Line 1... |
Line 1... |
1 |
\chap Introduction
|
1 |
\chap Introduction
|
2 |
|
2 |
|
3 |
\sec Current radioastronomy problems
|
3 |
\sec Current radioastronomy problems
|
4 |
|
4 |
|
5 |
From radioastronomer point of wiev its important radioastronomy has interest in primarily natural signals from surrounding universe. Radio astronomy do not have interest in terrestrial civilisation made signals.
|
5 |
From radioastronomer point of view its important radioastronomy has interest in primarily natural signals from surrounding universe. Radio astronomy do not have interest in terrestrial civilisation made signals.
|
6 |
|
6 |
|
- |
|
7 |
Radioastronomy has a big problem at now. It is because many terrestrial transmitters are active at this moment. All terrestrial transceivers made dense signal mixture which can cause troubles not only to radioastronomers.
|
- |
|
8 |
In consequence, there exists attempts to control radiofrequency spectrum. As result of attempts to control the radiofrequency spectrum, the frequency allocation table was created. \fnote{\url{http://www.ukaranet.org.uk/basics/frequency_allocation.htm}} Radio-frequency allocation table table contain special bands allocated to radioastronomy use. But for many reasons this bands are not clean enough for directly use in radioastronomy observations. As result we cannot work by same way as radioastronomers in the beginning of radioastronomy. Many experiments namely, Cosmic microwave background detection and pulsar detection cannot be realised in its original form with acceptable results.
|
7 |
|
9 |
|
- |
|
10 |
Supporting evidence of such effect is RadioJOVE project. NASA engineers which come with RadioJOVE project has great idea.
|
- |
|
11 |
RadioJOVE project brings opportunity for creating publicly available cheap radioastronomy receiver. But they used an old fashioned construction model which can work in desert, but it simply cannot work in modern civilisation as it is know in Europe.
|
8 |
To je často velký problém, neboť na Zemi touto dobou existuje velké množství vysílačů, které pokrývají prakticky celé dostupné elektromagnetické spektrum a vytvářejí tak nepřebernou směs signálů, která se nejenom pro radioastronoma může stát nepřekonatelným problémem. Z tohoto důvodu byla již od počátků rádiového vysílání snaha udržet nad obsazením spektra určitou kontrolu a jedním z důsledků této snahy je například <a href="http://www.ukaranet.org.uk/basics/frequency_allocation.htm">tabulka přidělených kmitočtů pro radioastronomii</a>. Bohužel z mnoha důvodů nelze říci, že by tyto kmitočty byly dostatečně kvalitně čisté pro sériózní pozorování. Z toho vyplývá důležité zjištění, že v současné době nelze postupovat stejně jako v počátcích radioastronomie. A tedy i experimenty, vedoucí například k objevu reliktního záření nebo pulzarů, nelze v původní podobě zopakovat s uspokojivým výsledkem.
|
12 |
Origin of its dysfunction is presence of strong radiofrequency interferences. This interferences are orders of magnitude stronger than Jupiter decametric emissions.
|
- |
|
13 |
From practice about light pollution mitigation we also know that there are not much chance to improve this situation radically in radiofrequency spectrum.
|
9 |
|
14 |
|
10 |
This is big problem because at this moment many terrestrial transmitters are active and all this transceivers made dense signal mixture which can cause troubles not only to radioastronomers.
|
- |
|
11 |
In consequence of this, there exists attempts to control radiofrequency spectrum. As result of this controling the radiofrequency allocation table was created \url{http://www.ukaranet.org.uk/basics/frequency_allocation.htm} This table consist special bands allocated to radioastronomy use. But from many ... this bands are not clean enough for directly use in radioastronomy observations. As resul of this we cannot work by same way as radioastronomers in beginnig of radioastronomy. Many experiments namely, reliktive radiation detection and pulsar detection cant be realised in original form with satisfactive results.
|
- |
|
12 |
|
- |
|
13 |
Důkazem může být například projekt RadioJOVE, který přes svojí správnou ideu v dnešním civilizovaném světě jednoduše nefunguje. Důvodem jeho nefunkčnosti je právě přítomnost elektromagnetického smogu, který je řádově silnější, než Jupiter. A z praxe například i okolo světelného znečištění nelze očekávat nějakou radikální změnu k lepšímu.
|
- |
|
14 |
|
- |
|
15 |
This RadioJOVE project has good idea in creating publicly available cheap radioastronomy receiver. But in old fashioned construction which can work in centers of desert. But it simply cant work in modern civilisation as it is know in Europe. Origin of its disfuncion is presence of strong radiofrequency interferences. This interferences are orders of magnitude stronger than Jupeter decametric emmisions.
