Subversion Repositories svnkaklik

Rev

Rev 1020 | Rev 1022 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log

Rev 1020 Rev 1021
Line 146... Line 146...
146
\newpage
146
\newpage
147
 
147
 
148
\pagebreak
148
\pagebreak
149
\listoffigures
149
\listoffigures
150
\pagebreak
150
\pagebreak
151
\listoftables
-
 
152
\pagebreak
-
 
153
 
151
 
154
\section*{Zadání}
152
\section*{Zadání}
155
\pagenumbering{arabic}
153
\pagenumbering{arabic}
156
 
154
 
157
Cílem práce je prověřit možnost použití diodově čerpaného pevnolátkového laserového modulu v aplikaci laserového vysílače vhodného pro \gls{TOF} měření vzdálenosti (výšky oblačnosti).
155
Cílem práce je prověřit možnost použití diodově čerpaného pevnolátkového laserového modulu v aplikaci laserového vysílače vhodného pro \gls{TOF} měření vzdálenosti (výšky oblačnosti).
Line 182... Line 180...
182
\newpage
180
\newpage
183
 
181
 
184
 
182
 
185
\chapter{Úvod}
183
\chapter{Úvod}
186
 
184
 
187
Laserový dálkoměr je zařízení, které je schopno měřit vzdálenost objektu odrážejícího záření optických vlnových délek. Tyto objekty mohou být velmi různého charakteru a dálkoměr je pak v principu schopen měřit pevné, kapalné nebo i plynné struktury, případně i jejich kombinace.   
185
Laserový dálkoměr je zařízení, které je schopno měřit vzdálenost objektu odrážejícího záření optických vlnových délek. Tyto objekty mohou být různého charakteru a dálkoměr je pak v principu schopen měřit pevné, kapalné nebo plynné struktury, případně i jejich kombinace.   
188
 
186
 
189
Možnosti jeho aplikace jsou proto velmi rozsáhlé od zaměřování a mapování topografie terénu přes vytváření přesných tvarových modelů malých předmětů až po jeho použití v meteorologii, nebo pro vojenské aplikace.  
187
Možnosti jeho aplikace jsou proto velmi rozsáhlé od zaměřování a mapování topografie terénu přes vytváření přesných tvarových modelů malých předmětů až po jeho použití v meteorologii, nebo pro vojenské aplikace.  
190
 
188
 
191
\section{Principy měření vzdálenosti}
189
\section{Principy měření vzdálenosti}
192
 
190
 
193
Základním principem laserových dálkoměrů je změření nějaké vlastnosti signálu odraženého od předmětu vůči známým parametrům signálu vyzářeného vysílačem. Existuje k tomu několik používaných metod.
191
Základním principem laserových dálkoměrů je měření určité vlastnosti signálu odraženého od předmětu vůči známým parametrům signálu vyzářeného vysílačem. Existuje k tomu několik používaných metod.
194
 
192
 
195
\begin{itemize}
193
\begin{itemize}
196
\item Měření geometrického posunu stopy laseru na předmětu
194
\item Měření geometrického posunu stopy laseru na předmětu
197
\item Měření fázového posunu přijímaného a vysílaného signálu
195
\item Měření fázového posunu přijímaného a vysílaného signálu
198
\item Měření časového zpoždění vyslaného a odraženého fotonu \gls{TOF}. 
196
\item Měření časového zpoždění vyslaného a odraženého fotonu \gls{TOF}. 
199
\end{itemize}
197
\end{itemize}
200
 
198
 
201
\subsection{Triangulační metoda}
199
\subsection{Triangulační metoda}
202
 
200
 
203
Tato metoda měření je založena na geometrické vlastnosti světelného paprsku - světlo se v homogenním prostředí šíří přímočaře. Toho lze využít tak, že použijeme-li zdroj světla, který vydává málo rozbíhavý světelný paprsek  \acrshort{LASER} a pod určitým úhlem vůči ose pozorovatele jej budeme promítat na předmět, tak pozorovatel bude mít světelnou stopu v různých bodech zorného pole podle vzdálenosti pozorovaného předmětu. 
201
Tato metoda měření je založena na geometrické vlastnosti světelného paprsku - světlo se v homogenním prostředí šíří přímočaře. Použijeme-li tedy zdroj světla, který vydává málo rozbíhavý světelný paprsek  \acrshort{LASER} a pod určitým úhlem vůči ose pozorovatele jej budeme promítat na předmět, pozorovatel bude mít světelnou stopu v různých bodech zorného pole podle vzdálenosti pozorovaného předmětu. 
204
 
