Subversion Repositories svnkaklik

Rev

Rev 1024 | Rev 1026 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log

Rev 1024 Rev 1025
Line 222... Line 222...
222
 
222
 
223
\subsection{Měření doby šíření (ToF) }
223
\subsection{Měření doby šíření (ToF) }
224
 
224
 
225
\begin{figure}[htbp]
225
\begin{figure}[htbp]
226
\includegraphics[width=150mm]{./img/LRF_block.png}
226
\includegraphics[width=150mm]{./img/LRF_block.png}
227
\caption{Zjednodušené blokové schéma ToF LRF}
227
\caption{Zjednodušené blokové schéma ToF LRF \cite{resonance_LRF}}
228
\label{LRF_block}
228
\label{LRF_block}
229
\end{figure} 
229
\end{figure} 
230
 
230
 
231
 
231
 
232
Další metodou, kterou můžeme využít pro měření vzdálenosti na základě známé a konečné rychlosti šíření světla, je změření doby šíření určitého balíku fotonů, který je vygenerován vysílačem a následně po odrazu od měřeného objektu detekován v detektoru. Naměřená doba šíření pak odpovídá dvojnásobku vzdálenosti mezi vysílačem a měřeným předmětem 
232
Další metodou, kterou můžeme využít pro měření vzdálenosti na základě známé a konečné rychlosti šíření světla, je změření doby šíření určitého balíku fotonů, který je vygenerován vysílačem a následně po odrazu od měřeného objektu detekován v detektoru. Naměřená doba šíření pak odpovídá dvojnásobku vzdálenosti mezi vysílačem a měřeným předmětem 
Line 290... Line 290...
290
\subsection{Vlnová délka záření}
290
\subsection{Vlnová délka záření}
291
 
291
 
292
Vhodná vlnová délka výstupního záření laserového vysílače záleží na mnoha faktorech, jako je například absorpce v médiu vyplňujícím prostor mezi vysílačem a detekovaným předmětem, nebo i spektrální odrazivost měřeného objektu. Pro uvažovanou modelovou aplikaci měření výšky a mohutnosti oblačnosti jsou vhodné krátké vlnové délky z optického oboru elektromagnetického záření. Je to dáno vlastnostmi atmosféry, která dobře propouští vlnové délky z oblasti viditelného spektra. Viz. obr. \ref{atmosfera_ztraty}.
292
Vhodná vlnová délka výstupního záření laserového vysílače záleží na mnoha faktorech, jako je například absorpce v médiu vyplňujícím prostor mezi vysílačem a detekovaným předmětem, nebo i spektrální odrazivost měřeného objektu. Pro uvažovanou modelovou aplikaci měření výšky a mohutnosti oblačnosti jsou vhodné krátké vlnové délky z optického oboru elektromagnetického záření. Je to dáno vlastnostmi atmosféry, která dobře propouští vlnové délky z oblasti viditelného spektra. Viz. obr. \ref{atmosfera_ztraty}.
293
\begin{figure}[htbp]
293
\begin{figure}[htbp]
294
\includegraphics[width=150mm]{./img/atmospheric_absorption.png}
294
\includegraphics[width=150mm]{./img/atmospheric_absorption.png}
295
\caption{Závislost transmisivity čisté atmosféry na vlnové délce záření}
295
\caption{Závislost transmisivity čisté atmosféry na vlnové délce záření \cite{wiki:atm_window}}
296
\label{atmosfera_ztraty}
296
\label{atmosfera_ztraty}
297
\end{figure} 
297
\end{figure} 
298
 
298
 
299
Vzhledem k tomu, že na krátkých vlnových délkách směrem k \acrshort{UV} oblasti strmě stoupá vliv nežádoucího Rayleighova rozptylu (rovnice \ref{Raylengh}), který omezuje použitelný dosah měření, je vhodné použít střední vlnovou délku optického záření ze zelené oblasti spektra. Která relativně dobře prochází čistou atmosférou.
299
Vzhledem k tomu, že na krátkých vlnových délkách směrem k \acrshort{UV} oblasti strmě stoupá vliv nežádoucího Rayleighova rozptylu (rovnice \ref{Raylengh}), který omezuje použitelný dosah měření, je vhodné použít střední vlnovou délku optického záření ze zelené oblasti spektra. Která relativně dobře prochází čistou atmosférou.
300
 
300
 
Line 456... Line 456...
456
\subsection{Spínání impulzu ziskem}
456
\subsection{Spínání impulzu ziskem}
457
 
