Subversion Repositories svnkaklik

Rev

Rev 646 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log

Rev 646 Rev 647
1
///////////////////////////////////////////////////////////////////////////////////
1
///////////////////////////////////////////////////////////////////////////////////
2
//                        A small demo of sonar.
2
//                        A small demo of sonar.
3
// Program allow distance measuring.
3
// Program allow distance measuring.
4
// Uses cross-correlation algorithm to find echos
4
// Uses cross-correlation algorithm to find echos
5
//
5
//
6
// Author: kaklik  (kaklik@mlab.cz)
6
// Author: kaklik  (kaklik@mlab.cz)
7
//$Id:$
7
//$Id:$
8
///////////////////////////////////////////////////////////////////////////////////
8
///////////////////////////////////////////////////////////////////////////////////
9
 
9
 
10
#include <stdio.h>
10
#include <stdio.h>
11
#include <stdlib.h>
11
#include <stdlib.h>
12
#include <string.h>
12
#include <string.h>
13
#include <sched.h>
13
#include <sched.h>
14
#include <errno.h>
14
#include <errno.h>
15
#include <getopt.h>
15
#include <getopt.h>
16
#include <alsa/asoundlib.h>
16
#include <alsa/asoundlib.h>
17
#include <sys/time.h>
17
#include <sys/time.h>
18
#include <math.h>
18
#include <math.h>
19
#include <fftw3.h>
19
#include <fftw3.h>
20
 
20
 
21
#define SOUND_SPEED	340.0	// sound speed in air in metrs per second
21
#define SOUND_SPEED	340.0	// sound speed in air in metrs per second
22
#define MAX_RANGE	10.0	// maximal working radius in meters
22
#define MAX_RANGE	10.0	// maximal working radius in meters
23
#define APERTURE	0.2	// distance between microphones
23
#define APERTURE	0.2	// distance between microphones
24
 
24
 
25
static char *device = "plughw:0,0";			/* playback device */
25
static char *device = "plughw:0,0";			/* playback device */
26
static snd_pcm_format_t format = SND_PCM_FORMAT_S16;	/* sample format */
26
static snd_pcm_format_t format = SND_PCM_FORMAT_S16;	/* sample format */
27
static unsigned int rate = 96000;			/* stream rate */
27
static unsigned int rate = 96000;			/* stream rate */
28
static unsigned int buffer_time = 2 * (MAX_RANGE / SOUND_SPEED * 1e6);		/* ring buffer length in us */
28
static unsigned int buffer_time = 2 * (MAX_RANGE / SOUND_SPEED * 1e6);		/* ring buffer length in us */
29
static unsigned int period_time = MAX_RANGE / SOUND_SPEED * 1e6;		/* period time in us */
29
static unsigned int period_time = MAX_RANGE / SOUND_SPEED * 1e6;		/* period time in us */
30
static int resample = 1;				/* enable alsa-lib resampling */
30
static int resample = 1;				/* enable alsa-lib resampling */
31
 
31
 
32
unsigned int chirp_size;
32
unsigned int chirp_size;
33
 
33
 
34
static snd_pcm_sframes_t buffer_size;	// size of buffer at sound card
34
static snd_pcm_sframes_t buffer_size;	// size of buffer at sound card
35
static snd_pcm_sframes_t period_size;	//samples per frame
35
static snd_pcm_sframes_t period_size;	//samples per frame
36
static snd_output_t *output = NULL;
36
static snd_output_t *output = NULL;
37
 
37
 
38
static int set_hwparams(snd_pcm_t *handle, snd_pcm_hw_params_t *params, unsigned int channels)
38
static int set_hwparams(snd_pcm_t *handle, snd_pcm_hw_params_t *params, unsigned int channels)
39
{
39
{
40
    unsigned int rrate;
40
    unsigned int rrate;
41
    snd_pcm_uframes_t size;
41
    snd_pcm_uframes_t size;
42
    int err, dir;
42
    int err, dir;
43
 