202
 
205
Tato metoda, je velice snadná a proto existuje mnoho realizací od amatérských konstrukcí až po profesionální výrobky. Obvykle jsou tímto způsobem řešeny 3D skenery malých předmětů, jako jsou historické vázy, sochy, nebo jiná umělecká díla, která je vhodné tvarově zdokumentovat. Skener pak pro urychlení procesu nepoužívá pouze jeden světelný bod, který laser obvykle produkuje, ale použita  cylindrická čočka, která svazek rozšíří do roviny ve směru řezu předmětu (laser-sheet). V tomto uspořádání pak stačí s laserem, nebo promítacím zrcátkem hýbat pouze v jedné ose, pro kompletní 3D obraz objektu. 
203
Tato metoda je velice snadná, a proto existuje mnoho realizací od amatérských konstrukcí až po profesionální výrobky. Obvykle jsou tímto způsobem řešeny 3D skenery malých předmětů, jako jsou historické vázy, sochy, nebo jiná umělecká díla, která je vhodné tvarově zdokumentovat. Skener pak pro urychlení procesu nepoužívá pouze jeden světelný bod, který laser obvykle produkuje, ale je použita  cylindrická čočka, která svazek rozšíří do roviny ve směru řezu předmětu (laser-sheet). V tomto uspořádání pak pro kompletní 3D obraz objektu stačí s laserem, nebo promítacím zrcátkem hýbat pouze v jedné ose. 
206
 
204
 
207
Ke snímání obrazu je v tomto případě obvykle využíván maticový snímač - \acrshort{CCD}, nebo \acrshort{CMOS} sensor. A metoda funguje pouze v rozsahu vzdáleností daných úhlem ve kterém se laser na předmět promítá a také úhlovou velikostí zorného pole snímače. 
205
Ke snímání obrazu je v tomto případě obvykle využíván maticový snímač - \acrshort{CCD} nebo \acrshort{CMOS} sensor. Tato metoda funguje pouze v rozsahu vzdáleností daných úhlem, ve kterém se laser na předmět promítá, a také úhlovou velikostí zorného pole snímače. 
208
 
206
 
209
Z praktických důvodů a požadavků na přesnost měření je tato metoda využívána pouze v rozsahu několika centimetrů až několika metrů.  
207
Z praktických důvodů a požadavků na přesnost měření je tato metoda využívána pouze v rozsahu několika centimetrů až metrů.  
210
    
208
    
211
\subsection{Fázová metoda}
209
\subsection{Fázová metoda}
212
 
210
 
213
U této metody je již vyžívána samotná vlastnost světla, že se prostorem šíří pouze omezenou rychlostí. A měření je prováděno tak, že vysílač vysílá určitým způsobem periodicky modulovaný signál, který se odráží od předmětu a dopadá na intenzitní detektor, který umožňuje jeho časovou korelaci s modulovaným odchozím signálem.  
211
U této metody je vyžívána samotná vlastnost světla, že se prostorem šíří pouze omezenou rychlostí. Při měření vysílač vysílá určitým způsobem periodicky modulovaný signál, který se odráží od předmětu a dopadá na intenzitní detektor, který umožňuje jeho časovou korelaci s modulovaným odchozím signálem.  
214
 
212
 
215
Výsledkem měření tedy je fázové zpoždění odpovídající určité vzdálenosti. Očekávaným problémem této metody ale je fakt, že způsob modulace přímo ovlivňuje měřený rozsah tj. měření vzdálenosti je možné pouze na rozsahu jedné periody modulace. A vzhledem k tomu, že měřená vzdálenost není obvykle dopředu známa, tak je potřeba aby vysílač umožňoval mnoho způsobů modulace vysílaného svazku. 
213
Výsledkem měření je tedy fázové zpoždění odpovídající určité vzdálenosti. Očekávaným problémem této metody ovšem je fakt, že způsob modulace přímo ovlivňuje měřený rozsah, tj. měření vzdálenosti je možné pouze v rozsahu jedné periody modulace. Vzhledem k tomu, že měřená vzdálenost není obvykle dopředu známa, je potřeba, aby vysílač umožňoval mnoho způsobů modulace vysílaného svazku. 
216
 
214
 
217
Další komplikací pak je požadavek na dobrou reflexivitu měřeného předmětu, protože fázový detektor potřebuje ke své správné funkci dostatečný odstup signálu od šumu.  
215
Další komplikací je pak požadavek na dobrou odrazivost měřeného předmětu, protože fázový detektor potřebuje ke své správné funkci dostatečný odstup signálu od šumu.  
218
 
216
 
219
Metoda se proto obvykle využívá pro měření vzdáleností v malém rozsahu řádově desítky metrů a méně. Typickým příkladem využití této měřící metody jsou kapesní stavební dálkoměry používané jako náhrada klasických svinovacích metrů. 
217
Metoda se proto obvykle využívá pro měření vzdáleností v malém rozsahu (řádově desítky metrů a méně). Typickým příkladem využití této měřící metody jsou kapesní stavební dálkoměry, používané jako náhrada klasických svinovacích metrů. 
220
 
