Subversion Repositories svnkaklik

Rev

Rev 1027 | Rev 1029 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log

Rev 1027 Rev 1028
Line 109... Line 109...
109
Universal Scientific Technologies s.r.o.
109
Universal Scientific Technologies s.r.o.
110
 
110
 
111
\pagebreak
111
\pagebreak
112
\mbox{}
112
\mbox{}
113
\vfill
113
\vfill
114
\noindent Prohlašuji, že jsem předloženou práci vypracoval samostatně, a že jsem
114
\noindent Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem
115
uvedl veškerou použitou literaturu.
115
uvedl veškerou použitou literaturu.
116
\vsp{20}
116
\vsp{20}
117
 
117
 
118
\noindent
118
\noindent
119
\quad \hfill  \qquad \\
119
\quad \hfill  \qquad \\
Line 508... Line 508...
508
Existuje již mnoho typů meteorologických přístrojů určených k měření výšky základny oblačnosti. Například jsou to laserové ceilometry \footnote{První optické ceilometry využívaly trianguační metodu měření vzdálenosti, kde byla oblačnost nasvětlována výkonným reflertorem.} Vaisala CL51 a CL31 oba využívající jako vysílač polovodičovou InGaAs diodu pracující na vlnové délce 910 nm. Detektor a vysílač mají koaxiální optiku s jednou společnou vnější čočkou. Rozlišení přístroje je 5m.   Energii ve výstupním impulzu výrobce neudává, ale zařízení je deklarováno jako Class 1M IEC/EN 60825-1, což znamená, že bezpečnosti je v tomto případě dosahováno zvětšením průřezu svazku tak, že hodnota \gls{MPE} nepřekročí limit 1uJ/cm$^2$ při délce impulzu 10ns.  
508
Existuje již mnoho typů meteorologických přístrojů určených k měření výšky základny oblačnosti. Například jsou to laserové ceilometry \footnote{První optické ceilometry využívaly trianguační metodu měření vzdálenosti, kde byla oblačnost nasvětlována výkonným reflertorem.} Vaisala CL51 a CL31 oba využívající jako vysílač polovodičovou InGaAs diodu pracující na vlnové délce 910 nm. Detektor a vysílač mají koaxiální optiku s jednou společnou vnější čočkou. Rozlišení přístroje je 5m.   Energii ve výstupním impulzu výrobce neudává, ale zařízení je deklarováno jako Class 1M IEC/EN 60825-1, což znamená, že bezpečnosti je v tomto případě dosahováno zvětšením průřezu svazku tak, že hodnota \gls{MPE} nepřekročí limit 1uJ/cm$^2$ při délce impulzu 10ns.  
509
 
509
 
510
Tato profesionální řešení mají pro použití v kombinaci s robotickým dalekohledem společnou nevýhodu, že jejich cena je srovnatelná, nebo vyšší než hodnota dalšího vybavení robotizované observatoře. Tím pádem se pro tuto aplikaci stávají nedostupné.
510
Tato profesionální řešení mají pro použití v kombinaci s robotickým dalekohledem společnou nevýhodu, že jejich cena je srovnatelná, nebo vyšší než hodnota dalšího vybavení robotizované observatoře. Tím pádem se pro tuto aplikaci stávají nedostupné.
511
 
511
 
512
Proto bylo v minulosti speciálně pro aplikaci zabezpečení automatických teleskopů před poškozením možnými srážkami vyvinuto již několik přístrojů, většinou pracujících na principu pasivní detekce termálního IR záření generovaného povrchem Země a odraženého zpět od případné oblačnosti v atmosféře. 
512
Proto bylo v minulosti speciálně pro aplikaci zabezpečení automatických teleskopů před poškozením možnými srážkami vyvinuto již několik přístrojů, většinou pracujících na principu pasivní detekce termálního IR záření generovaného povrchem Země a odraženého zpět od případné oblačnosti v atmosféře. 
-
 