43
 
44
    /* choose all parameters */
44
    /* choose all parameters */
45
    err = snd_pcm_hw_params_any(handle, params);
45
    err = snd_pcm_hw_params_any(handle, params);
46
    if (err < 0)
46
    if (err < 0)
47
    {
47
    {
48
        printf("Broken configuration for playback: no configurations available: %s\n", snd_strerror(err));
48
        printf("Broken configuration for playback: no configurations available: %s\n", snd_strerror(err));
49
        return err;
49
        return err;
50
    }
50
    }
51
    /* set hardware resampling */
51
    /* set hardware resampling */
52
    err = snd_pcm_hw_params_set_rate_resample(handle, params, resample);
52
    err = snd_pcm_hw_params_set_rate_resample(handle, params, resample);
53
    if (err < 0)
53
    if (err < 0)
54
    {
54
    {
55
        printf("Resampling setup failed for playback: %s\n", snd_strerror(err));
55
        printf("Resampling setup failed for playback: %s\n", snd_strerror(err));
56
        return err;
56
        return err;
57
    }
57
    }
58
    /* set the interleaved read/write format */
58
    /* set the interleaved read/write format */
59
    err = snd_pcm_hw_params_set_access(handle, params, SND_PCM_ACCESS_RW_INTERLEAVED);
59
    err = snd_pcm_hw_params_set_access(handle, params, SND_PCM_ACCESS_RW_INTERLEAVED);
60
    if (err < 0)
60
    if (err < 0)
61
    {
61
    {
62
        printf("Access type not available for playback: %s\n", snd_strerror(err));
62
        printf("Access type not available for playback: %s\n", snd_strerror(err));
63
        return err;
63
        return err;
64
    }
64
    }
65
    /* set the sample format */
65
    /* set the sample format */
66
    err = snd_pcm_hw_params_set_format(handle, params, format);
66
    err = snd_pcm_hw_params_set_format(handle, params, format);
67
    if (err < 0)
67
    if (err < 0)
68
    {
68
    {
69
        printf("Sample format not available for playback: %s\n", snd_strerror(err));
69
        printf("Sample format not available for playback: %s\n", snd_strerror(err));
70
        return err;
70
        return err;
71
    }
71
    }
72
    /* set the count of channels */
72
    /* set the count of channels */
73
    err = snd_pcm_hw_params_set_channels(handle, params, channels);
73
    err = snd_pcm_hw_params_set_channels(handle, params, channels);
74
    if (err < 0)
74
    if (err < 0)
75
    {
75
    {
76
        printf("Channels count (%i) not available for playbacks: %s\n", channels, snd_strerror(err));
76
        printf("Channels count (%i) not available for playbacks: %s\n", channels, snd_strerror(err));
77
        return err;
77
        return err;
78
    }
78
    }
79
    /* set the stream rate */
79
    /* set the stream rate */
80
    rrate = rate;
80
    rrate = rate;
81
    err = snd_pcm_hw_params_set_rate_near(handle, params, &rrate, 0);
81
    err = snd_pcm_hw_params_set_rate_near(handle, params, &rrate, 0);
82
    if (err < 0)
82
    if (err < 0)
83
    {
83
    {
84
        printf("Rate %iHz not available for playback: %s\n", rate, snd_strerror(err));
84
        printf("Rate %iHz not available for playback: %s\n", rate, snd_strerror(err));
85
        return err;
85
        return err;
86
    }
86
    }
87
    if (rrate != rate)
87
    if (rrate != rate)
88
    {
88
    {
89
        printf("Rate doesn't match (requested %iHz, get %iHz)\n", rate, err);
89
        printf("Rate doesn't match (requested %iHz, get %iHz)\n", rate, err);
90
        return -EINVAL;
90
        return -EINVAL;
91
    }
91
    }
92
    else printf("Rate set to %i Hz\n", rate, err);
92
    else printf("Rate set to %i Hz\n", rate, err);
93
    /* set the buffer time */
93
    /* set the buffer time */
94
    err = snd_pcm_hw_params_set_buffer_time_near(handle, params, &buffer_time, &dir);
94
    err = snd_pcm_hw_params_set_buffer_time_near(handle, params, &buffer_time, &dir);
95
    if (err < 0)
95
    if (err < 0)
96
    {
96
    {
97
        printf("Unable to set buffer time %i for playback: %s\n", buffer_time, snd_strerror(err));
97
        printf("Unable to set buffer time %i for playback: %s\n", buffer_time, snd_strerror(err));
98
        return err;
98
        return err;
99
    }
99
    }
100
    err = snd_pcm_hw_params_get_buffer_size(params, &size);
100
    err = snd_pcm_hw_params_get_buffer_size(params, &size);
101
    if (err < 0)
101
    if (err < 0)
102
    {
102
    {
103
        printf("Unable to get buffer size for playback: %s\n", snd_strerror(err));
103
        printf("Unable to get buffer size for playback: %s\n", snd_strerror(err));
104
        return err;
104
        return err;
105
    }
105
    }
106
    buffer_size = size;
106
    buffer_size = size;
107
    printf("Bufffer size set to:  %d  Requested buffer time: %ld \n", (int) buffer_size, (long) buffer_time);
107
    printf("Bufffer size set to:  %d  Requested buffer time: %ld \n", (int) buffer_size, (long) buffer_time);
108
 
108
 
109
 
109
 
110
    /// set the period time
110
    /// set the period time
111
    err = snd_pcm_hw_params_set_period_time_near(handle, params, &period_time, &dir);
111
    err = snd_pcm_hw_params_set_period_time_near(handle, params, &period_time, &dir);
112
    if (err < 0)
112
    if (err < 0)
113
    {
113
    {
114
        printf("Unable to set period time %i for playback: %s\n", period_time, snd_strerror(err));
114
        printf("Unable to set period time %i for playback: %s\n", period_time, snd_strerror(err));
115
        return err;
115
        return err;
116
    }
116
    }
117
 