457
 
458
Gain switching, neboli spínání ziskem je principiálně přesným opakem regulace laseru s aktivním potlačením relaxačních oscilací, neboť relaxační oscilace lze využít i ke generaci krátkých impulzů s vyšším výkonem, než by bylo možné ve volně běžícím režimu. 
458
Gain switching, neboli spínání ziskem je principiálně přesným opakem regulace laseru s aktivním potlačením relaxačních oscilací, neboť relaxační oscilace lze využít i ke generaci krátkých impulzů s vyšším výkonem, než by bylo možné ve volně běžícím režimu. 
459
V případě, že je laser čerpán z jiného pulzního laseru, je možné v aktivním prostředí vytvořit nadkritickou inverzi populace podstatně dříve, než dojde k  naplnění rezonátoru generovanými fotony. Pokud navíc čerpací zdroj umožňuje rychlou modulaci a čerpání je deaktivováno v době generace výstupního záření, dojde k propadu inverze populace hladin hluboko pod kritickou úroveň a další impulz už generován není. 
459
V případě, že je laser čerpán z jiného pulzního laseru, je možné v aktivním prostředí vytvořit nadkritickou inverzi populace podstatně dříve, než dojde k  naplnění rezonátoru generovanými fotony. Pokud navíc čerpací zdroj umožňuje rychlou modulaci a čerpání je deaktivováno v době generace výstupního záření, dojde k propadu inverze populace hladin hluboko pod kritickou úroveň a další impulz už generován není. 
460
 
460
 
461
Prakticky bývá tato metoda implementována tak, že v případě diodově čerpaného pevnolátkového laseru je pracovní bod laserové diody nastaven těsně pod prahovou úroveň generace pevnolátkového laseru a několik mikrosekund před požadovaným vygenerováním impulzu je intenzita čerpání skokově zvýšena a v okamžiku vzniku výstupního impulzu je čerpání vypnuto. Tím dojde k vygenerování jednoho relaxačního kmitu laseru, který je navíc kratší, než relaxační impulz ve volně běžícím režimu. 
461
Prakticky bývá tato metoda implementována tak, že v případě diodově čerpaného pevnolátkového laseru je pracovní bod laserové diody nastaven těsně pod prahovou úroveň generace pevnolátkového laseru a několik mikrosekund před požadovaným vygenerováním impulzu je intenzita čerpání skokově zvýšena a v okamžiku vzniku výstupního impulzu je čerpání vypnuto. Tím dojde k vygenerování jednoho relaxačního kmitu laseru, který je navíc kratší, než relaxační impulz ve volně běžícím režimu\cite{LD_gain_switching}. 
462
 
462
 
463
Rozdíl oproti Q spínání je především v tom, že v tomto případě je před vygenerováním impulzu v inverzi populace hladin skladováno pouze minimum energie a nedochází proto k tak silnému nárůstu výstupního výkonu oproti výkonu čerpání. V případě gain switchingu je délka a výkon výstupního impulzu srovnatelná s čerpacím impulzem.
463
Rozdíl oproti Q spínání je především v tom, že v tomto případě je před vygenerováním impulzu v inverzi populace hladin skladováno pouze minimum energie a nedochází proto k tak silnému nárůstu výstupního výkonu oproti výkonu čerpání. V případě gain switchingu je délka a výkon výstupního impulzu srovnatelná s čerpacím impulzem.
464
 
464
 
465
\subsection{Generace druhé harmonické}
465
\subsection{Generace druhé harmonické}
466
 
466
 
Line 628... Line 628...
628
Z těchto parametrů lze tak podle výrazu \ref{difrakcni_limit} určit difrakčně limitovanou minimální divergenci svazku 0,27mrad.   
628
Z těchto parametrů lze tak podle výrazu \ref{difrakcni_limit} určit difrakčně limitovanou minimální divergenci svazku 0,27mrad.   
629
 
629
 
630
\begin{figure}[htbp]
630
\begin{figure}[htbp]
631
\includegraphics[height=80mm]{./img/DPSSFD_5mW.jpg}
631
\includegraphics[height=80mm]{./img/DPSSFD_5mW.jpg}
632
\includegraphics[height=80mm]{./img/DPSSFD_20mW.jpg}
632
\includegraphics[height=80mm]{./img/DPSSFD_20mW.jpg}
633
\caption{Použité testovací DPSSFD moduly 5mW (vlavo) a 20mW (vpravo).}
633
\caption{Použité testovací DPSSFD moduly 5mW (vlevo)\cite{ukazovatko_5mW} a 20mW (vpravo) \cite{ukazovatko_20mW}.}
634
\label{laser_module_picture}
634
\label{laser_module_picture}
635
\end{figure} 
635
\end{figure} 
636
 
636
 
637
 
637
 
638
 
638
 
Line 792... Line 792...
792
 
792
 
793
\item[iC-HG] je šestikanálový budič laserovvých diod, umožňující modulaci celkovým proudem až 3A (po paralelním spojení všech kanálů). Modulační frekvence je až 200MHz. Má LVDS i TTL spouštěcí vstupy a možnost provozu na napětí až do 12V pro buzení modrých laserových diod. 
793
\item[iC-HG] je šestikanálový budič laserovvých diod, umožňující modulaci celkovým proudem až 3A (po paralelním spojení všech kanálů). Modulační frekvence je až 200MHz. Má LVDS i TTL spouštěcí vstupy a možnost provozu na napětí až do 12V pro buzení modrých laserových diod. 
794
 