218
 
221
Tato fázová metoda má ještě další variaci a to tu, že jako modulaci signálu je možné v určitých podmínkách využít samotnou vlnovou strukturu světla. A vysílaný i od předmětu odražený svazek nechat interferovat na maticovém snímači. Výsledná interference je pak velmi citlivá na vzájemný fázový posun obou svazků ve zlomcích vlnové délky. 
219
Další variací fázové metody je využití přímo vlnové struktury světla. Vysílaný i odražený svazek v tomto případě nechat interferovat na maticovém snímači. Výsledná interference je pak velmi citlivá na vzájemný fázový posun obou svazků ve zlomcích vlnové délky. 
222
 
220
 
223
Tím lze dosáhnout velmi velkého prostorového rozlišení ve smyslu měření změn vzdálenosti až na atomární úroveň tedy desítky až jednotky nanometrů. Tento princip je pak využíván ve specializovaných aplikacích, jako jsou velmi přesné obráběcí automaty, \acrshort{AFM} mikroskopy, detektory gravitačních vln, nebo špionážní zařízení měřící zvukem vybuzené vibrace okenních výplní. 
221
Tím lze dosáhnout velkého prostorového rozlišení ve smyslu měření změn vzdálenosti až na atomární úroveň (desítky až jednotky nanometrů). Tento princip je pak využíván ve specializovaných aplikacích, jako jsou velmi přesné obráběcí automaty, \acrshort{AFM} mikroskopy, detektory gravitačních vln nebo špionážní zařízení měřící zvukem vybuzené vibrace okenních výplní. 
224
 
222
 
225
\subsection{Měření doby šíření (ToF) }
223
\subsection{Měření doby šíření (ToF) }
226
 
224
 
227
\begin{figure}[htbp]
225
\begin{figure}[htbp]
228
\includegraphics[width=150mm]{./img/LRF_block.png}
226
\includegraphics[width=150mm]{./img/LRF_block.png}
229
\caption{Zjednodušené blokové schéma ToF LRF}
227
\caption{Zjednodušené blokové schéma ToF LRF}
230
\label{LRF_block}
228
\label{LRF_block}
231
\end{figure} 
229
\end{figure} 
232
 
230
 
233
 
231
 
234
Další metodou, kterou můžeme využít pro měření vzdálenosti na základě známé a konečné rychlosti šíření světla, je změření doby šíření určitého balíku fotonů, který vygenerujeme vysílačem a následně po odrazu od měřeného objektu detekujeme v detektoru. Změřená doba šíření pak odpovídá dvojnásobku vzdálenosti mezi vysílačem a měřeným předmětem. 
232
Další metodou, kterou můžeme využít pro měření vzdálenosti na základě známé a konečné rychlosti šíření světla, je změření doby šíření určitého balíku fotonů, který je vygenerován vysílačem a následně po odrazu od měřeného objektu detekován v detektoru. Naměřená doba šíření pak odpovídá dvojnásobku vzdálenosti mezi vysílačem a měřeným předmětem 
235
 
233
 
236
\begin{equation}
234
\begin{equation}
237
 d = \frac{ct}{2n}
235
 d = \frac{ct}{2n},
238
\end{equation}
236
\end{equation}
239
 
237
 
240
Kde $c$ je rychlost šíření elektromagnetického záření ve vakuu, $n$ je index lomu prostředí (pro atmosférická měření většinou zanedbáván jako $n \approx 1$) a $t$ je změřená doba šíření. Veličina $d$ je pak vzdálenost předmětu.
238
kde $c$ je rychlost šíření elektromagnetického záření ve vakuu, $n$ je index lomu prostředí (pro atmosférická měření $n \approx 1$) a $t$ je změřená doba šíření. Veličina $d$ je pak vzdálenost předmětu.
241
 
239
 
242
Při měření se předpokládá homogenní prostředí ve kterém se světlo šíří, nebo alespoň prostředí o nějaké známé efektivní hodnotě indexu lomu. 
240
Při měření se předpokládá homogenní prostředí, ve kterém se světlo šíří, nebo alespoň prostředí o určité známé efektivní hodnotě indexu lomu. 
243
Pokud dále předpokládáme šíření bez rozptylu a absorpce s tím, že celý laserový signál zasáhne kompaktní měřený objekt, tak  počet zpětně odražených a detekovaných fotonů může být přibližně vyjádřen vztahem (\ref{radarova_rovnice}). 
241
Pokud dále předpokládáme šíření bez rozptylu a absorpce s tím, že celý laserový signál zasáhne kompaktní měřený objekt, může být počet zpětně odražených a detekovaných fotonů  přibližně vyjádřen vztahem (\ref{radarova_rovnice}). 
244
 
