/*! \file ax88796.c \brief ASIX AX88796 Ethernet Interface Driver. */
//*****************************************************************************
//
// File Name : 'ax88796.c'
// Title : ASIX AX88796 Ethernet Interface Driver
// Author : Pascal Stang
// Created : 10/22/2002
// Revised : 8/21/2005
// Version : 0.1
// Target MCU : Atmel AVR series
// Editor Tabs : 4
//
// Description : This driver provides initialization and transmit/receive
// functions for the ASIX AX88796 10/100Mb Ethernet Controller and PHY.
//
// Based in part on code by Louis Beaudoin (www.embedded-creations.com).
// Thanks to Adam Dunkels and Louis Beaudoin for providing the initial
// structure in which to write this driver.
//
//*****************************************************************************
#include "global.h"
#include "timer.h"
#include "rprintf.h"
#include "ax88796.h"
// include configuration
#include "ax88796conf.h"
// pointers to locations in the ax88796 receive buffer
static unsigned char NextPage; // page pointer to next Rx packet
static unsigned int CurrentRetreiveAddress; // DMA address for read Rx packet location
void nicInit(void)
{
ax88796Init();
}
void nicSend(unsigned int len, unsigned char* packet)
{
ax88796BeginPacketSend(len);
ax88796SendPacketData(packet, len);
ax88796EndPacketSend();
}
unsigned int nicPoll(unsigned int maxlen, unsigned char* packet)
{
unsigned int packetLength;
packetLength = ax88796BeginPacketRetreive();
// if there's no packet or an error - exit without ending the operation
if( !packetLength )
return 0;
// drop anything too big for the buffer
if( packetLength > maxlen )
{
ax88796EndPacketRetreive();
return 0;
}
// copy the packet data into the uIP packet buffer
ax88796RetreivePacketData( packet, packetLength );
ax88796EndPacketRetreive();
return packetLength;
}
void nicGetMacAddress(u08* macaddr)
{
u08 tempCR;
// switch register pages
tempCR = ax88796Read(CR);
ax88796Write(CR,tempCR|PS0);
// read MAC address registers
*macaddr++ = ax88796Read(PAR0);
*macaddr++ = ax88796Read(PAR1);
*macaddr++ = ax88796Read(PAR2);
*macaddr++ = ax88796Read(PAR3);
*macaddr++ = ax88796Read(PAR4);
*macaddr++ = ax88796Read(PAR5);
// switch register pages back
ax88796Write(CR,tempCR);
}
void nicSetMacAddress(u08* macaddr)
{
u08 tempCR;
// switch register pages
tempCR = ax88796Read(CR);
ax88796Write(CR,tempCR|PS0);
// write MAC address registers
ax88796Write(PAR0, *macaddr++);
ax88796Write(PAR1, *macaddr++);
ax88796Write(PAR2, *macaddr++);
ax88796Write(PAR3, *macaddr++);
ax88796Write(PAR4, *macaddr++);
ax88796Write(PAR5, *macaddr++);
// switch register pages back
ax88796Write(CR,tempCR);
}
void nicRegDump(void)
{
ax88796RegDump();
}
void ax88796SetupPorts(void)
{
#if NIC_CONNECTION == MEMORY_MAPPED
// enable external SRAM interface - no wait states
sbi(MCUCR, SRE);
// sbi(MCUCR, SRW10);
// sbi(XMCRA, SRW00);
// sbi(XMCRA, SRW01);
// sbi(XMCRA, SRW11);
#else
// set address port to output
AX88796_ADDRESS_DDR = AX88796_ADDRESS_MASK;
// set data port to input with pull-ups
AX88796_DATA_DDR = 0x00;
AX88796_DATA_PORT = 0xFF;
// initialize the control port read and write pins to de-asserted
sbi( AX88796_CONTROL_PORT, AX88796_CONTROL_READPIN );
sbi( AX88796_CONTROL_PORT, AX88796_CONTROL_WRITEPIN );
// set the read and write pins to output