117
 
118
    err = snd_pcm_hw_params_get_period_size(params, &size, &dir);
118
    err = snd_pcm_hw_params_get_period_size(params, &size, &dir);
119
    if (err < 0)
119
    if (err < 0)
120
    {
120
    {
121
        printf("Unable to get period size for playback: %s\n", snd_strerror(err));
121
        printf("Unable to get period size for playback: %s\n", snd_strerror(err));
122
        return err;
122
        return err;
123
    }
123
    }
124
    period_size = size;
124
    period_size = size;
125
    printf("Period size set to:  %d Requested period time: %ld \n", (int) period_size, (long) period_time);
125
    printf("Period size set to:  %d Requested period time: %ld \n", (int) period_size, (long) period_time);
126
 
126
 
127
    /* write the parameters to device */
127
    /* write the parameters to device */
128
    err = snd_pcm_hw_params(handle, params);
128
    err = snd_pcm_hw_params(handle, params);
129
    if (err < 0)
129
    if (err < 0)
130
    {
130
    {
131
        printf("Unable to set hw params for playback: %s\n", snd_strerror(err));
131
        printf("Unable to set hw params for playback: %s\n", snd_strerror(err));
132
        return err;
132
        return err;
133
    }
133
    }
134
    return 0;
134
    return 0;
135
}
135
}
136
 
136
 
137
static int set_swparams(snd_pcm_t *handle, snd_pcm_sw_params_t *swparams)
137
static int set_swparams(snd_pcm_t *handle, snd_pcm_sw_params_t *swparams)
138
{
138
{
139
    int err;
139
    int err;
140
 
140
 
141
    /* get the current swparams */
141
    /* get the current swparams */
142
    err = snd_pcm_sw_params_current(handle, swparams);
142
    err = snd_pcm_sw_params_current(handle, swparams);
143
    if (err < 0)
143
    if (err < 0)
144
    {
144
    {
145
        printf("Unable to determine current swparams for playback: %s\n", snd_strerror(err));
145
        printf("Unable to determine current swparams for playback: %s\n", snd_strerror(err));
146
        return err;
146
        return err;
147
    }
147
    }
148
    // start the transfer when the buffer is almost full: never fou our case
148
    // start the transfer when the buffer is almost full: never fou our case
149
    err = snd_pcm_sw_params_set_start_threshold(handle, swparams, 2 * buffer_size);
149
    err = snd_pcm_sw_params_set_start_threshold(handle, swparams, 2 * buffer_size);
150
    if (err < 0)
150
    if (err < 0)
151
    {
151
    {
152
        printf("Unable to set start threshold mode for playback: %s\n", snd_strerror(err));
152
        printf("Unable to set start threshold mode for playback: %s\n", snd_strerror(err));
153
        return err;
153
        return err;
154
    }
154
    }
155
 
155
 
156
    err = snd_pcm_sw_params_set_period_event(handle, swparams, 1);
156
    err = snd_pcm_sw_params_set_period_event(handle, swparams, 1);
157
    if (err < 0)
157
    if (err < 0)
158
    {
158
    {
159
        printf("Unable to set period event: %s\n", snd_strerror(err));
159
        printf("Unable to set period event: %s\n", snd_strerror(err));
160
        return err;
160
        return err;
161
    }
161
    }
162
 
162
 
163
    /* write the parameters to the playback device */
163
    /* write the parameters to the playback device */
164
    err = snd_pcm_sw_params(handle, swparams);
164
    err = snd_pcm_sw_params(handle, swparams);
165
    if (err < 0)
165
    if (err < 0)
166
    {
166
    {
167
        printf("Unable to set sw params for playback: %s\n", snd_strerror(err));
167
        printf("Unable to set sw params for playback: %s\n", snd_strerror(err));
168
        return err;
168
        return err;
169
    }
169
    }
170
    return 0;
170
    return 0;
171
}
171
}
172
 
172
 
173
////// SIGNAL GENERATION STUFF
173
////// SIGNAL GENERATION STUFF
174
unsigned int linear_windowed_chirp(short *pole)
174
unsigned int linear_windowed_chirp(short *pole)
175
{
175
{
176
    unsigned int maxval = (1 << (snd_pcm_format_width(format) - 1)) - 1;
176
    unsigned int maxval = (1 << (snd_pcm_format_width(format) - 1)) - 1;
177
 
177
 
178
    static const float f0 = 5000;		//starting frequency
178
    static const float f0 = 5000;		//starting frequency
179
    static const float fmax = 10000;		//ending frequency
179
    static const float fmax = 10000;		//ending frequency
180
    static const float Tw = 0.0015;
180
    static const float Tw = 0.0015;
181
    static float k;
181
    static float k;
182
 
