Rev 720 | Blame | Compare with Previous | Last modification | View Log | Download
\documentclass[12pt,a4paper,oneside]{article}\usepackage[colorlinks=true]{hyperref}\usepackage[utf8]{inputenc}\usepackage[czech]{babel}\usepackage{graphicx}\textwidth 16cm \textheight 24.6cm\topmargin -1.3cm\oddsidemargin 0cm\pagestyle{empty}\begin{document}\title{Hledání netěsností}\author{Jakub Kákona, kaklik@mlab.cz}\date{5.9.2010}\maketitle\thispagestyle{empty}\begin{abstract}\end{abstract}\section{Úvod}\begin{enumerate}\item Najděte netěsnost na skleněné trubici pomocí vtahování výboje vakuové zkoušečky.\item Ověřte změny zabarvení výboje ve skleněné trubici při ofukování netěsnosti heliem a při přikládání tamponu smočeného v lihu, perchlorethylenu a acetonu k netěsnosti.\item Ověřte, že přivedení helia nebo par lihu, perchlorethylenu a acetonu k netěsnosti (lehce pootevřený jehlový ventil) změní údaj tepelného vakuometru. Vysvětlete.\item Ověřte funkci halogenového hledače netěsností přikládáním tamponu, navlhčeného perchlorethylenem k lehce otevřenému jehlovému ventilu. Vysvětlete.\item Seznamte se s heliovým hledačem netěsností. Uveďte jej do provozu. Než se v něm ustálí vacuum $<7 \times 10^{-3} Pa$, seznamte se s duplikátem analyzační komůrky.\item Změřte indukci magnetického pole permanentního magnetu He-hledače. Z rozměrů uspořádání v komůrce a zjištěné hodnoty magnetického pole určete napětí, jímž musí být urychleny ionty helia, aby byl detekovaný jejich signál.\item Propojte heliový hledač netěsnosti a sestavu skleněného kříže (před spojením předčerpejte rotačkou !) a najděte netěsnosti na zmíněné sestavě.\item Provedená měření popište v protokolu.\end{enumerate}\subsection{Pomůcky}Vakuová aparatura, jednostupňová rotační olejová vývěva, vf vakuová zkoušečka, Piraniho manometr, halogenový hledač netěsností, heliový hledač netěsností.\section{Postup měření}\subsection{Vakuová zkoušečka}Pro hledání netěsnosti vakuovou zkoušečkou jsme po nalezení díry vtaženým výbojem ještě demonstrativně použili několik druhů rozpouštědel. Nejdříve ethanol smíchaný s benzínem, kdy jsme nepozorovali žádnou zřetelnou změnu.Následně aceton, kdy se výboj mírně zmodral a zeslabil. A nakonec perchlorethylen, kdy výboj znatelně zmodral a zesílil.\subsection{Piraniho měrka a halogenový hledač netěsností}Dále jsme vývěvu přepojili na aparaturu se skleněným křížem na kterém byl Piraniho vakuometr, halogenový hledač netěsností a jehlový uzávěr, který představoval netěsnost. Při čerpání uzavřené aparatury, jsme dosáhli mezního tlaku asi 50Pa, později jsme zjistili, že to bylo pravděpodobně způsobeno chybějícím olejem v rotační vývěvě.Nejdříve jsme zkoušeli hledat netěsnost pomocí Piraniho vakuové měrky. Kdy ethanol i aceton způsobily značné zvýšení tlaku měřeného Piraniho vakuometrem. Perchlorethylen ale žádnou zřejmou změnu nezpůsoboval. (pravděpodobně má příliš kompaktní molekuly na to aby došlo k jejich rozpadu na Piraniho měrce a tím k měřitelnému ochlazení)Perchlorethylen se ale celkem očekávaně zřetelně projevoval při měření halogenovým hledačem netěsností.\subsection{Heliový hledač netěsností}Po vyzkoušení předchozích hledacích metod jsme uzavřeli jehlový ventil na aparatuře a uvedli do provozu heliový hledač netěsností podle provozního postupu v přiložených deskách.Následně nastavili rozsah na nejmenší citlivost a začali zkoušet ofukovat aparaturu heliem z balonku. Po chvíli jsme objevili netěsnost v oblasti příruby u Piraniho měrky.Urychlovací napětí potřebné k předání správné rychlosti jádrům helia, aby byla jejich dráha zakřivena na poloměr 40mm v magnetickém poli 150mT spočítáme podle Lorentzovy síly a dostředivého zrychlení, které se musejí rovnat.\begin{displaymath} q v B = \frac{m v^2}{r} \end{displaymath}Pro energii částice urychlené v elektrickém poli platí\begin{displaymath} E = q U = \frac{m v^2}{2} . \end{displaymath}Do této rovnice dosadíme rychlost z předchozí rovnice a vyjádříme napětí.\begin{displaymath} U = \frac{q r^2 B^2}{2 m} \end{displaymath}Dostaneme napětí potřebné k urychlení iontu helia, aby dopadl do otvoru detektoru v komoře heliového hledače. \begin{displaymath} U = 438 \textrm{V} \end{displaymath}.\section{Závěr}V praktiku jsme si tak vyzkoušeli několik zajímavých metod pro hledání netěsností v aparatuře. Z nich některé mne překvapily svou jednoduchostí a přitom vysokou účinností, jako například hledání netěsnosti pomocí ethanolu.Naopak použití heliového hledače je sice ještě mnohem efektivnější při malých netěsnostech, ale vyžaduje připojení velmi specifického přístroje k aparatuře, což myslím může někdy značně zkomplikovat experiment. Hlavně z hlediska ochrany heliového hledače před poškozením.\end{document}