Rev 951 | Rev 972 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download
\documentclass[12pt]{article}
\usepackage[czech]{babel}
\usepackage{array}
\usepackage[pdftex]{graphicx}
\usepackage[utf8]{inputenc} %vstupni soubory v kodovani UTF-8
\usepackage{color}
\textheight 230.0mm
\textwidth 155.0mm
%\topmargin 0.0mm
\topmargin -20.0mm
\oddsidemargin 0.0mm
\parindent 0.0mm
\renewcommand{\baselinestretch}{1.0}
\newcommand{\vsp}[1]{\vspace{#1mm}}
\begin{document}
\thispagestyle{empty}
\begin{center}
\extrarowheight 1.5ex
\begin{tabular}{c}
\textbf{\Large České vysoké učení technické v Praze} \\
\textbf{\Large Fakulta jaderná a fyzikálně inženýrská} \\
\textbf{\Large Katedra fyzikální elektroniky}
\end{tabular}
\vsp{60}
\textbf{\Large Bakalářská práce}
\bigskip
\textbf{\LARGE Jakub Kákona}
\vfill
\textbf{\large Praha -- 2012} \\
\textcolor{red}{\small Vzor titulní strany na pevných deskách} \\
\textcolor{red}{\small Jméno autora a rok ukončení práce taky na
hřbetní straně}
\end{center}
\pagebreak
\setcounter{page}{1}
\thispagestyle{empty}
\begin{center}
\extrarowheight 1.5ex
\begin{tabular}{c}
\textbf{\Large České vysoké učení technické v Praze} \\
\textbf{\Large Fakulta jaderná a fyzikálně inženýrská} \\
\textbf{\Large Katedra fyzikální elektroniky}
\end{tabular}
\vsp{60}
\textbf{\Huge Vysílač pro laserový dálkoměr}
\bigskip
\textbf{\Large Bakalářská práce}
\end{center}
\vfill
\extrarowheight 0.75ex
\begin{tabular}{>{\large}l>{\large}l}
Autor práce: & \textbf{Jakub Kákona} \\
Školitel: & \textbf{Jméno školitele} \\
(Konzultant(i): & \textbf{Jména konzultantů}) \\
Školní rok: & \textbf{2011/2012}
\end{tabular}
\vsp{0}
\pagebreak
\mbox{}
\vfill
Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem
uvedl veškerou použitou literaturu.
\vsp{10}
\noindent
\quad \hfill \textcolor{red}{\small Podpis studenta} \qquad \\
Praha, xx.xx.2012 \hfill Jakub Kákona \qquad
\par
\vsp{5}
\pagebreak
\tableofcontents
\newpage
\section{Zadání práce}
\section{Laserové metody měření vzdálenosti}
Laserový dálkoměr je zařízení, které je schopno měřit vzdálenost objektu odrážejícího záření optických vlnových délek. Tyto objekty mohou být velmi různorodého charakteru a dálkoměr je pak v principu schopen měřit pevné, kapalné nebo i plynné struktury, případně i jejich kombinace.
Možnosti jeho aplikace jsou proto velmi rozsáhlé od zaměřování a mapování topografie terénu přes vytváření přesných tvarových modelů malých předmětů až po jeho použití v meteorologii, nebo pro vojenské aplikace.
\subsection{Principy měření vzdálenosti}
Základním principem LASERových dálkoměrů je změření nějaké vlastnosti signálu odraženého od předmětu vůči známým parametrům signálu vyzářeného vysílačem. Existuje k tomu několik používaných metod.
\begin{itemize}
\item Měření geometrického posunu stopy laseru na předmětu
\item Měření fázového posunu přijímaného a vysílaného signálu
\item Měření časového zpoždění vyslaného a odraženého fotonu (ToF - Time of Flight measurement).
\end{itemize}
\subsubsection{Triangulační metoda}
Tato metoda měření je založena na geometrické vlastnosti světelného paprsku - světlo se v homogenním prostředí šíří přímočaře. Toho lze využít tak, že použijeme li zdroj světla, který vydává málo rozbíhavý světelný paprsek (LASER) a pod určitým úhlem vůči ose pozorovatele jej budeme promítat na předmět, tak pozorovatel bude mít světelnou stopu v různých bodech zorného pole podle vzdálenosti pozorovaného předmětu.
