Rev 604 | Blame | Last modification | View Log | Download
\documentclass[12pt,a4paper,oneside]{article}
\usepackage[colorlinks=true]{hyperref}
\usepackage[utf8]{inputenc}
\usepackage[czech]{babel}
\usepackage{graphicx}
\textwidth 16cm \textheight 24.6cm
\topmargin -1.3cm
\oddsidemargin 0cm
\pagestyle{empty}
\begin{document}
\title{Tepelné Stroje}
\author{Jakub Kákona, kaklik@mlab.cz}
\date{2.11.2009}
\maketitle
\thispagestyle{empty}
\begin{abstract}
Zabývali jsme se schopností tepelného stroje přeměňovat teplo na práci. Pracovní plyn tepelného stroje po zahřátí zdvihal závaží, čímž konal mechanickou práci. Práci konanou plynem jsme měřili tlakovým a rotačním senzorem.
\end{abstract}
\section{Pracovní úkoly}
\begin{enumerate}
\item Zkalibrujte tlakoměr, zkontrolujte čidlo pro odečítání polohy pístu.
\item rozeberte nastíněný pracovní cyklus, popište jeho jednotlivé fáze v p - V diagramu.
\item Proveďte opakovaně popsaný cyklus s různými závažími. Získejte pro každé měření plochu uzavřenou křivkami v p-V diagramu a spočítejte rozdíl potenciálních energií pro dané závaží. Vynášejte obě hodnoty do grafu, výsledné hodnoty proložte přímkou. $W =a \cdot \Delta E+b$
\item Změřte hodnotu vnitřního odporu Peltierovy součástky.
\item Změřte účinnost Peltierova aparátu. Srovnejte s účinností Carnotova cyklu pro lázně stejných teplot. Opakujte několik měření pro různé teploty horké lázně. Vyneste hodnoty \begin{math}\varepsilon_{carnot},\,\varepsilon \end{math} do grafu, kde na ose x bude teplota horké lázně.
\item Započítejte k účinnosti vnitřní odpor a výkon obcházející součástku. K energii rozptýlené na zátěžovém odporu je třeba přidat energii rozptýlenou na vnitřním odporu.
\end{enumerate}
\section{Úvod}
Tepelný stroj je užitečné zařízení oblíbené hlavně kvůli svojí schopnosti převádět část tepelné energie na užitečnou práci. Účinnost takového stoje je dána vztahem.
\begin{equation}
W = Q_1 - Q_2 = Q_1\frac{T_1 - T_2}{T_1}, \label{carnot}
\end{equation}čímž je dána maximální teoretická účinnost tepelného stroje
\begin{equation}
\varepsilon_{max} = \frac{T_1 - T_2}{T_1} \label{ucinnost}
\end{equation}
V reálné situaci je tato účinnost menší z důvodu působení disipativních sil na různé části stroje, které způsobí, že část mechanické energie je přeměněna zpět na nepoužitelné teplo.
\section{Postup měření}
\subsection{Měření účinnosti Peltierova článku}
Aparaturu jsme zapojili podle zadání tak, aby bylo možné měřit elektrický příkon do zahřívacího odporu i výkon dodávaný do zátěže Peltierovým článkem.
Po uvedení přístrojů do provozu měření probíhalo tak, že jsme nastavili teplotu horké lázně a při odpojené zátěži počkali, až se ustálí. Následně jsme odečetli napětí, na Peltierově článku. A zátěž zapojili, teplotu horké lázně bylo nyní potřeba dorovnat na teplotu při odpojené zátěži, aby bylo možné určit vnitřní odpor měřeného článku a tepelný výkon, který neprochází přímo aktivní oblastí. Naměřená data jsou uvedena v tabulce \ref{Peltier} kde každý druhý řádek odpovídá připojené zátěži R = 2 Ohm.