182
 
183
    unsigned int n=0;
183
    unsigned int n=0;
184
    double t;
184
    double t;
185
    unsigned int chirp_samples;		// number of samples per period
185
    unsigned int chirp_samples;		// number of samples per period
186
 
186
 
187
    k=2*(fmax-f0)/Tw;
187
    k=2*(fmax-f0)/Tw;
188
    chirp_samples = ceil(rate*Tw);
188
    chirp_samples = ceil(rate*Tw);
189
 
189
 
190
    for (n=0;n<=chirp_samples;n++)
190
    for (n=0;n<=chirp_samples;n++)
191
    {
191
    {
192
        t = (double) n / (double)rate;
192
        t = (double) n / (double)rate;
193
        pole[n] = (short) floor( (0.35875 - 0.48829*cos(2*M_PI*t*1/Tw) + 0.14128*cos(2*M_PI*2*t*1/Tw) - 0.01168*cos(2*M_PI*3*t*1/Tw))*maxval*sin(2*M_PI*(t)*(f0+(k/2)*(t))) );
193
        pole[n] = (short) floor( (0.35875 - 0.48829*cos(2*M_PI*t*1/Tw) + 0.14128*cos(2*M_PI*2*t*1/Tw) - 0.01168*cos(2*M_PI*3*t*1/Tw))*maxval*sin(2*M_PI*(t)*(f0+(k/2)*(t))) );
194
    }
194
    }
195
    return (chirp_samples);
195
    return (chirp_samples);
196
}
196
}
197
 
197
 
198
int main(int argc, char *argv[])
198
int main(int argc, char *argv[])
199
{
199
{
200
    snd_pcm_t *playback_handle, *capture_handle;
200
    snd_pcm_t *playback_handle, *capture_handle;
201
    int err;
201
    int err;
202
    snd_pcm_hw_params_t *hwparams;
202
    snd_pcm_hw_params_t *hwparams;
203
    snd_pcm_sw_params_t *swparams;
203
    snd_pcm_sw_params_t *swparams;
204
 
204
 
205
    long int *correlationl, *correlationr;
205
    long int *correlationl, *correlationr;
206
    float *echo_map;
206
    float *echo_map;
207
    int *L_signal, *R_signal;
207
    int *L_signal, *R_signal;
208
    short *chirp, *signal;
208
    short *chirp, *signal;
209
    float *chirp_spect, *lecho_spect, *recho_spect;
209
    float *chirp_spect, *lecho_spect, *recho_spect;
210
    float x,y;
210
    float a,b;
211
    unsigned int i,j,m,n;
211
    unsigned int i,j,m,n;
212
    unsigned int delayl[10],delayr[10];	//store delay of signifed correlation
212
    unsigned int delayl[10],delayr[10];	//store delay of signifed correlation
213
    long int l,r;  // store correlation at strict time
213
    long int l,r;  // store correlation at strict time
214
    double df;	//frequency resolution 
214
    double df;	//frequency resolution 
-
 
215
    double k; // sample numbers to distance normalising constant
215
    unsigned int frequency_bins; // number of output frequency bins 
216
    unsigned int frequency_bins; // number of output frequency bins 
216
 
217
 
217
    double *inchirp;
218
    double *inchirp;
218
    fftw_complex *outchirp;
219
    fftw_complex *outchirp;
219
    fftw_plan fft_plan_chirp;
220
    fftw_plan fft_plan_chirp;
220
 
221
 
221
    FILE *out;
222
    FILE *out;
222
 
223
 
223
    snd_pcm_hw_params_alloca(&hwparams);
224
    snd_pcm_hw_params_alloca(&hwparams);
224
    snd_pcm_sw_params_alloca(&swparams);
225
    snd_pcm_sw_params_alloca(&swparams);
225
 
226
 
226
    printf("Simple PC sonar $Rev:$ starting work.. \n");
227
    printf("Simple PC sonar $Rev:$ starting work.. \n");
227
 
228
 
228
//open and set playback device
229
//open and set playback device
229
    if ((err = snd_pcm_open(&playback_handle, device, SND_PCM_STREAM_PLAYBACK, 0)) < 0)
230
    if ((err = snd_pcm_open(&playback_handle, device, SND_PCM_STREAM_PLAYBACK, 0)) < 0)
230
    {
231
    {
231
        printf("Playback open error: %s\n", snd_strerror(err));
232
        printf("Playback open error: %s\n", snd_strerror(err));
232
        return 0;
233
        return 0;
233
    }
234
    }
234
 