513
 
513
Tato metoda je velmi spolehlivá a používá se na mnoha automatických observatořích po celém světě. Má však ale díky svému pasivnímu principu nedostatky způsobené jednak roční variabilitou teploty atmosféry a také geografickou polohou, proto vyžaduje poměrně dlouhotrvající kalibraci zařízení na lokální podmínky. Další nevýhodou je pak také malé prostorové rozlišení. Například senzor MRAKOMĚR 4 \cite{mlab_mrakomer} má \acrshort{FOV} 120$^\circ$ což způsobuje komplikace při některých meteorologických situacích, kdy se například nad observatoří vyskytuje hustá kumulovitá oblačnost avšak místy obsahující trhliny, kterými by bylo možné potenciálně některé astronomické jevy ještě pozorovat.    
514
Tato metoda je velmi spolehlivá a používá se na mnoha automatických observatořích po celém světě. Má však ale díky svému pasivnímu principu nedostatky způsobené jednak roční variabilitou teploty atmosféry a také geografickou polohou, proto vyžaduje poměrně dlouhotrvající kalibraci zařízení na lokální podmínky. Další nevýhodou je pak také malé prostorové rozlišení. Například senzor MRAKOMĚR 4 \cite{mlab_mrakomer} má \acrshort{FOV} 120$^\circ$ což způsobuje komplikace při některých meteorologických situacích, kdy se například nad observatoří vyskytuje hustá kumulovitá oblačnost avšak místy obsahující trhliny, kterými by bylo možné potenciálně některé astronomické jevy ještě pozorovat.    
514
 
515
 
515
\subsection{Jiné ToF dálkoměry}
516
\subsection{Jiné ToF dálkoměry}
516
 
517
 
517
Značné množství podobných konstrukcí využívá ke generaci laserového impulzu Q-spínaný pevnolátkový laser, nebo pulzně buzenou polovodičovou diodu. 
518
Značné množství podobných konstrukcí využívá ke generaci laserového impulzu Q-spínaný pevnolátkový laser, nebo pulzně buzenou polovodičovou diodu. 
Line 576... Line 577...
576
Tato hodnota sice určitě není za běžných podmínek dosažitelná, nicméně dává představu o limitech pevnolátkového laseru v modulu. 
577
Tato hodnota sice určitě není za běžných podmínek dosažitelná, nicméně dává představu o limitech pevnolátkového laseru v modulu. 
577
 
578
 
578
\subsection{Kolimace výstupního svazku a výstupní IR filtr}
579
\subsection{Kolimace výstupního svazku a výstupní IR filtr}
579
\label{vystup_modulu}
580
\label{vystup_modulu}
580
 
581
 
581
Výstupní záření vycházející z optického rezonátoru je ideálně pouze 532nm, které je kolimováno do výstupního svazku s divergencí menší než 0,5mrad.
-
 
582
 
-
 
583
Vzhledem k přesnosti výroby a poměrně vysokých výkonů koherentního čerpání je na výstup laseru ještě z bezpečnostních důvodů zařazen IR filtr, který odstraní případné zbytky čerpacího záření, nebo nezkonvertované záření 1064nm vycházející z dutiny rezonátoru. Umístění filtru je různé, a může být nalepen za expanzní čočku, nebo na díl s kolimační čočkou, není ale ani vyloučeno, že u některých modulů může být tento filtr úplně  vynechán.   
582
Výstupní záření vycházející z optického rezonátoru je ideálně pouze 532nm, které je kolimováno do výstupního svazku s divergencí menší než 0,5mrad. Vzhledem k přesnosti výroby a poměrně vysokých výkonů koherentního čerpání je na výstup laseru ještě z bezpečnostních důvodů zařazen IR filtr, který odstraní případné zbytky čerpacího záření, nebo nezkonvertované záření 1064nm vycházející z dutiny rezonátoru. Umístění filtru je různé, a může být nalepen za expanzní čočku, nebo na díl s kolimační čočkou, není ale ani vyloučeno, že u některých modulů může být tento filtr úplně  vynechán.   
584
 
583
 
585
\begin{figure}[htbp]
584
\begin{figure}[htbp]
586
\begin{center}
585
\begin{center}
587
\includegraphics[height=60mm]{./img/svazky/laser_5mW_calibrated_B_rainbow.png}
586
\includegraphics[height=60mm]{./img/svazky/laser_5mW_calibrated_B_rainbow.png}
588
\includegraphics[height=60mm]{./img/svazky/laser_20mW_calibrated_G_rainbow.png}
587
\includegraphics[height=60mm]{./img/svazky/laser_20mW_calibrated_G_rainbow.png}
Line 646... Line 645...
646
 
645
 
647
 
646
 
648
\subsection{Rozdíly mezi laserovými moduly}
647
\subsection{Rozdíly mezi laserovými moduly}
649
 