|
- |
|
16 |
From praqtice about light pollution we also know that there aro not much chance to improve this situation radicaly.
|
- |
|
17 |
|
- |
|
18 |
Nezbývá proto než hledat metody, jak se při radioastronomickém pozorování obejít bez úplně čistých pásem a prohlédnout skrze směs terestrického elektromagnetického rušení. Jednou z možností je využít zatím známých vlastností přírodních signálů, a to jejich relativně velké spektrální širokopásmovosti a zároveň velmi velkého plošného pokrytí vzhledem k pozemským vysílačům, protože pro přírodní objekty není problém vyzařovat v šířce pásma desítek MHz a přitom pokrýt plochu poloviny zeměkoule. Je ale ovšem jasné, že tyto parametry jsou na úkor dopadajícího výkonu a ten je tedy řádově miliardkrát menší, než výkon přijímaný z rozhlasového vysílače.
|
- |
|
19 |
|
- |
|
20 |
|
- |
|
21 |
There are not other ways that searching for new methods in radioastronomy obserevations. New methods which allows us to work without completely clear radiofrequency bands asd alow us to see surroundind universe trough man made radiofrequency interference micture. One of sollutions is use of already known natural signals parameters. Natural signals usualy have different signal properties from local interference. Natural object do not have a problem with tansmission bandwith of tens megaherts in sub 100 MHz bands. This object also transmit the same signal for almost half of Earth without any difficulties. But it is also clear that signal parameters have drawbacks in reception power. The reception power of radioastronomy object is 1e9 smaller than signal power received from typical broadband radio transmitter.
|
15 |
There are not other ways that searching for new methods for radioastronomy observations. New methods which allows us to work without completely clear radiofrequency bands and which allow us to see surrounding universe trough man made radiofrequency interference mixture. One solution is use of already known natural radio frequency signals parameters. Natural signals usually have different signal properties from local interference. Natural object do not have a problem with transmitting in bandwidth of tens megahertz in sub 100 MHz bands. This object are usually far away and the same signal could be received at almost half of Earth without any significant differences. But it is also clear that signal parameters have drawbacks in reception power. The reception power of radioastronomy object is 1e9 smaller than signal power received from typical broadband radio transmitter.
|
22 |
|
- |
|
23 |
|
- |
|
24 |
Z těchto faktů je jasné, že nynější požadavky na radioastronomický přijímač jsou odlišné od těch v minulosti. Zejména jde o šířku přijímaného pásma. Tento parametr dříve dosahoval řádově jednotek až desítek kHz, což stačilo, neboť velká část pozorování se zpracovávala buď poslechem, a nebo pomocí zapisovače, který integroval signál přes definovanou oblast, a tím bylo možné zaznamenávat intenzitu a změny v přírodním kontinuu. Tou dobou ale neexistovaly žádné pozemské širokopásmové vysílače, snad kromě televizních, takže nebyl problém přijímač odladit do čisté oblasti. Dříve také nebylo nutné pozorovat paralelně z více míst planety, protože podmínky byly všude téměř totožné.
|
- |
|
25 |
|
- |
|
26 |
From this fact is clear one relust. Modern requirements on
|
- |
|
27 |
|
- |
|
28 |
|
16 |
|
- |
|
17 |
From above mentioned facts about natural radio signals is clear one result. Modern requirements on radioastronomy receiver are complete different from requirements in history. Radioastronomy is not limited by access to electronic components today, but it is limited by presence of electronic everywhere.
|
29 |
|
18 |
|
30 |
\sec Modern Radio astronomy receiver
|
19 |
\sec Modern Radio astronomy receiver
|
31 |
|
20 |
|
- |
|
21 |
In beginning of radioastronomy receivers were constructed as simple station with single antenna or multi antenna array with fixed phasing. This approach were used due to limits of previous electronics components and technology. Main challenges were noise number and sensitivity due to poor characteristic of active electronic components such transistors and vacuum tubes.
|
32 |
|
22 |
|
33 |
In beginning of radioastronomy receivers were constructed as simple station with single antenna or multi antenna array with fixed phasing. This approach were used due to limits of previous electronics. Main challenges were noise number and sensitivity due to poor characteristic of active electronic components such transistors and vacuum tubes.
|
23 |
Most of today operational radioastronomy equipments were constructed in this manner. They were constructed usually shortly after WWII or during The Cold War as parts of military technology.