sbi( AX88796_CONTROL_DDR, AX88796_CONTROL_READPIN );
sbi( AX88796_CONTROL_DDR, AX88796_CONTROL_WRITEPIN );
#endif
// set reset pin to output
sbi( AX88796_RESET_DDR, AX88796_RESET_PIN );
}
#if NIC_CONNECTION == MEMORY_MAPPED
inline void ax88796Write(u08 address, u08 data)
{
*(volatile u08*)(AX88796_MEMORY_MAPPED_OFFSET + address) = data;
}
#else
void ax88796Write(u08 address, u08 data)
{
// assert the address
AX88796_ADDRESS_PORT = address | (AX88796_ADDRESS_PORT&~AX88796_ADDRESS_MASK);
// set data bus as output and place data on bus
AX88796_DATA_DDR = 0xFF;
AX88796_DATA_PORT = data;
// clock write pin
cbi(AX88796_CONTROL_PORT, AX88796_CONTROL_WRITEPIN);
nop();
nop();
sbi(AX88796_CONTROL_PORT, AX88796_CONTROL_WRITEPIN);
// set data bus back to input with pullups enabled
AX88796_DATA_DDR = 0x00;
AX88796_DATA_PORT = 0xFF;
}
#endif
#if NIC_CONNECTION == MEMORY_MAPPED
inline u08 ax88796Read(u08 address)
{
return *(volatile u08*)(AX88796_MEMORY_MAPPED_OFFSET + address);
}
#else
u08 ax88796Read(u08 address)
{
u08 data;
// assert the address
AX88796_ADDRESS_PORT = address | (AX88796_ADDRESS_PORT&~AX88796_ADDRESS_MASK);
// assert read
cbi(AX88796_CONTROL_PORT, AX88796_CONTROL_READPIN);
nop();
nop();
// read in the data
data = AX88796_DATA_PIN;
// negate read
sbi(AX88796_CONTROL_PORT, AX88796_CONTROL_READPIN);
return data;
}
#endif
void ax88796Init(void)
{
unsigned char tcrFduFlag;
// initialize I/O ports
ax88796SetupPorts();
// do a hard reset
sbi(AX88796_RESET_PORT, AX88796_RESET_PIN);
delay_ms(100);
cbi(AX88796_RESET_PORT, AX88796_RESET_PIN);
// do soft reset
ax88796Write(ISR, ax88796Read(ISR));
delay_ms(50);
// wait for PHY to come out of reset
ax88796Read(RSTPORT);
while(ax88796Read(TR) & RST_B);
ax88796WriteMii(0x10,0x00,0x0800);
delay_ms(255);
ax88796WriteMii(0x10,0x00,0x1200);
ax88796Write(CR,(RD2|STOP)); // stop the NIC, abort DMA, page 0
delay_ms(5); // make sure nothing is coming in or going out
ax88796Write(DCR,DCR_INIT);
ax88796Write(RBCR0,0x00);
ax88796Write(RBCR1,0x00);
ax88796Write(IMR,0x00);
ax88796Write(ISR,0xFF);
ax88796Write(RCR,0x20);
ax88796Write(BNRY,RXSTART_INIT);
ax88796Write(PSTART,RXSTART_INIT);
ax88796Write(PSTOP,RXSTOP_INIT);
// switch to page 1
ax88796Write(CR,(PS0|RD2|STOP));
// write mac address
ax88796Write(PAR0+0, AX88796_MAC0);
ax88796Write(PAR0+1, AX88796_MAC1);
ax88796Write(PAR0+2, AX88796_MAC2);
ax88796Write(PAR0+3, AX88796_MAC3);
ax88796Write(PAR0+4, AX88796_MAC4);
ax88796Write(PAR0+5, AX88796_MAC5);
// set start point
ax88796Write(CURR,RXSTART_INIT+1);
ax88796Write(CR,(RD2|START));
ax88796Write(RCR,RCR_INIT);
if(ax88796Read(GPI) & I_SPD) // check PHY speed setting
tcrFduFlag = FDU; // if 100base, do full duplex
else
tcrFduFlag = 0; // if 10base, do half duplex
ax88796Write(TCR,(tcrFduFlag|TCR_INIT));
ax88796Write(GPOC,MPSEL); // select media interface
ax88796Write(TPSR,TXSTART_INIT);
ax88796Write(CR,(RD2|STOP));
ax88796Write(DCR,DCR_INIT);
ax88796Write(CR,(RD2|START));
ax88796Write(ISR,0xFF);
ax88796Write(IMR,IMR_INIT);
ax88796Write(TCR,(tcrFduFlag|TCR_INIT));
//test
/*
while(1)
{
vt100SetCursorPos(18,0);
ax88796RegDump();
}
*/
}
void ax88796BeginPacketSend(unsigned int packetLength)
{
unsigned int sendPacketLength;
sendPacketLength = (packetLength>=ETHERNET_MIN_PACKET_LENGTH)?