235
 
235
    if ((err = set_hwparams(playback_handle, hwparams, 1)) < 0)
236
    if ((err = set_hwparams(playback_handle, hwparams, 1)) < 0)
236
    {
237
    {
237
        printf("Setting of hwparams failed: %s\n", snd_strerror(err));
238
        printf("Setting of hwparams failed: %s\n", snd_strerror(err));
238
        exit(EXIT_FAILURE);
239
        exit(EXIT_FAILURE);
239
    }
240
    }
240
    if ((err = set_swparams(playback_handle, swparams)) < 0)
241
    if ((err = set_swparams(playback_handle, swparams)) < 0)
241
    {
242
    {
242
        printf("Setting of swparams failed: %s\n", snd_strerror(err));
243
        printf("Setting of swparams failed: %s\n", snd_strerror(err));
243
        exit(EXIT_FAILURE);
244
        exit(EXIT_FAILURE);
244
    }
245
    }
245
 
246
 
246
//open and set capture device
247
//open and set capture device
247
    if ((err = snd_pcm_open(&capture_handle, device, SND_PCM_STREAM_CAPTURE, 0)) < 0)
248
    if ((err = snd_pcm_open(&capture_handle, device, SND_PCM_STREAM_CAPTURE, 0)) < 0)
248
    {
249
    {
249
        printf("Playback open error: %s\n", snd_strerror(err));
250
        printf("Playback open error: %s\n", snd_strerror(err));
250
        return 0;
251
        return 0;
251
    }
252
    }
252
 
253
 
253
    if ((err = set_hwparams(capture_handle, hwparams, 2)) < 0)
254
    if ((err = set_hwparams(capture_handle, hwparams, 2)) < 0)
254
    {
255
    {
255
        printf("Setting of hwparams failed: %s\n", snd_strerror(err));
256
        printf("Setting of hwparams failed: %s\n", snd_strerror(err));
256
        exit(EXIT_FAILURE);
257
        exit(EXIT_FAILURE);
257
    }
258
    }
258
    if ((err = set_swparams(capture_handle, swparams)) < 0)
259
    if ((err = set_swparams(capture_handle, swparams)) < 0)
259
    {
260
    {
260
        printf("Setting of swparams failed: %s\n", snd_strerror(err));
261
        printf("Setting of swparams failed: %s\n", snd_strerror(err));
261
        exit(EXIT_FAILURE);
262
        exit(EXIT_FAILURE);
262
    }
263
    }
263
 
264
 
264
    /*    err = snd_pcm_link( capture_handle, playback_handle); //link capture and playback together
265
    /*    err = snd_pcm_link( capture_handle, playback_handle); //link capture and playback together
265
        if (err < 0)
266
        if (err < 0)
266
        {
267
        {
267
            printf("Device linking error: %s\n", snd_strerror(err));
268
            printf("Device linking error: %s\n", snd_strerror(err));
268
            exit(EXIT_FAILURE);
269
            exit(EXIT_FAILURE);
269
        }*/
270
        }*/
270
 
271
 
271
    correlationl = malloc(period_size * sizeof(long int)); //array to store correlation curve
272
    correlationl = malloc(period_size * sizeof(long int)); //array to store correlation curve
272
    correlationr = malloc(period_size * sizeof(long int)); //array to store correlation curve
273
    correlationr = malloc(period_size * sizeof(long int)); //array to store correlation curve
273
    L_signal = malloc(period_size * sizeof(int));
274
    L_signal = malloc(period_size * sizeof(int));
274
    R_signal = malloc(period_size * sizeof(int));
275
    R_signal = malloc(period_size * sizeof(int));
275
    chirp = calloc(2*period_size, sizeof(short));
276
    chirp = calloc(2*period_size, sizeof(short));
276
    signal = malloc(2*period_size * sizeof(short));
277
    signal = malloc(2*period_size * sizeof(short));
277
    echo_map = malloc(3*period_size * sizeof(float));   // Array to store two dimensional image of echos
278
    echo_map = malloc(3*period_size*period_size * sizeof(float));   // Array to store two dimensional image of echos
-
 
279
    if (echo_map == NULL) printf("Can't allocate enought memory");
278
 
280
 
-
 
281
    k = SOUND_SPEED/rate;
279
// generate ping pattern
282
// generate ping pattern
280
    chirp_size = linear_windowed_chirp(chirp);
283
    chirp_size = linear_windowed_chirp(chirp);
281
 
284
 
282
    frequency_bins = chirp_size / 2 + 1;
285
    frequency_bins = chirp_size / 2 + 1;
283
    df = (double) rate / (double) chirp_size;
286
    df = (double) rate / (double) chirp_size;
284
    chirp_spect = malloc(frequency_bins * sizeof(float));
287
    chirp_spect = malloc(frequency_bins * sizeof(float));
285
    lecho_spect = malloc(frequency_bins * sizeof(float));
288
    lecho_spect = malloc(frequency_bins * sizeof(float));
286
    recho_spect = malloc(frequency_bins * sizeof(float));
289
    recho_spect = malloc(frequency_bins * sizeof(float));
287
 