648
 
650
Hlavní rozdíl mezi moduly je výrobcem udávaný kontinuální výstupní výkon modulu a pracovní napětí, které je u 20mW modulu udáváno jako 3V a u 5mW modulu 5V. U testovaných levných laserových modulů nebyl zjištěn žádný výrazný konstrukční rozdíl. Pouze výkonnější z modulů (20mW) má masivnější materiál okolo výstupní optiky, patrně kvůli zlepšení přestupu odpadního tepla do pláště ukazovátka.   
649
Hlavní rozdíl mezi moduly je výrobcem udávaný kontinuální výstupní výkon modulu a pracovní napětí, které je u 20mW modulu udáváno jako 3V a u 5mW modulu 5V. U testovaných levných laserových modulů nebyl zjištěn žádný výrazný konstrukční rozdíl. Pouze výkonnější z modulů (20mW) má masivnější materiál okolo výstupní optiky, patrně kvůli zlepšení přestupu odpadního tepla do pláště ukazovátka.   
651
Ostatní části jsou identické u obou výkonových verzí včetně samotného aktivního krystalu. Nelze však jednoduše potvrdit, že je identická i samotná čerpací dioda, neboť na jejím pouzdře chybí typové označení. Existuje možnost, že je uvedeno na boční straně diody, ale k němu se nelze jednoduchým způsobem dostat bez totální destrukce modulu, protože čerpací dioda je zalepena v masivním mosazném elementu.      
650
Ostatní části jsou identické u obou výkonových verzí včetně samotného aktivního krystalu. Nelze však jednoduše potvrdit, že je identická i samotná čerpací dioda, neboť na jejím pouzdře chybí typové označení. Existuje možnost, že je uvedeno na boční straně diody, ale k němu se nelze jednoduchým způsobem dostat bez totální destrukce modulu, protože čerpací dioda je zalepena v masivním mosazném elementu. Původní řídící elektronika je taktéž stejná u obou modulů a neliší se ani hodnotami součástek.  
652
 
-
 
653
Původní řídící elektronika je taktéž stejná u obou modulů a neliší se ani hodnotami součástek.  
-
 
654
 
651
 
655
Optický výstupní výkon modulů byl změřen miliwattmetrem a bylo zjištěno, že v základním nastavení se výstupní výkony všech testovaných modulů s výstupním závitem M10 pohybují okolo 20mW CW nezávisle na objednaném typu (5mW, 10mW, 20mW).  
652
Optický výstupní výkon modulů byl změřen miliwattmetrem a bylo zjištěno, že v základním nastavení se výstupní výkony všech testovaných modulů s výstupním závitem M10 pohybují okolo 20mW CW nezávisle na objednaném typu (5mW, 10mW, 20mW).  
656
 
653
 
657
\section{Měření krátkých světelných impulzů}
654
\section{Měření krátkých světelných impulzů}
658
 
655
 
Line 785... Line 782...
785
 
782
 
786
Z těchto integrovaných obvodů jsem jako nejvhodnější vybral obvod iC-NZ díky svým vyhovujícím výkonovým parametrům a bezpečnostním funkcím. Nevýhodou volby tohoto obvodu může ale v budoucnu být absence symetrických LVDS vstupů pro rychlé spínání a předpoklad použití monitorovací diody v laseru.
783
Z těchto integrovaných obvodů jsem jako nejvhodnější vybral obvod iC-NZ díky svým vyhovujícím výkonovým parametrům a bezpečnostním funkcím. Nevýhodou volby tohoto obvodu může ale v budoucnu být absence symetrických LVDS vstupů pro rychlé spínání a předpoklad použití monitorovací diody v laseru.
787
 
784
 
788
Na základě údajů z katalogového listu výrobce jsem navrhl univerzální modul pro testování modulů v laserovém dálkoměru. Zapojení je zvoleno tak, aby umožnilo konstrukci všech typů laserových měřičů vzdálenosti, jejichž principy byly zmíněny v úvodní kapitole. Tento modul je navíc technicky kompatibilní s otevřenou stavebnicí MLAB, díky čemuž je možné jeho využití i k jiným účelům než pouze jako laserový dálkoměr. Modul je navíc koncipován tak, aby jej bylo možné  v budoucnu využít k přímému spínání laserových diod generujících i jiné vhodné vlnové délky.    Například pro více-frekvenční LIDAR, jehož možnosti měření jsou ještě rozsáhlejší.  
785
Na základě údajů z katalogového listu výrobce jsem navrhl univerzální modul pro testování modulů v laserovém dálkoměru. Zapojení je zvoleno tak, aby umožnilo konstrukci všech typů laserových měřičů vzdálenosti, jejichž principy byly zmíněny v úvodní kapitole. Tento modul je navíc technicky kompatibilní s otevřenou stavebnicí MLAB, díky čemuž je možné jeho využití i k jiným účelům než pouze jako laserový dálkoměr. Modul je navíc koncipován tak, aby jej bylo možné  v budoucnu využít k přímému spínání laserových diod generujících i jiné vhodné vlnové délky.    Například pro více-frekvenční LIDAR, jehož možnosti měření jsou ještě rozsáhlejší.  
789
 