(packetLength):(ETHERNET_MIN_PACKET_LENGTH);
//start the NIC
ax88796Write(CR,(RD2|START));
// still transmitting a packet - wait for it to finish
while( ax88796Read(CR) & TXP );
//load beginning page for transmit buffer
ax88796Write(TPSR,TXSTART_INIT);
//set start address for remote DMA operation
ax88796Write(RSAR0,0x00);
ax88796Write(RSAR1,0x40);
//clear the packet stored interrupt
ax88796Write(ISR, PTX);
//load data byte count for remote DMA
ax88796Write(RBCR0, (unsigned char)(packetLength));
ax88796Write(RBCR1, (unsigned char)(packetLength>>8));
ax88796Write(TBCR0, (unsigned char)(sendPacketLength));
ax88796Write(TBCR1, (unsigned char)((sendPacketLength)>>8));
//do remote write operation
ax88796Write(CR,0x12);
}
void ax88796SendPacketData(unsigned char * localBuffer, unsigned int length)
{
unsigned int i;
for(i=0;i<length;i++)
ax88796Write(RDMAPORT, localBuffer[i]);
}
void ax88796EndPacketSend(void)
{
//send the contents of the transmit buffer onto the network
ax88796Write(CR,(RD2|TXP));
// clear the remote DMA interrupt
ax88796Write(ISR, RDC);
}
unsigned int ax88796BeginPacketRetreive(void)
{
unsigned char writePagePtr;
unsigned char readPagePtr;
unsigned char bnryPagePtr;
unsigned char i;
unsigned char pageheader[4];
unsigned int rxlen;
// check for and handle an overflow
ax88796ProcessInterrupt();
// read CURR from page 1
ax88796Write(CR,(PS0|RD2|START));
writePagePtr = ax88796Read(CURR);
// read the boundary register from page 0
ax88796Write(CR,(RD2|START));
bnryPagePtr = ax88796Read(BNRY);
// first packet is at page bnryPtr+1
readPagePtr = bnryPagePtr+1;
if(readPagePtr >= RXSTOP_INIT) readPagePtr = RXSTART_INIT;
// return if there is no packet in the buffer
if( readPagePtr == writePagePtr )
{
return 0;
}
// clear the packet received interrupt flag
ax88796Write(ISR, PRX);
// if the boundary pointer is invalid,
// reset the contents of the buffer and exit
if( (bnryPagePtr < RXSTART_INIT) || (bnryPagePtr >= RXSTOP_INIT) )
{
ax88796Write(BNRY, RXSTART_INIT);
ax88796Write(CR, (PS0|RD2|START));
ax88796Write(CURR, RXSTART_INIT+1);
ax88796Write(CR, (RD2|START));
// rprintf("B");
return 0;
}
// initiate DMA to transfer the RTL8019 packet header
ax88796Write(RBCR0, 4);
ax88796Write(RBCR1, 0);
ax88796Write(RSAR0, 0);
ax88796Write(RSAR1, readPagePtr);
ax88796Write(CR, (RD0|START));
for(i=0;i<4;i++)
pageheader[i] = ax88796Read(RDMAPORT);
// end the DMA operation
ax88796Write(CR, (RD2|START));
for(i = 0; i <= 20; i++)
if(ax88796Read(ISR) & RDC)
break;
ax88796Write(ISR, RDC);
rxlen = (pageheader[PKTHEADER_PKTLENH]<<8) + pageheader[PKTHEADER_PKTLENL];
NextPage = pageheader[PKTHEADER_NEXTPAGE];
CurrentRetreiveAddress = (readPagePtr<<8) + 4;
// if the NextPage pointer is invalid, the packet is not ready yet - exit
if( (NextPage >= RXSTOP_INIT) || (NextPage < RXSTART_INIT) )
{
// rprintf("N");
// rprintfu08(nextPage);
return 0;
}
return rxlen-4;
}