290
 
288
    inchirp = fftw_malloc(sizeof(double) * chirp_size); 		// allocate input array for FFT
291
    inchirp = fftw_malloc(sizeof(double) * chirp_size); 		// allocate input array for FFT
289
    outchirp = fftw_malloc(sizeof(fftw_complex) * frequency_bins);
292
    outchirp = fftw_malloc(sizeof(fftw_complex) * frequency_bins);
290
 
293
 
291
    fft_plan_chirp = fftw_plan_dft_r2c_1d(chirp_size, inchirp, outchirp, FFTW_ESTIMATE);
294
    fft_plan_chirp = fftw_plan_dft_r2c_1d(chirp_size, inchirp, outchirp, FFTW_ESTIMATE);
292
 
295
 
293
    printf("compute chirp spectrum\n");
296
    printf("compute chirp spectrum\n");
294
    for(i=0; i < chirp_size; i++) inchirp[i] = chirp[i];
297
    for(i=0; i < chirp_size; i++) inchirp[i] = chirp[i];
295
    fftw_execute(fft_plan_chirp);
298
    fftw_execute(fft_plan_chirp);
296
    for(i=0; i < frequency_bins; i++) chirp_spect[i] = sqrt( outchirp[i][0] * outchirp[i][0] + outchirp[i][1] * outchirp[i][1] );
299
    for(i=0; i < frequency_bins; i++) chirp_spect[i] = sqrt( outchirp[i][0] * outchirp[i][0] + outchirp[i][1] * outchirp[i][1] );
297
 
300
 
298
// write chirp data to souncard buffer
301
// write chirp data to souncard buffer
299
    err = snd_pcm_writei(playback_handle, chirp, period_size);
302
    err = snd_pcm_writei(playback_handle, chirp, period_size);
300
    if (err < 0)
303
    if (err < 0)
301
    {
304
    {
302
        printf("Initial write error: %s\n", snd_strerror(err));
305
        printf("Initial write error: %s\n", snd_strerror(err));
303
        exit(EXIT_FAILURE);
306
        exit(EXIT_FAILURE);
304
    }
307
    }
305
 
308
 
306
//start sream
309
//start sream
307
    err = snd_pcm_start(playback_handle);
310
    err = snd_pcm_start(playback_handle);
308
    if (err < 0)
311
    if (err < 0)
309
    {
312
    {
310
        printf("Start error: %s\n", snd_strerror(err));
313
        printf("Start error: %s\n", snd_strerror(err));
311
        exit(EXIT_FAILURE);
314
        exit(EXIT_FAILURE);
312
    }
315
    }
313
 
316
 
314
    err = snd_pcm_start(capture_handle);
317
    err = snd_pcm_start(capture_handle);
315
    if (err < 0)
318
    if (err < 0)
316
    {
319
    {
317
        printf("Start error: %s\n", snd_strerror(err));
320
        printf("Start error: %s\n", snd_strerror(err));
318
        exit(EXIT_FAILURE);
321
        exit(EXIT_FAILURE);
319
    }
322
    }
320
    else printf("Transmitting all samples of chirp\n");
323
    else printf("Transmitting all samples of chirp\n");
321
//--------------
324
//--------------
322
 
325
 
323
    while ( snd_pcm_avail_update(capture_handle) < period_size)			// wait for one period of data
326
    while ( snd_pcm_avail_update(capture_handle) < period_size)			// wait for one period of data
324
    {
327
    {
325
        usleep(1000);
328
        usleep(1000);
326
        printf(".");
329
        printf(".");
327
    }
330
    }
328
 
331
 
329
    err = snd_pcm_drop(playback_handle);		// stop audio stream
332
    err = snd_pcm_drop(playback_handle);		// stop audio stream
330
    err = snd_pcm_drain(capture_handle);
333
    err = snd_pcm_drain(capture_handle);
331
    if (err < 0)
334
    if (err < 0)
332
    {
335
    {
333
        printf("Stop error: %s\n", snd_strerror(err));
336
        printf("Stop error: %s\n", snd_strerror(err));
334
        exit(EXIT_FAILURE);
337
        exit(EXIT_FAILURE);
335
    }
338
    }
336
 
339
 
337
    err = snd_pcm_readi(capture_handle, signal, period_size);		//read period from audio buffer
340
    err = snd_pcm_readi(capture_handle, signal, period_size);		//read period from audio buffer
338
    if (err < 0)
341
    if (err < 0)
339
    {
342
    {
340
        printf("Read error: %s\n", snd_strerror(err));
343
        printf("Read error: %s\n", snd_strerror(err));
341
        exit(EXIT_FAILURE);
344
        exit(EXIT_FAILURE);
342
    }
345
    }
343
 