Tato metoda, je velice snadná a proto existuje mnoho realizací od amatérských konstrukcí až po profesionální výrobky. Obvykle jsou tímto způsobem řešeny 3D skenery malých předmětů, jako jsou historické vázy, sochy, nebo jiná umělecká díla, která je vhodné tvarově zdokumentovat. Skener pak pro urychlení procesu nepoužívá pouze jeden světelný bod, který laser obvykle produkuje ale využívá se cylindrické čočky, která svazek rozšíří do roviny ve směru řezu předmětu (laser-sheet). V tomto uspořádání totiž pak stačí s LASERem, nebo promítacím zrcátkem hýbat pouze v jedné ose, pro kompletní 3D scan.
Ke snímání obrazu je v tomto případě obvykle využíván maticový snímač - CCD, nebo CMOS. A metoda funguje pouze v rozsahu vzdáleností daných úhlem ve kterém se laser na předmět promítá a také úhlovou velikostí zorného pole snímače.
Z praktických důvodů a požadavků na přesnost měření je tato metoda využívána pouze v rozsahu několika centimetrů až několika metrů.
\subsubsection{Fázová metoda}
U této metody je již vyžívána samotná vlastnost světla, že se prostorem šíří pouze omezenou rychlostí. A měření je prováděno tak, že vysílač vysílá určitým způsobem periodicky modulovaný signál, který se odráží od předmětu a dopadá na intenzitní detektor, který umožňuje jeho časovou korelaci s modulovaným odchozím signálem.
Výsledkem měření tedy je fázové zpoždění odpovídající určité vzdálenosti. Předpokládatelným problémem této metody ale je fakt, že způsob modulace přímo ovlivňuje měřený rozsah tj. měření vzdálenosti je možné pouze na rozsahu jedné periody modulace. A vzhledem k tomu, že měřená vzdálenost není dopředu známa, tak je potřeba aby vysílač umožňoval mnoho způsobů modulace vysílaného svazku.
Další komplikací pak je požadavek na dobrou reflexivitu měřeného předmětu, protože fázový detektor potřebuje ke své správné funkci dostatečný odstup signálu od šumu.
Metoda se proto obvykle využívá pro měření vzdáleností v malém rozsahu řádově desítky metrů a méně. Typickým příkladem využití této měřící metody jsou kapesní stavební dálkoměry používané jako náhrada klasických svinovacích metrů.
Tato fázová metoda má ještě další variaci a to tu, že jako modulaci signálu je možné v určitých podmínkách využít samotnou vlnovou strukturu světla. A vysílaný i od předmětu odražený svazek nechat interferovat na maticovém snímači. Výsledná interference je pak velmi citlivá na vzájemný fázový posun obou svazků ve zlomcích vlnové délky.
Tím lze dosáhnout velmi velkého prostorového rozlišení ve smyslu měření změn vzdálenosti až na atomární úroveň tedy desítky až jednotky nanometrů. Tento princip je pak využíván ve specializovaných aplikacích, jako jsou velmi přesné obráběcí automaty, AFM mikroskopy, detektory gravitačních vln, nebo špionážní zařízení měřící zvukem vybuzené vibrace okenních výplní.
\subsubsection{Měření doby letu (ToF)}
Další metodou, kterou můžeme využít pro měření vzdálenosti na základě známé a konečné rychlosti šíření světla, je změření doby letu určitého balíku fotonů, který vygenerujeme vysílačem a následně po odrazu od měřeného objektu detekujeme v detektoru. Změřená doba letu pak odpovídá dvojnásobku vzdálenosti mezi vysílačem a měřeným předmětem.
\begin{equation}
d = \frac{ct}{2n}
\end{equation}
Kde $c$ je rychlost šíření elektromagnetického záření ve vakuu, $n$ je index lomu prostředí a $t$ je změřená doba letu. Veličina $d$ je pak vzdálenost předmětu, kterou potřebujeme změřit.