void ax88796RetreivePacketData(unsigned char * localBuffer, unsigned int length)
{
unsigned int i;
// initiate DMA to transfer the data
ax88796Write(RBCR0, (unsigned char)length);
ax88796Write(RBCR1, (unsigned char)(length>>8));
ax88796Write(RSAR0, (unsigned char)CurrentRetreiveAddress);
ax88796Write(RSAR1, (unsigned char)(CurrentRetreiveAddress>>8));
ax88796Write(CR, (RD0|START));
for(i=0;i<length;i++)
localBuffer[i] = ax88796Read(RDMAPORT);
// end the DMA operation
ax88796Write(CR, (RD2|START));
for(i = 0; i <= 20; i++)
if(ax88796Read(ISR) & RDC)
break;
ax88796Write(ISR, RDC);
CurrentRetreiveAddress += length;
if( CurrentRetreiveAddress >= 0x6000 )
CurrentRetreiveAddress -= (0x6000-0x4600) ;
}
void ax88796EndPacketRetreive(void)
{
unsigned char i;
unsigned char bnryPagePtr;
// end the DMA operation
ax88796Write(CR, (RD2|START));
for(i = 0; i <= 20; i++)
if(ax88796Read(ISR) & RDC)
break;
ax88796Write(ISR, RDC);
// set the boundary register to point
// to the start of the next packet-1
bnryPagePtr = NextPage-1;
if(bnryPagePtr < RXSTART_INIT) bnryPagePtr = RXSTOP_INIT-1;
ax88796Write(BNRY, bnryPagePtr);
}
void ax88796ProcessInterrupt(void)
{
unsigned char intr = ax88796Read(ISR);
// check for receive overflow
if( intr & OVW )
ax88796ReceiveOverflowRecover();
}
void ax88796ReceiveOverflowRecover(void)
{
// receive buffer overflow handling procedure
// as specified in the AX88796 datasheet
unsigned char cmdReg;
unsigned char resend=0;
// check if we were transmitting something
cmdReg = ax88796Read(CR);
// stop the interface
ax88796Write(CR, (RD2|STOP));
// wait for timeout
delay_ms(2);
// clear remote byte count registers
ax88796Write(RBCR0, 0x00);
ax88796Write(RBCR1, 0x00);
// if we were transmitting something
if(cmdReg & TXP)
{
// check if the transmit completed
cmdReg = ax88796Read(ISR);
if((cmdReg & PTX) || (cmdReg & TXE))
resend = 0; // transmit completed
else
resend = 1; // transmit was interrupted, must resend
}
// switch to loopback mode
ax88796Write(TCR, LB0);
// start the interface
ax88796Write(CR, (RD2|START));
// set boundary
ax88796Write(BNRY, RXSTART_INIT);
// go to page 1
ax88796Write(CR, (PS0|RD2|START));
// set current page register
ax88796Write(CPR, RXSTART_INIT+1);
// go to page 0
ax88796Write(CR, (RD2|START));
// clear the overflow int
ax88796Write(ISR, OVW);
// switch to normal (non-loopback mode)
ax88796Write(TCR, TCR_INIT);
// if previous transmit was interrupted, then resend
if(resend)
ax88796Write(CR, (RD2|TXP|START));
// recovery completed
}
#define set_mdc ax88796Write(MEMR,ax88796Read(MEMR)|0x01);
#define clr_mdc ax88796Write(MEMR,ax88796Read(MEMR)&0xFE);
#define mii_clk set_mdc; clr_mdc;
#define set_mdir ax88796Write(MEMR,ax88796Read(MEMR)|0x02);
#define clr_mdir ax88796Write(MEMR,ax88796Read(MEMR)&0xFD);
#define set_mdo ax88796Write(MEMR,ax88796Read(MEMR)|0x08)
#define clr_mdo ax88796Write(MEMR,ax88796Read(MEMR)&0xF7)
#define mii_write clr_mdo; mii_clk; \
set_mdo; mii_clk; \