346
 
344
    j=0;
347
    j=0;
345
    for (i=0;i < period_size;i++)		// separe inretleaved samples to two arrays
348
    for (i=0;i < period_size;i++)		// separe inretleaved samples to two arrays
346
    {
349
    {
347
        L_signal[i]=signal[j];
350
        L_signal[i]=signal[j];
348
        R_signal[i]=signal[j+1];
351
        R_signal[i]=signal[j+1];
349
        j+=2;
352
        j+=2;
350
    }
353
    }
351
 
354
 
352
    printf("\nData transmitted \ncorrelating\n");
355
    printf("\nData transmitted \ncorrelating\n");
353
    for (n=0; n < (period_size - chirp_size - 1); n++)
356
    for (n=0; n < (period_size - chirp_size - 1); n++)
354
    {
357
    {
355
        l=0;
358
        l=0;
356
        r=0;
359
        r=0;
357
        for ( m = 0; m < chirp_size;m++)
360
        for ( m = 0; m < chirp_size;m++)
358
        {
361
        {
359
            l += chirp[m]*L_signal[m+n];	// correlate with left channel
362
            l += chirp[m]*L_signal[m+n];	// correlate with left channel
360
            r += chirp[m]*R_signal[m+n];	// correlate with right channel
363
            r += chirp[m]*R_signal[m+n];	// correlate with right channel
361
        }
364
        }
362
        correlationl[n]=abs(l);
365
        correlationl[n]=abs(l);
363
        correlationr[n]=abs(r);
366
        correlationr[n]=abs(r);
364
    }
367
    }
365
 
368
 
366
    m=0;
369
    m=0;
367
    printf("Building echo map\n");		// compute map from left and right correlation data
370
    printf("Building echo map\n");		// compute map from left and right correlation data
368
	for (i=0;i < period_size; i++)
371
	for (i=0;i < period_size; i+=10)
369
	{
372
	{
-
 
373
		a=k*i;
370
		for(j=0;j < period_size; j++)
374
		for(j=0;j < period_size; j+=10)
371
		{
375
		{
-
 
376
			b=k*j;
372
			echo_map[m]=(i*i-j*j+APERTURE*APERTURE)/(2*APERTURE);
377
			echo_map[m]=(a*a-b*b+APERTURE*APERTURE)/(2*APERTURE);
373
			echo_map[m+1]=sqrt(-(i-j-APERTURE)*(i+j-APERTURE)*(i-j+APERTURE)*(i+j+APERTURE))/(2*r);
378
			echo_map[m+1]=sqrt((a-b-APERTURE)*(a+b-APERTURE)*(a-b+APERTURE)*(a+b+APERTURE))/(2*r);
374
			echo_map[m+2]=correlationl[i]*correlationr[j];
379
			echo_map[m+2]=correlationl[i]*correlationr[j];
375
			m+=3;
380
			m+=3;
376
		}
381
		}
377
	}
382
	}
378
 
-
 
379
 
-
 
380
    printf("Searching echos\n");
383
    printf("Searching echos\n");
381
    r=0;
384
    r=0;
382
    l=0;
385
    l=0;
383
    for (n=0; n < period_size;n++) 			//najde nejvetsi korelace
386
    for (n=0; n < period_size;n++) 			//najde nejvetsi korelace
384
    {
387
    {
385
        if (l < correlationl[n])
388
        if (l < correlationl[n])
386
        {
389
        {
387
            delayl[1] = n;
390
            delayl[1] = n;
388
            l = correlationl[n];
391
            l = correlationl[n];
389
        }
392
        }
390
        if (r < correlationr[n])
393
        if (r < correlationr[n])
391
        {
394
        {
392
            delayr[1] = n;
395
            delayr[1] = n;
393
            r = correlationr[n];
396
            r = correlationr[n];
394
        }
397
        }
395
    }
398
    }
396
 
399
 
397
//spocitej frekvencni spektrum pro levy kanal
400
//spocitej frekvencni spektrum pro levy kanal
398
    for(i=delayl[1]; i < delayl[1] + chirp_size; i++) inchirp[i-delayl[1]] = L_signal[i];
401
    for(i=delayl[1]; i < delayl[1] + chirp_size; i++) inchirp[i-delayl[1]] = L_signal[i];
399
    fftw_execute(fft_plan_chirp);
402
    fftw_execute(fft_plan_chirp);
400
    for(i=0; i < frequency_bins; i++) lecho_spect[i] = sqrt(outchirp[i][0] * outchirp[i][0] + outchirp[i][1] * outchirp[i][1]);
403
    for(i=0; i < frequency_bins; i++) lecho_spect[i] = sqrt(outchirp[i][0] * outchirp[i][0] + outchirp[i][1] * outchirp[i][1]);
401
 