242
 
245
\begin{equation}
243
\begin{equation}
246
 N \approx E \eta \frac{1}{R^2}r
244
 N \approx E \eta \frac{1}{R^2}r
247
\label{radarova_rovnice}
245
\label{radarova_rovnice}
248
\end{equation}
246
\end{equation}
Line 250... Line 248...
250
Kde
248
Kde
251
 
249
 
252
\begin{description}
250
\begin{description}
253
\item[$N$] - počet detekovaných fotoelektronů.
251
\item[$N$] - počet detekovaných fotoelektronů.
254
\item[$E$] - energie ve vyslaném laserovém pulzu (počet fotonů).
252
\item[$E$] - energie ve vyslaném laserovém pulzu (počet fotonů).
255
\item[$\eta$] - koeficient celkové optické optické účinnosti přístroje.
253
\item[$\eta$] - koeficient celkové optické účinnosti přístroje.
256
\item[$R$] - vzdálenost cíle.
254
\item[$R$] - vzdálenost cíle.
257
\item[$r$] - označuje efektivní reflektivitu cíle.
255
\item[$r$] - označuje efektivní odrazivost cíle.
258
\end{description}
256
\end{description}
259
 
257
 
260
Dále vzhledem k tomu, že pro větší vzdálenosti je pravděpodobnost zachycení zpětně odraženého fotonu malá, tak jsou využívány různé techniky pro zlepšení poměru \acrshort{SNR}. Často jde o metody pokročilého signálového zpracování, jako je například lock-in měření.   
258
Vzhledem k tomu, že pro větší vzdálenosti je pravděpodobnost zachycení zpětně odraženého fotonu malá, jsou využívány různé techniky pro zlepšení poměru \acrshort{SNR}. Často jde o metody pokročilého signálového zpracování jako například lock-in měření.   
261
 
259
 
262
Tato metoda má vzhledem k předchozím podstatnou výhodou především v tom, že její princip umožňuje změřit vzdálenosti v obrovském rozsahu a přitom neklade (díky pokročilým možnostem zpracování) vysoké nároky na odstup signálu od šumu. Běžně se proto využívá například pro měření a následné výpočty korekcí drah družic, nebo i měření podélných parametrů optických komunikačních vláken, kde je metoda známa, jako \acrshort{TDR}.  
260
Tato metoda má vzhledem k předchozím podstatnou výhodou především v tom, že její princip umožňuje změřit vzdálenosti v obrovském rozsahu a přitom neklade vysoké nároky na odstup měřeného signálu od šumu. Běžně se proto využívá například pro měření a následné výpočty korekcí drah družic, nebo i měření podélných parametrů optických komunikačních vláken, kde je metoda známa, jako \acrshort{TDR}.  
263
Možnosti aplikace metody měření doby šíření jsou tak rozsáhlé, že je používána i v mnoha dalších přístrojích, jako radiolokátory nebo echolokátory. 
261
Možnosti aplikace metody měření doby šíření jsou tak rozsáhlé, že je používána i v mnoha dalších přístrojích, jako radiolokátory nebo echolokátory. 
264
 
262
 
265
V principu existují dvě možné varianty implementace \gls{TOF} metody měření vzdálenosti, které se liší způsobem zpracování signálu. První je měření časového průběhu intenzity odraženého signálu z prostředí před vysílačem. Využívá se při tom rychlý intenzitní detektor a vzorkovací obvod, který v intervalech odpovídajících časovému rozlišení přístroje periodicky vzorkuje signál z detektoru. Velkou výhodou tohoto přístupu je, že i z jediného výstřelu laseru je možné získat poměrně značné množství informací.
263
V principu existují dvě možné varianty implementace \gls{TOF} metody měření vzdálenosti, které se liší způsobem zpracování signálu. První je měření časového průběhu intenzity odraženého signálu z prostředí před vysílačem. Využívá se při tom rychlý intenzitní detektor a vzorkovací obvod, který v intervalech odpovídajících časovému rozlišení přístroje periodicky vzorkuje signál z detektoru. Velkou výhodou tohoto přístupu je, že i z jediného výstřelu laseru je možné získat poměrně značné množství informací.
266
Problémem ale je požadavek na velký špičkový výstupní výkon laseru (řádově stovky Wattů), který může značně snížit bezpečnost provozu zařízení. Nezanedbatelné jsou zároveň také požadavky na velkou vstupní aperturu detekčního teleskopu, která je obvykle řádově desítky cm.
264
Problémem ale je požadavek na velký špičkový výstupní výkon laseru (řádově stovky Wattů), který může značně snížit bezpečnost provozu zařízení. Nezanedbatelné jsou zároveň také požadavky na velkou vstupní aperturu detekčního teleskopu, která je obvykle řádově desítky cm.
267
 
265