Při měření se tak předpokládá homogenní prostředí ve kterém se světlo šíří, nebo alespoň prostředí o nějaké známé efektivní hodnotě indexu lomu. Zpětně zachycený výkon vyjadřuje rovnice \ref{radarova_rovnice}.
\begin{equation}
P_r = {{P_t G_t A_r \sigma F^4}\over{{(4\pi)}^2 R_t^2R_r^2}}
\label{radarova_rovnice}
\end{equation}
Kde
\begin{description}
\item[$P_t$] = transmitter power
%*
%* ''G''<sub>t</sub> = [[gain]] of the transmitting antenna
%* ''A''<sub>r</sub> = effective aperture (area) of the receiving antenna
%* ''σ'' = [[radar cross section]], or scattering coefficient, of the target
%* ''F'' = pattern propagation factor
%* ''R''<sub>t</sub> = distance from the transmitter to the target
%* ''R''<sub>r</sub> = distance from the target to the receiver.
\end{description}
Dále vzhledem k tomu, že pro větší vzdálenosti je pravděpodobnost zachycení zpětně odraženého fotonu malá, tak jsou využívány různé techniky pro zlepšení poměru S/N. Často jde o metody statického zpracování nebo o lock-in měření.
Tato metoda má vzhledem k předchozím podstatnou výhodou především v tom, že její princip umožňuje změřit vzdálenosti v obrovském rozsahu a přitom neklade (díky způsobu zpracování) vysoké nároky na odstup signálu od šumu. Běžně se proto využívá například pro měření a následné výpočty korekcí drah družic, nebo i měření podélných parametrů optických komunikačních vláken, kde je metoda známa, jako TDR (Time domain refractometry)
Možnosti použití navíc nejsou omezeny pouze na klasické světelné vlnové délky, ale stejný princip lze uplatnit například i při použití rádiových vlnových délek, což by u předchozích metod nebylo možné vzhledem k problematické konstrukci elementů, jako jsou čočky, zrcadla, nebo maticové detektory pro rádiové vlny.
Možnosti aplikace metody měření doby letu jsou tak rozsáhlé, že z ní vychází i další přistroje, jako radiolokátory nebo echolokátory.
Tato práce je proto zaměřena právě na tento princip měření, protože jeho parametry (dosah a přesnost) jsou zajímavé například i pro meteorologické aplikace a tedy využitelná i pro zatím nedořešené oblasti jako je měření parametrů oblačnosti například nad moderními robotickými astronomickými teleskopy. Což bude modelový případ využití výsledků práce.
\subsection{Požadavky na laserový vysílač}
\subsubsection{Vlnová délka záření}
Vhodná vlnová délka výstupního záření laserového vysílače záleží na mnoha faktorech, jako je například absorpce v médiu vyplňujícím prostor mezi vysílačem a detekovaným předmětem, nebo i spektrální odrazivost měřeného objektu. Pro uvažovanou modelovou aplikaci měření výšky a mohutnosti oblačnosti jsou vhodné krátké vlnové délky z optického oboru elektromagnetického záření. Je to dáno jednak vlastnostmi atmosféry, která dobře propouští vlnové délky z oblasti viditelného spektra. A potom tím, že světlo z kratších vlnových délek (modrá oblast) se dobře odráží na oblačnosti a vodních krystalech.
\begin{figure}[htbp]
\includegraphics[width=150mm]{./img/atmospheric_absorption.png}
\caption{Závislost transmisivity suché atmosféry na vlnové délce záření}
\end{figure}
Ovšem vzhledem k tomu, že na krátkých vlnových délkách směrem k UV oblasti poměrně strmě stoupá vliv nežádoucího Rayleighova rozptylu, který omezuje použitelný dosah měření. Tak je vhodné použít střední vlnovou délku optického záření, ze zelené oblasti spektra.
\subsubsection{Délka výstupního světelného impulzu}
V případě, že nás zajímá metoda založená na měření doby letu, tak od laserového vysílače budeme také požadovat, aby umožňoval generovat krátké časové impulzy. Což je důležité proto, protože krátký časový impulz umožňuje dosáhnout lepšího časového rozlišení při měření a tím pádem i lepší prostorové rozlišení při měření vzdálenosti. Je to dáno tím, že v impulzu je obvykle vysláno velké množství fotonů ale zpátky do detektoru se jich vrátí pouze několik. A v případě dlouhého impulzu pak nejsme schopni určit z které části impulzu nám foton přišel.
Pro případ měření výšky základny oblačnosti, která sama o sobě nemá příliš strmý přechod je zbytečné měřit s přesností lepší, než řádově metry. Proto stačí od laserového vysílače požadovat délky pulzů kratší, než stovky nanosekund.