786
 
790
Stavebnice MLAB \cite{mlab_project} již obsahuje TDC modul  GP201A, který je určený k přesnému měření časových intervalů s vysokým rozlišením. A laserový vysílačový LDD01A modul je proto k němu logickým komplementem. 
-
 
791
 
-
 
792
Schéma zkonstruovaného pulzního budiče je uvedeno v příloze \ref{schema_LDD01A}. Jednotlivé vrstvy plošného spoje jsou pak součástí přílohy \ref{PCB_LDD01A}. 
-
 
793
 
-
 
794
Plošný spoj modulu je navržen tak, aby umožnil přímé osazení laserovým modulem s odebranou původní elektronikou. Laserová dioda je zaletována přímo do plošného spoje a tělo modulu je kvůli lepší mechanické stabilitě přilepeno k plošnému spoji modulu \ref{LDD_PCB}.
787
Stavebnice MLAB  již obsahuje TDC modul  GP201A \cite{mlab_TDC}, který je určený k přesnému měření časových intervalů s vysokým rozlišením. A laserový vysílačový LDD01A modul je proto k němu logickým komplementem. Schéma zkonstruovaného pulzního budiče je uvedeno v příloze \ref{schema_LDD01A}. Jednotlivé vrstvy plošného spoje jsou pak součástí přílohy \ref{PCB_LDD01A}. Plošný spoj modulu je navržen tak, aby umožnil přímé osazení laserovým modulem s odebranou původní elektronikou. Laserová dioda je zaletována přímo do plošného spoje a tělo modulu je kvůli lepší mechanické stabilitě přilepeno k plošnému spoji modulu \ref{LDD_PCB}.
795
 
788
 
796
\begin{figure}[htbp]
789
\begin{figure}[htbp]
797
\includegraphics[width=150mm]{./img/LDD_PCB.png}
790
\includegraphics[width=150mm]{./img/LDD_PCB.png}
798
\caption{Návrh plošného spoje pulsního budiče LDD01A}
791
\caption{Návrh plošného spoje pulsního budiče LDD01A}
799
\label{LDD_PCB}
792
\label{LDD_PCB}
Line 811... Line 804...
811
 
804
 
812
\section{Diskuse dosažených výsledků}
805
\section{Diskuse dosažených výsledků}
813
 
806
 
814
\subsection{Dosažené parametry vysílače}
807
\subsection{Dosažené parametry vysílače}
815
 
808
 
816
Bylo zjištěno a ověřeno, že DPSSFD moduly používané v laserových ukazovátkách lze opakovaně a definovaným postupem uvést do stavu, kdy dochází k autonomnímu generování krátkých šumových impulzů s délkou v oblasti stovek nanosekund. Samotný tvar impulzu ale záleží na konkrétním typu konstrukce laserového modulu. Mezi identickými typy modulů ale průběh nevykazuje znatelnou kusovou variabilitu. 
809
Bylo zjištěno a ověřeno, že DPSSFD moduly používané v laserových ukazovátkách lze opakovaně a definovaným postupem uvést do stavu, kdy dochází k autonomnímu generování krátkých šumových impulzů s délkou v oblasti stovek nanosekund. Samotný tvar impulzu ale záleží na konkrétním typu konstrukce laserového modulu. Mezi identickými typy modulů ale průběh nevykazuje znatelnou kusovou variabilitu. Tento výsledek může být užitečný například  k laboratornímu testování některých experimentálních senzorů.  Je ale třeba pro daný experiment vybrat vhodný modul.   
817
 
-
 
818
Tento výsledek může být užitečný například  k laboratornímu testování některých experimentálních senzorů.  Je ale třeba pro daný experiment vybrat vhodný modul.   
-
 
819
 
810
 
820
\subsection{Možnosti dalšího vývoje}
811
\subsection{Možnosti dalšího vývoje}
821
 