794
 
795
\item[iC-HK] dvojitý spínač laserových diod, s řídícími proudy 150mA kontinuálně pro každý kanál a 700mA špičkový obvod se chová jako napětově řízený zdroj proudu. Umožňuje spínání o šířce pásma 155MHz. 
795
\item[iC-HK] dvojitý spínač laserových diod, s řídícími proudy 150mA kontinuálně pro každý kanál a 700mA špičkový obvod se chová jako napětově řízený zdroj proudu. Umožňuje spínání o šířce pásma 155MHz. 
796
 
796
 
797
\item[iC-NZ] je univerzální budič pro spínání laserových diod o šířce pásma 155MHz obsahuje zpětnou vazbu z monitorovací diody. A navíc má i vstup pro externí kontrolní monitorovací diodu sloužící k zajištění detekce poškození laseru, nebo naopak k jeho ochraně před přetížením. Pracovní bod laserové diody se nastavuje na základě předefinovaného proudu monitorovací diodou. Obsahuje tři nezávisle spínatelné kanály každý s kontinuálním proudem 100mA a 700mA špičkový proud.
797
\item[iC-NZ] je univerzální budič pro spínání laserových diod o šířce pásma 155MHz obsahuje zpětnou vazbu z monitorovací diody. A navíc má i vstup pro externí kontrolní monitorovací diodu sloužící k zajištění detekce poškození laseru, nebo naopak k jeho ochraně před přetížením. Pracovní bod laserové diody se nastavuje na základě předefinovaného proudu monitorovací diodou. Obsahuje tři nezávisle spínatelné kanály každý s kontinuálním proudem 100mA a 700mA špičkový proud \cite{ic_NZ}.
798
\end{description}    
798
\end{description}    
799
 
799
 
800
Z těchto integrovaných obvodů jsem jako nejvhodnější vybral obvod iC-NZ díky svým vyhovujícím výkonovým parametrům a bezpečnostním funkcím. Nevýhodou volby tohoto obvodu může ale v budoucnu být absence symetrických LVDS vstupů pro rychlé spínání a předpoklad použití monitorovací diody v laseru.
800
Z těchto integrovaných obvodů jsem jako nejvhodnější vybral obvod iC-NZ díky svým vyhovujícím výkonovým parametrům a bezpečnostním funkcím. Nevýhodou volby tohoto obvodu může ale v budoucnu být absence symetrických LVDS vstupů pro rychlé spínání a předpoklad použití monitorovací diody v laseru.
801
 
801
 
802
Na základě údajů z katalogového výrobce jsem navrhl univerzální modul pro testování modulů v laserovém dálkoměru. Zapojení je zvoleno tak, aby umožnilo konstrukci všech typů laserových měřičů vzdálenosti, jejichž principy byly zmíněny v úvodní kapitole. Tento modul je navíc technicky kompatibilní s otevřenou stavebnicí MLAB, díky čemuž je možné jeho využití i k jiným účelům než pouze laserový dálkoměr. Modul je navíc koncipován tak, aby bylo možné jej v budoucnu využít k přímému spínání laserových diod generujících i jiné vhodné vlnové délky.    Například pro více-frekvenční LIDAR, jehož možnosti měření jsou ještě rozsáhlejší.  
802
Na základě údajů z katalogového výrobce jsem navrhl univerzální modul pro testování modulů v laserovém dálkoměru. Zapojení je zvoleno tak, aby umožnilo konstrukci všech typů laserových měřičů vzdálenosti, jejichž principy byly zmíněny v úvodní kapitole. Tento modul je navíc technicky kompatibilní s otevřenou stavebnicí MLAB, díky čemuž je možné jeho využití i k jiným účelům než pouze laserový dálkoměr. Modul je navíc koncipován tak, aby bylo možné jej v budoucnu využít k přímému spínání laserových diod generujících i jiné vhodné vlnové délky.    Například pro více-frekvenční LIDAR, jehož možnosti měření jsou ještě rozsáhlejší.  
Line 816... Line 816...
816
Modul má s ohledem na možný další vývoj  laserových diod možnost zapojit diody s různými typy konfigurace vývodů z pouzdra. Nejběžnější   konfigurace vývodů laserové a monitorovací diody jsou znázorněny na obrázku (\ref{LD_diody}).
816
Modul má s ohledem na možný další vývoj  laserových diod možnost zapojit diody s různými typy konfigurace vývodů z pouzdra. Nejběžnější   konfigurace vývodů laserové a monitorovací diody jsou znázorněny na obrázku (\ref{LD_diody}).
817
 
817
 
818
\begin{figure}[htbp]
818
\begin{figure}[htbp]
819
\begin{center}
819
\begin{center}
820
\includegraphics[width=80mm]{./img/typy_zapouzdreni.png}
820
\includegraphics[width=80mm]{./img/typy_zapouzdreni.png}
821
\caption{Běžné typy konfigurace vnitřního zapojení polovodičových laserů}
821
\caption{Běžné konfigurace vnitřního zapojení polovodičových laserů \cite{ic_NZ}}
822
\label{LD_diody}
822
\label{LD_diody}
823
\end{center}
823
\end{center}
824
\end{figure}
824
\end{figure}
825
 
825
 
826
\section{Diskuse dosažených výsledků}
826
\section{Diskuse dosažených výsledků}