\subsubsection{Energie impulzu}
Energie výstupního impulzu je ideálně co největší, aby bylo dosaženo vysoké pravděpodobnosti zachycení některého zpětně odraženého fotonu. Ale vzhledem k tomu, že je třeba brát ohled i na bezpečnostní rizika takového systému, tak je potřeba se držet povolených norem pro intenzity elektromagnetického záření.
\section{Druhy modulovatelných laserů}
V dnešní době existuje mnoho typů LASERů. Avšak pouze malá část z nich je v hodná pro použití v LASERových dálkoměrech. Omezením často bývají rozměry aparatury, hmotnost, pořizovací cena, provozní podmínky a odolnost při manipulaci.
\subsection{Polovodičový diodový LASER}
Polovodičové laserové diody, jsou nejrozšířenějšími typy LASERů, které dosahují dobrých parametrů avšak zatím pouze na vlnových délkách větších než cca 600nm, což je pro použití v modelovém laserovém atmosférickém dálkoměru nevhodné. Generování kratších vlnových délek pomocí laserových diod je ale v současné době v intenzivním vývoji vzhledem k potenciální možnosti použití modrých, zelených a červených LASERových diod v barevných skenovacích projektorech s vysokým kontrastem a rozlišením.
\subsection{Pevnolátkový diodově čerpaný LASER s generací druhé harmonické}
Jde o konstrukční LASERu, který jako aktivního prostředí využívá pevnolátkový krystal čerpaný polovodičovou diodou. Ve rezonátoru LASERu je zároveň umístěn konverzní krystal, který díky nelineárním optickým jevům umožňuje generovat druhou harmonickou frekvenci základní generované vlnové délky. Toto konstrukční uspořádání je známo jako DPSSFD (Diode Pumped Solid State Frequency Doubled) LASER.
\subsection{Metody generace krátkých impulzů}
Protože pro měření vzdálenosti metodou ToF je klíčové aby vysílač mohl generovat krátké světelné impulzy. Obvykle se toho dosahuje několika metodami.
\subsubsection{Q spínání}
V tomto, režimu je krátký impulz generován tak, že optickému rezonátoru je nejdříve snížena jakost tak, aby nemohlo dojít ke stimulované emisi fotonů, jako je tomu za běžného provozu rezonátoru. Následně je aktivní prostředí laseru načerpáno energií z vnějšího zdroje a v okamžiku nasycení je Q rezonátoru skokově zvýšeno. Tím dojde k definované stimulované emisi přes celou délku aktivního prostředí. A k vygenerování s vysokou intensitou záření a energií koncentrovanou v čase. Délka takto vygenerovaného impulzu se pohybuje v řádu ns.
\subsubsection{Synchronizace módu (Mode-locking)}
Mode-locking je dalším vylepšením Q spínaného režimu a generace krátkého impulzu záření se zde dosahuje sesynchronizováním mnoha podélných módů v optickém rezonátoru tak, že je vždy vybrán pouze mód s největší energií. Metoda je obvykle složitější, protože klade větší nároky na parametry spínače umístěného v rezonátoru ale je možné tak dosáhnout impulzů se sub-nanosekundovou délkou.
\subsubsection{Volně běžící pulzní režim (PCW)}
\subsection{Měření krátkých světelných impulzů}
K tomu aby bylo možné kvantifikovat dosažené parametry LASERového vysílače, je potřeba umět změřit výstupní časový průběh intenzity záření v impulzu. K tomuto účelu se obvykle využívá zapojení předepjaté PIN fotodiody, která pak díky svojí nízké parazitní kapacitě pracuje jako vhodný snímač pro velmi rychlé děje. Pro účely měření byl proto jeden takový snímač zkonstruován. Jeho zapojení je znázorněno na obrázku \ref{schema_detektoru}.
\begin{figure}[htbp]
\includegraphics[width=150mm]{./img/SCH_detector.png}
\caption{Schéma detektoru s PIN diodou.}
\label{schema_detektoru}
\end{figure}
PIN dioda je v tomto případě kvůli jednoduchosti konstrukce a odstranění možnosti rušení ze zdroje napájena baterií 9V. Na výstupní konektor SMA-zásuvka se připojuje koaxiálním kabelem, osciloskop impedančně přizpůsobený na 50 Ohm. Snížená impedance je zde důležitá, kvůli možnosti rychlého odvedení náboje z přechodu diody.