812
 
822
Způsob modifikace laserového ukazovátka do podoby vhodné pro laserový dálkoměr byl v průběhu práce prozkoumán již dostatečně. Avšak pro další vývoj zařízení jsou možnosti stále rozsáhlé. Některé předpokládané koncepční problémy jsou diskutovány v následujících odstavcích.  
813
Způsob modifikace laserového ukazovátka do podoby vhodné pro laserový dálkoměr byl v průběhu práce prozkoumán již dostatečně. Avšak pro další vývoj zařízení jsou možnosti stále rozsáhlé. Některé předpokládané koncepční problémy jsou diskutovány v následujících odstavcích.  
823
 
814
 
Line 836... Line 827...
836
Lze tak například snadno realizovat elektroniku laserového dálkoměru, která může s řídícím systémem dalekohledu komunikovat po různých typech komunikačních rozhraní, například: RS232, RS485, CAN, USB, Ethernet.  
827
Lze tak například snadno realizovat elektroniku laserového dálkoměru, která může s řídícím systémem dalekohledu komunikovat po různých typech komunikačních rozhraní, například: RS232, RS485, CAN, USB, Ethernet.  
837
 
828
 
838
 
829
 
839
\subsubsection{Bezpečnost vysílače}
830
\subsubsection{Bezpečnost vysílače}
840
 
831
 
841
Bezpečnost provozu vysílače je komplexním parametrem, který je ovlivněn mnoha dříve zmíněnými vlastnostmi. Nejpřímější vliv má však průřez, energie a divergence svazku, tedy hustota energie v průřezu svazku, která není konstantní v celém měřícím rozsahu a s rostoucí vzdáleností značně klesá. 
832
Bezpečnost provozu vysílače je komplexním parametrem, který je ovlivněn mno\-ha dříve zmíněnými vlastnostmi. Nejpřímější vliv má však průřez, energie a divergence svazku, tedy hustota energie v průřezu svazku, která není konstantní v celém měřícím rozsahu a s rostoucí vzdáleností značně klesá. 
842
Pokud budeme vycházet z dříve realizovaných konstrukcí laserových dálkoměrů pro atmosférická měření, tak nejmenší ověřená potřebná energie v jednom impulzu se pohybuje okolo 0,5uJ/100ns.
833
Pokud budeme vycházet z dříve realizovaných konstrukcí laserových dálkoměrů pro atmosférická měření, tak nejmenší ověřená potřebná energie v jednom impulzu se pohybuje okolo 0,5uJ/100ns.
843
Norma povoluje \gls{MPE} 0,75uJ/cm$^2$. Z toho vyplývá, že pro lidské oko je při tomto výkonu a  původním uspořádání (kapitola \ref{vystup_modulu}) nebezpečná zóna do vzdálenosti <61,5m od vysílače.  
834
Norma povoluje \gls{MPE} 0,75uJ/cm$^2$. Z toho vyplývá, že pro lidské oko je při tomto výkonu a  původním uspořádání (kapitola \ref{vystup_modulu}) nebezpečná zóna do vzdálenosti <61,5m od vysílače.  
844
 
835
 
845
Řešením tohoto problému může být rekolimace svazku do většího průřezu hned na výstupu vysílače. Částečně lze ale předpokládat, že bezpečnosti provozu vysílače napomůže i fakt, že generovaná vlnová délka je ve viditelné oblasti světla a stopa svazku ve vzduchu je navíc dobře viditelná, a tudíž se nejedná o skryté nebezpečí, avšak uvažovaná aplikace vysílače patří z hlediska legislativních bezpečnostních podmínek k nejproblematičtějším.  Svazek je totiž vyzařovaný svisle vzhůru a měření bude prováděno hlavně v noci, což znamená za největšího průměru očních zornic a od obsluhy nelze reálně očekávat využití ochranných brýlí. Navíc je pravděpodobná interakce s letovým provozem nad měřičem.
836
Řešením tohoto problému může být rekolimace svazku do většího průřezu hned na výstupu vysílače. Částečně lze ale předpokládat, že bezpečnosti provozu vysílače napomůže i fakt, že generovaná vlnová délka je ve viditelné oblasti světla a stopa svazku ve vzduchu je navíc dobře viditelná, a tudíž se nejedná o skryté nebezpečí, avšak uvažovaná aplikace vysílače patří z hlediska legislativních bezpečnostních podmínek k nejproblematičtějším.  Svazek je totiž vyzařovaný svisle vzhůru a měření bude prováděno hlavně v noci, což znamená za největšího průměru očních zornic a od obsluhy nelze reálně očekávat využití ochranných brýlí. Navíc je pravděpodobná interakce s letovým provozem nad měřičem.
846
 
837