defined, execute it
411
	// if a user function is defined, execute it
412
	if(TimerIntFunc[TIMER1OVERFLOW_INT])
412
	if(TimerIntFunc[TIMER1OVERFLOW_INT])
413
		TimerIntFunc[TIMER1OVERFLOW_INT]();
413
		TimerIntFunc[TIMER1OVERFLOW_INT]();
414
}
414
}
415
 
415
 
416
#ifdef TCNT2	// support timer2 only if it exists
416
#ifdef TCNT2	// support timer2 only if it exists
417
//! Interrupt handler for tcnt2 overflow interrupt
417
//! Interrupt handler for tcnt2 overflow interrupt
418
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW2)
418
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW2)
419
{
419
{
420
	Timer2Reg0++;			// increment low-order counter
420
	Timer2Reg0++;			// increment low-order counter
421
 
421
 
422
	// if a user function is defined, execute it
422
	// if a user function is defined, execute it
423
	if(TimerIntFunc[TIMER2OVERFLOW_INT])
423
	if(TimerIntFunc[TIMER2OVERFLOW_INT])
424
		TimerIntFunc[TIMER2OVERFLOW_INT]();
424
		TimerIntFunc[TIMER2OVERFLOW_INT]();
425
}
425
}
426
#endif
426
#endif
427
 
427
 
428
#ifdef OCR0
428
#ifdef OCR0
429
// include support for Output Compare 0 for new AVR processors that support it
429
// include support for Output Compare 0 for new AVR processors that support it
430
//! Interrupt handler for OutputCompare0 match (OC0) interrupt
430
//! Interrupt handler for OutputCompare0 match (OC0) interrupt
431
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE0)
431
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE0)
432
{
432
{
433
	// if a user function is defined, execute it
433
	// if a user function is defined, execute it
434
	if(TimerIntFunc[TIMER0OUTCOMPARE_INT])
434
	if(TimerIntFunc[TIMER0OUTCOMPARE_INT])
435
		TimerIntFunc[TIMER0OUTCOMPARE_INT]();
435
		TimerIntFunc[TIMER0OUTCOMPARE_INT]();
436
}
436
}
437
#endif
437
#endif
438
 
438
 
439
//! Interrupt handler for CutputCompare1A match (OC1A) interrupt
439
//! Interrupt handler for CutputCompare1A match (OC1A) interrupt
440
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1A)
440
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1A)
441
{
441
{
442
	// if a user function is defined, execute it
442
	// if a user function is defined, execute it
443
	if(TimerIntFunc[TIMER1OUTCOMPAREA_INT])
443
	if(TimerIntFunc[TIMER1OUTCOMPAREA_INT])
444
		TimerIntFunc[TIMER1OUTCOMPAREA_INT]();
444
		TimerIntFunc[TIMER1OUTCOMPAREA_INT]();
445
}
445
}
446
 
446
 
447
//! Interrupt handler for OutputCompare1B match (OC1B) interrupt
447
//! Interrupt handler for OutputCompare1B match (OC1B) interrupt
448
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1B)
448
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1B)
449
{
449
{
450
	// if a user function is defined, execute it
450
	// if a user function is defined, execute it
451
	if(TimerIntFunc[TIMER1OUTCOMPAREB_INT])
451
	if(TimerIntFunc[TIMER1OUTCOMPAREB_INT])
452
		TimerIntFunc[TIMER1OUTCOMPAREB_INT]();
452
		TimerIntFunc[TIMER1OUTCOMPAREB_INT]();
453
}
453
}
454
 
454
 
455
//! Interrupt handler for InputCapture1 (IC1) interrupt
455
//! Interrupt handler for InputCapture1 (IC1) interrupt
456
TIMER_INTERRUPT_HANDLER(SIG_INPUT_CAPTURE1)
456
TIMER_INTERRUPT_HANDLER(SIG_INPUT_CAPTURE1)
457
{
457
{
458
	// if a user function is defined, execute it
458
	// if a user function is defined, execute it
459
	if(TimerIntFunc[TIMER1INPUTCAPTURE_INT])
459
	if(TimerIntFunc[TIMER1INPUTCAPTURE_INT])
460
		TimerIntFunc[TIMER1INPUTCAPTURE_INT]();
460
		TimerIntFunc[TIMER1INPUTCAPTURE_INT]();
461
}
461
}
462
 
462
 
463
//! Interrupt handler for OutputCompare2 match (OC2) interrupt
463
//! Interrupt handler for OutputCompare2 match (OC2) interrupt
464
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE2)
464
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE2)
465
{
465
{
466
	// if a user function is defined, execute it
466
	// if a user function is defined, execute it
467
	if(TimerIntFunc[TIMER2OUTCOMPARE_INT])
467
	if(TimerIntFunc[TIMER2OUTCOMPARE_INT])
468
		TimerIntFunc[TIMER2OUTCOMPARE_INT]();
468
		TimerIntFunc[TIMER2OUTCOMPARE_INT]();
469
}
469
}