\subsection{Relaxační kmity LASERu}
LASER
\section{Konstrukce vysílače}
Pro konstrukci laserového vysílače vhodného pro TOF LRF, je potřeba několik dílčích součástí. Znázorněných v blokovém schématu.
\begin{figure}[htbp]
\includegraphics[width=150mm]{./img/LASER_transmitter.png}
\caption{Blokové schéma LASERového vysílače.}
\label{laser_module}
\end{figure}
\begin{description}
\item[LASER] - LASERový modul
\end{description}
\subsection{Zdroje ztrátového výkonu v DPSSFD}
\subsubsection{Učinnost čerpací diody}
\subsubsection{Konverzní účinnost aktivního prostředí}
\subsection{Laserové moduly}
Typická konfigurace levného diodově čerpaného laseru s generováním druhé harmonické 532nm je zobrazena na obrázku \ref{laser_module}.
\begin{figure}[htbp]
\includegraphics[width=150mm]{./img/Green_laser_pointer.png}
\caption{Typická konstrukce diodově čerpaného pevnolátkového laseru používaného, jako zelené laserové ukazovátko. }
\label{laser_module}
\end{figure}
\section{Řídící elektronika}
\subsection{Čerpací dioda}
Polovodičová čerpací dioda, která je na začátku DPSSFD modulu může mít obecně několik možností konstrukce. Samotné pouzdro diody však obvykle obsahuje kromě LASERové diody, generující výstupní svazek, ještě referenční fotodiodu sloužící k získání zpětné vazby z výkonu vystupujícího svazku záření. Tyto dvě diody mají běžně společný jeden terminál. Protože každá z diod má dva vývody, tak je možných několik způsobů zapojení v pouzdře. Označují se písmeny P, N, M. Referenční dioda pak dále bývá rozlišována jako MD (monitor Diode) a laserová dioda LD (LASER Diode).
Referenční zpětnovazebné fotodioda, se ale nedá použít ke kalibračním účelům, protože takto indikovaný výkon se může měnit mezi jednotlivými várkami LASERů až o jeden řád.
její vyzařovaná vlnová délka je ovšem poměrně silně závislá na teplotě přechodu v polovodičové struktuře a u běžných GaAlAs diod se teplotní koeficient, změny vlnové délky pohybuje okolo hodnoty 0,25nm/C. Absorpční čára aktavního prostředí laseru NdYag je však široká pouze XX nm. Což klade poměrně vysoké nároky i na stabilizaci vlnové délky. Vysoká provozní teplota LASERové diody navíc vede ke zvýšení prahu LASERové generace a tím pádem, ke zvýšení potřebného budícího proudu, který má za následek vyšší ztrátový výkon. Další problémem, který při vysokých pracovních teplotách může nastat, je mode-hopping, který se projevuje náhodným přeskakováním vyzařovaných vlnových délek.
Z tohoto důvodu, byl celý modul společně s čerpací diodou vybaven masivním chladičem umoňujícím dobrý odvod tepla z LASERového systému.
\subsection{Buzení čerpací diody}
\section{Diskuse dosažených výsledků}
\subsection{Dosažené parametry vysílače}
\subsection{Možnosti dalšího vylepšení}
\subsubsection{Zapouzdření vysílače}
\subsubsection{Aktivní stabilizace teploty}
Vzhledem k tomu, že pro správnou funkci polovodičové diody je kritická její provozní teplota. Tak by bylo vhodné zařízení vybavit systémem s aktivní regulací provozní teploty LASERu, stávající stav konstantního odvodu tepla chladičem, je účinný pouze v prostředí s vhodným rozsahem teplot, které umožní ustálení tepelné rovnováhy. A tím i stabilizaci pracovního bodu LASERu. Zároven je známá zavislost mezi provozní teplotou a životností diody, která odpovídá zhruba zdvojnásobení životnosti při redukci provozní teploty o 10$^\circ C$.
\subsubsection{Kombinace s jinými přístroji}
\pagebreak
\listoffigures
\pagebreak
\begin{thebibliography}{99}
\bibitem{http://www.nohrsc.nws.gov/technology/avhrr3a/avhrr3a.htm} {Zdroj obrázku reflektivity oblačnosti}
\bibitem{} {Driving Diode Lasers is Staraightforward}
\bibitem{http://optics.org/news/1/7/17} {Osram set for green diode ramp in 2012}
\end{thebibliography}
\end{document}