|
34 |
|
- |
|
35 |
|
24 |
|
36 |
Řešením je pravděpodobně použít přijímač, který bude mít velkou šířku pásma, nejlépe řádu MHz, a vysokou vstupní odolnost. A pokud možno půjde sfázovat s nějakým dalším na jiném místě planety. Existuje několik zařízení, které tyto požadavky splňují. V naprosté většině jde o takzvané <a href="link wikipedie">SDR</a> přijímače, jako například USRP, USRP2, SDR-IQ a SSRP. Tato zařízení ale mají většinou zásadní nevýhodu, že jejich pořizovací cena je více jak 1000 USD a jsou velmi univerzální. Takže se moc nehodí na nějaké kontinuální pozorování, kde nebudou využity všechny jejich draze zaplacené vlastnosti. Poslední z uvedených <a href="link wikipedie">SSRP</a> je ale jednoduchá konstrukce 16bit AD převodníku připojeného k USB řadiči, který hrne všechna navzorkovaná data do PC. Je to velmi zajímavé zařízení s řádově nižší pořizovací cenou. Avšak v této podobě je omezené datovým tokem USB, které omezuje vzorkovací frekvenci na zhruba 30MSPS. Z čehož vyplývá, že v prvním Nyquistově pásmu není možné zpracovávat signály o frekvenci vyšší něž 15MHz. To je pro radioastronomické účely poměrně nízko. Řešením by byl přechod do vyšších Nyquistových zón, kde ale začne vznikat problém s vhodnou konstrukcí antialiasign filtru a omezením sample-hold obvodu na vstupu ADC.
|
25 |
But today we have access to components with quality, repeatability and price is completely district from components accessible for previous generation of radioastronomers. Then we could develop better radioastronomy equipment which will be powerful enough for make new astronomy discovery.\fnote{Most of astronomy related discoveries in last fifty years came from radioastronomy.}
|
37 |
|
26 |
|
- |
|
27 |
We could develop a receiver which will have wide bandwidth, high Third-order intercept point and ideally has an option for phase and frequency locking to other receiver on another radioastronomy site of planet. Several receivers which have such parameters currently exists USRP2, USRP B210 or HackRF and are commercially available. But all of them lacks scalability and have high prices. However scalability and redundancy is main requirement which is requested by noise reduction algorithms.
|
38 |
|
28 |
|
39 |
|
- |
|
40 |
|
- |
|
41 |
Many of today radioastronomy equipments were constructed in this manner. They were constructed usually shortly after WWII or during The Cold War as parts of military technology. These systems are slowly modernised and complete new systems are constructed. ALMA, SKA..
|
- |
|
42 |
|
- |
|
43 |
|
- |
|
44 |
This new radio astronomy receivers have completely different approach to solve the problem of radioastronomy signal reception. They almost exclusive uses multi antenna arrays and mathematical algorithms for signal handling. Radio signal recorded by this metod can be used by many ways. Radio image can be computed (if sufficient cover of u/v plane is achieved), radiation intenzity can be measured, spectrum can be analysed for velocity measurement. etc.
|
29 |
New radio astronomy systems such LOFAR are explicit examples of scalability and redundancy approach. LOFAR has completely different and new structure to solve problems of radioastronomy signal reception. LOFAR exclusively uses multi antenna arrays and mathematical algorithms for signal handling. Radio signals recorded by LOFAR can be used by many ways. Radio image can be computed (if sufficient cover of u/v plane is achieved), radiation intensity can be measured, spectrum can be analysed for velocity measurement. etc.
|
45 |
|
30 |
|
46 |
\secc Observation types
|
31 |
\secc Observation types
|
47 |
|
32 |
|
48 |
Today radioastronomy knows several observation types.
|
33 |
Today radioastronomy knows several observation types.
|
49 |
|
34 |
|
Line 51... |
Line 36... |
51 |
* Spectral observations
|
36 |
* Spectral observations
|
52 |
* Intensity observations
|
37 |
* Intensity observations
|
53 |
* Velocity observations
|
38 |
* Velocity observations
|
54 |
\enditems
|
39 |
\enditems
|
55 |
|
40 |
|
56 |
All of these observations ideally needs high frequency resolution and stability. Wide observation bandwidth in hundreds of MHz is usually desirable for easier discrimination of source types.
|
41 |
All of these observations ideally needs high frequency resolution and stability. Wide observation bandwidth in hundreds of MHz is usually desirable for easier differentiation of source types.
|
57 |
|
42 |
|
58 |
\sec Required receiver parameters
|
43 |
\sec Required receiver parameters
|
59 |
|
44 |
|
60 |
This new approach of receiver construction has different requirement on receiver parameters. No signal to noise ratio on single antenna is improved. But other parameters are requested at now.