clr_mdo; mii_clk; \
set_mdo; mii_clk;
#define mii_read clr_mdo; mii_clk; \
set_mdo; mii_clk; \
set_mdo; mii_clk; \
clr_mdo; mii_clk;
#define mii_r_ta mii_clk; \
#define mii_w_ta set_mdo; mii_clk; \
clr_mdo; mii_clk;
void ax88796WriteMii(unsigned char phyad,unsigned char regad,unsigned int mii_data)
{
unsigned char mask8;
unsigned int i,mask16;
mii_write;
mask8 = 0x10;
for(i=0;i<5;++i)
{
if(mask8 & phyad)
set_mdo;
else
clr_mdo;
mii_clk;
mask8 >>= 1;
}
mask8 = 0x10;
for(i=0;i<5;++i)
{
if(mask8 & regad)
set_mdo;
else
clr_mdo;
mii_clk;
mask8 >>= 1;
}
mii_w_ta;
mask16 = 0x8000;
for(i=0;i<16;++i)
{
if(mask16 & mii_data)
set_mdo;
else
clr_mdo;
mii_clk;
mask16 >>= 1;
}
}
unsigned int ax88796ReadMii(unsigned char phyad,unsigned char regad)
{
unsigned char mask8,i;
unsigned int mask16,result16;
mii_read;
mask8 = 0x10;
for(i=0;i<5;++i)
{
if(mask8 & phyad)
set_mdo;
else
clr_mdo;
mii_clk;
mask8 >>= 1;
}
mask8 = 0x10;
for(i=0;i<5;++i)
{
if(mask8 & regad)
set_mdo;
else
clr_mdo;
mii_clk;
mask8 >>= 1;
}
mii_r_ta;
mask16 = 0x8000;
result16 = 0x0000;
for(i=0;i<16;++i)
{
mii_clk;
if(ax88796Read(MEMR) & 0x04)
{
result16 |= mask16;
}
else
{
asm volatile ("nop");
break;
}
mask16 >>= 1;
}
return result16;
}
void ax88796RegDump(void)
{
unsigned char result;
result = ax88796Read(TR);
rprintf("Media State: ");
if(!(result & AUTOD))
rprintf("Autonegotiation\r\n");
else if(result & RST_B)
rprintf("PHY in Reset \r\n");
else if(!(result & RST_10B))
rprintf("10BASE-T \r\n");
else if(!(result & RST_TXB))
rprintf("100BASE-T \r\n");
//rprintf("TR regsiter : %x\r\n",result);
//result = read_mii(0x10,0);
//rprintf("MII regsiter 0x10: %x\r\n",result);
rprintfProgStrM("Page0: CR BNRY PSR PST ISR TSR RSR MMR TR GPI\r\n");
rprintfProgStrM(" ");
rprintfu08(ax88796Read(CR));
rprintfProgStrM(" ");
rprintfu08(ax88796Read(BNRY));
rprintfProgStrM(" ");
rprintfu08(ax88796Read(PSTART));
rprintfProgStrM(" ");
rprintfu08(ax88796Read(PSTOP));
rprintfProgStrM(" ");
rprintfu08(ax88796Read(ISR));
rprintfProgStrM(" ");
rprintfu08(ax88796Read(TSR));
rprintfProgStrM(" ");
rprintfu08(ax88796Read(RSR));
rprintfProgStrM(" ");
rprintfu08(ax88796Read(MEMR));
rprintfProgStrM(" ");
rprintfu08(ax88796Read(TR));
rprintfProgStrM(" ");
rprintfu08(ax88796Read(GPI));
rprintfCRLF();
ax88796Write(CR,ax88796Read(CR)|PS0);
rprintf("Page1: CR PAR CPR\r\n");
rprintfProgStrM(" ");
rprintfu08(ax88796Read(CR));
rprintfProgStrM(" ");
rprintfChar(ax88796Read(PAR0));
rprintfChar(ax88796Read(PAR1));
rprintfChar(ax88796Read(PAR2));
rprintfChar(ax88796Read(PAR3));
rprintfChar(ax88796Read(PAR4));
rprintfChar(ax88796Read(PAR5));
rprintfProgStrM(" ");
rprintfu08(ax88796Read(CPR));
ax88796Write(CR,ax88796Read(CR)&~PS0);
delay_ms(25);
}
/*
unsigned char ax88796ReceiveEmpty(void)
{
unsigned char temp;
// read CPR from page 1
ax88796Write(CR,0x62);
temp = ax88796Read(CPR);
// return to page 0
ax88796Write(CR,0x22);
return ( ax88796Read(BNRY) == temp );
}*/
|