\begin{table}[htbp]
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
$U_{h} [V]$ & \% & $I_{h} [A]$ & \% & $U_{sr}$ [mV] & $T_h [^\circ C]$ & $T_c [^\circ C]$\\ \hline
2,02 & 2,38 & 0,40 & 6,00 & 139,9 & 13 & 7 \\ \hline
2,40 & 2,00 & 0,47 & 5,11 & 84,9 & 13 & 7 \\ \hline
2,40 & 2,00 & 0,48 & 5,00 & 169,1 & 15 & 7,5 \\ \hline
2,70 & 8,89 & 0,54 & 4,44 & 101,9 & 15 & 7,5 \\ \hline
4,00 & 6,00 & 0,78 & 3,08 & 410 & 27 & 9 \\ \hline
4,50 & 5,33 & 0,86 & 2,79 & 236 & 27 & 10 \\ \hline
5,00 & 4,80 & 1,00 & 2,40 & 633 & 38 & 11 \\ \hline
5,20 & 4,62 & 1,01 & 2,38 & 310 & 38 & 15 \\ \hline
6,10 & 3,93 & 1,20 & 2,00 & 907 & 56 & 18 \\ \hline
6,50 & 3,69 & 1,30 & 9,23 & 487 & 56 & 20 \\ \hline
\end{tabular}
\end{center}
\caption{Hodnoty naměřené na Peltierově článku}
\label{Peltier}
\end{table}
Z těchto hodnot jsme pak podle zdroje \cite{Peltier} vypočetli jeho účinnost, která byla bez korekce pod jedním procentem. Jak je vidět na grafu \ref{PeltierXCarnot}. Hodnota vnitřního elektrického odporu Peltierovy součástky nám vyšla 1,34 $m\Omega$.
\begin{figure}
\begin{center}
\includegraphics[width=150mm]{peltier.pdf}
\end{center}
\caption{Učinnost Peltierova článku v porovnání s ideálním Carnotovým strojem za stejných podmínek}
\label{PeltierXCarnot}
\end{figure}
Při aplikování korekce na vnitřní odpor a tepelné ztráty (opět podle zdroje \cite{Peltier}) se účinnost dostala přibližně na 4,55\%.
\subsection{Carnotův Cyklus}
Po kalibraci tlakoměru závažím hmotnosti (100g)
Jsme píst tepelného stroje zatěžovali závažím o definované hmotnosti a ze změny jeho potenciální energie v průběhu pracovního cyklu viz. obrázek \ref{cyklus} jsme určili práci, kterou stroj vykonal.
Energii v Carnotova cyklu jsme získali výpočtem z uzavřené plochy p-V diagramu V programu DataStudio. Náš naměřený výsledek je vidět v grafu \ref{carnot}.
\begin{figure}
\begin{center}
\includegraphics[width=150mm]{./data/tepl100g.png}
\end{center}
\caption{Pracovní cyklus pístu zatíženého závažím 100g}
\label{cyklus}
\end{figure}
\begin{figure}
\begin{center}
\includegraphics[width=150mm]{carnot.pdf}
\caption{Práce a energie laboratorního tepelného stroje.}
\label{carnot}
\end{center}
\end{figure}
Při nafitování naměřených bodů výrazem $W =a \cdot \Delta E+b$ se ukázalo, že koeficienty jsou: $a = 1.04815 \pm 0.01257$ , $b = 0.00517276 \pm 0.0008125$ Což znamená, že mechanická účinnost laboratorní aparatury je přibližně 95\%. Což není překvapivé vzhledem k jednoduchosti stroje, kdy je navíc pracovní medium přemisťováno mezi chladnou a studenou lázní za pomoci jiného zdroje energie.
\section{Diskuse}
Při měření Peltierova článku by bylo asi vhodné použít kratší přívodní hadičky ke chladící lázni, jelikož voda se tak zbytečně ohřívá z původní teploty tání ledu a teplota studené strany článku se tak stává nestabilní.
\section{Závěr}
Potvrdili jsme, že účinnost Peltierova článku je značně nízká ve srovnání s Carnotovým cyklem, což opodstatňuje jeho nepoužití v elektrárnách místo parních turbín k přímému generování elektrické energie.
\begin{thebibliography}{99}
\bibitem{Stroje}{Zadání úlohy 12 - Tepelný stroj}. \href{http://praktika.fjfi.cvut.cz/TepelnyStroj}{http://praktika.fjfi.cvut.cz/TepelnyStroj}
\bibitem{Peltier}{Zadání úlohy 12 - Účinnost tepelného stroje}.\href{http://fyzika.fjfi.cvut.cz/Peltier}{http://fyzika.fjfi.cvut.cz/Peltier}
\end{thebibliography}
\end{document}