|
45 |
New approach of receiver construction described above has new requirements on receiver parameters. No additional attempts for signal to noise ratio on single antenna are performed. But other parameters are requested at now.
|
61 |
|
46 |
|
62 |
\secc Sensitivity and noise number
|
47 |
\secc Sensitivity and noise number
|
63 |
|
48 |
|
64 |
These parameters are are tied together, but multi antenna and multi receiver arrays requires to keep price of receiver at minimal values. This implicates that sensitivity and noise number must be least as good to detect (signal /noise > 1 ) observed object on majority of receivers connected to observation network.
|
49 |
These parameters are are tied together, but multi antenna and multi receiver arrays requires to keep price of receiver at minimal values. This implicates that sensitivity and noise number must be least as good to detect (signal /noise > 1 ) observed object on majority of receivers connected to observation network.
|
65 |
|
50 |
|
66 |
\secc Dynamic range
|
51 |
\secc Dynamic range
|
67 |
|
52 |
|
68 |
Dynamic range is huge problem of current radioastronomy receivers. This parameter is enforced by anywhere present humans made EMI radiation on RF frequencies. The modern radio astronomy receiver must not be saturated by this high levels of signals.
|
53 |
Dynamic range is huge problem of current radioastronomy receivers. This parameter is enforced by anywhere present humans made EMI radiation on RF frequencies. The modern radio astronomy receiver must not be saturated by this high levels of signals but still needs to have enough sensitivity to see faint signals from natural sources. Dynamic range should be limited by construction of analogue circuitry in receiver or by digitalisation unit.
|
- |
|
54 |
Maximal theoretical dynamic range of ADC could be estimated from ADC bit depth according to formula \ref[dynamic-range]
|
- |
|
55 |
|
- |
|
56 |
%\clabel[dynamic-range]
|
- |
|
57 |
$$
|
- |
|
58 |
D.R. (dB) = 20 * log(2^n)
|
- |
|
59 |
$$
|
- |
|
60 |
|
- |
|
61 |
Formula \ref[dynamic-range] gives values shown in table \ref[ADC-dynamic-range].
|
- |
|
62 |
|
- |
|
63 |
\midinsert \clabel[ADC-dynamic-range]{Dynamic range versus bit depth}
|
- |
|
64 |
\ctable{cc}{
|
- |
|
65 |
\hfil ADC Bits & Dynamic range [dB] \cr
|
- |
|
66 |
8 & 48 \cr
|
- |
|
67 |
10 & 60 \cr
|
- |
|
68 |
12 & 72 \cr
|
- |
|
69 |
14 & 84 \cr
|
- |
|
70 |
16 & 96 \cr
|
- |
|
71 |
24 & 144 \cr
|
- |
|
72 |
}
|
- |
|
73 |
\caption/t Standard bit depths of ADC and its theoretical dynamic range.
|
- |
|
74 |
\endinsert
|
- |
|
75 |
|
- |
|
76 |
% dopsat cast o minimalnim dynamickem rozsahu ADC.
|
69 |
|
77 |
|
70 |
\secc Bandwidth
|
78 |
\secc Bandwidth
|
71 |
|
79 |
|
72 |
From requirements mentioned above
|
80 |
Historically bandwidth parameter of radioastronomy receiver was in kilohertz range. Small bandwidth was acceptable because observations were processed directly by listening or by paper chart intensity recorder. Chart recorder integrate energy of signal over defined small bandwidth which was suitable for detection of intensity variance in microwave background. No wideband transmitters exist in this era (except of TV transmitters) and eventually tuning to other neighbour silent frequency was easy. Parallel observations from several places was unnecessary because conditions were nearly same at all locations.
|
- |
|
81 |
|
- |
|
82 |
% dopsat
|
- |
|
83 |
|
73 |
|
84 |
|
74 |
The system requires proper handling of huge amount of data.
|
85 |
The system requires proper handling of huge amount of data.
|
75 |
|
86 |
|
76 |
Professional radioostoronomers uses uses proprietary digitalisation units \url{http://arxiv.org/abs/1305.3550} or by multichannel sound cadrd on amateur levels \url{http://fringes.org/}
|
87 |
Professional astronomers uses uses proprietary digitalisation units \url{http://arxiv.org/abs/1305.3550} or by multichannel sound cadrd on amateur levels \url{http://fringes.org/}
|
77 |
|
88 |
|
78 |
|
89 |
|
79 |
|
90 |
|
80 |
|
91 |
|