404
 
402
 
405
 
403
// napln pole daty z praveho kanalu a spocitej frekvencni spektrum
406
// napln pole daty z praveho kanalu a spocitej frekvencni spektrum
404
    for(i=delayr[1]; i < delayr[1] + chirp_size; i++) inchirp[i-delayr[1]] = R_signal[i];
407
    for(i=delayr[1]; i < delayr[1] + chirp_size; i++) inchirp[i-delayr[1]] = R_signal[i];
405
    fftw_execute(fft_plan_chirp);
408
    fftw_execute(fft_plan_chirp);
406
    for(i=0; i < frequency_bins; i++) recho_spect[i] = sqrt(outchirp[i][0] * outchirp[i][0] + outchirp[i][1] * outchirp[i][1]);
409
    for(i=0; i < frequency_bins; i++) recho_spect[i] = sqrt(outchirp[i][0] * outchirp[i][0] + outchirp[i][1] * outchirp[i][1]);
407
 
410
 
408
    printf("Writing output files\n");
411
    printf("Writing output files\n");
409
    out=fopen("/tmp/sonar.txt","w");
412
    out=fopen("/tmp/sonar.txt","w");
410
    for (i=0; i <= (period_size - 1); i++)
413
    for (i=0; i <= (period_size - 1); i++)
411
    {
414
    {
412
        fprintf(out,"%2.3f %6d %6d %9ld %9ld\n",SOUND_SPEED * (float) i / rate,L_signal[i],R_signal[i],correlationl[i], correlationr[i]);
415
        fprintf(out,"%2.3f %6d %6d %9ld %9ld\n", (float)i*k, L_signal[i], R_signal[i], correlationl[i], correlationr[i]);
413
    }
416
    }
414
    fclose(out);
417
    fclose(out);
415
 
418
 
416
    j=0;
419
    j=0;
417
    out=fopen("/tmp/plane_cut.txt","w"); // writes plane cut - e.g. density map to file
420
    out=fopen("/tmp/plane_cut.txt","w"); // writes plane cut - e.g. density map to file
418
    for (i=0;i < period_size; i++)
421
    for (i=0;i < period_size*period_size; i++)
419
    {
422
    {
420
	fprintf(out,"%3.2f %3.2f %3.2f\n", echo_map[j], echo_map[j+1], echo_map[j+2]);
423
	fprintf(out,"%3.3f %3.3f %3.3f\n", echo_map[j], echo_map[j+1], echo_map[j+2]);
421
	j+=3;
424
	j+=3;
422
    }
425
    }
-
 
426
    fclose(out);
423
 
427
 
424
    out=fopen("/tmp/chirp.txt","w");
428
    out=fopen("/tmp/chirp.txt","w");
425
    for (i=0; i <= (chirp_size - 1); i++)
429
    for (i=0; i <= (chirp_size - 1); i++)
426
    {
430
    {
427
        fprintf(out,"%6d %6d\n", i, chirp[i]);
431
        fprintf(out,"%6d %6d\n", i, chirp[i]);
428
    }
432
    }
429
    fclose(out);
433
    fclose(out);
430
 
434
 
431
    out=fopen("/tmp/echo.txt","w");
435
    out=fopen("/tmp/echo.txt","w");
432
    for(i=0; i < chirp_size; i++) fprintf(out,"%6d %6d %6d\n", i, L_signal[i + delayl[1]], R_signal[i + delayr[1]]);
436
    for(i=0; i < chirp_size; i++) fprintf(out,"%6d %6d %6d\n", i, L_signal[i + delayl[1]], R_signal[i + delayr[1]]);
433
    fclose(out);
437
    fclose(out);
434
 
438
 
435
    out=fopen("/tmp/spektra.txt","w");
439
    out=fopen("/tmp/spektra.txt","w");
436
    for (i=0; i < frequency_bins; i++)
440
    for (i=0; i < frequency_bins; i++)
437
    {
441
    {
438
        fprintf(out,"%4.3f %4.3f %4.3f %4.3f\n", (i+0.5) * df, chirp_spect[i], lecho_spect[i], recho_spect[i]);
442
        fprintf(out,"%4.3f %4.3f %4.3f %4.3f\n", (i+0.5) * df, chirp_spect[i], lecho_spect[i], recho_spect[i]);
439
    }
443
    }
440
    fclose(out);
444
    fclose(out);
441
 
445
 
442
    free(correlationl);
446
    free(correlationl);
443
    free(correlationr);
447
    free(correlationr);
444
    free(L_signal);
448
    free(L_signal);
445
    free(R_signal);
449
    free(R_signal);
446
    free(chirp);
450
    free(chirp);
447
    free(signal);
451
    free(signal);
448
    free(echo_map);
452
    free(echo_map);
449
 
453
 
450
    snd_pcm_close(playback_handle);
454
    snd_pcm_close(playback_handle);
451
    snd_pcm_close(capture_handle);
455
    snd_pcm_close(capture_handle);
452
    return 0;
456
    return 0;
453
}
457
}
454
 
458