Příklady k přednášce 6

Exercises for Lecture 6

1. Reduce the pair

$$
A=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
3 & 0 & -3 & 1 \\
-1 & 1 & 4 & -1 \\
1 & 0 & -1 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 0 \\
1 & 1 \\
0 & 0 \\
0 & 1
\end{array}\right]
$$

into controller form $A_{\mathrm{c}}=P A P^{-1}, B_{\mathrm{c}}=P B$. What is the similarity transformation matrix P in this case? What are the controllability indices?
2. Consider a system (A, B) with a diagonal matrix A. Using the eigenvalue test, determine a condition for (A, B) to be controllable.
3. Determine the unobservable modes of the pair (A, C) given by

$$
A=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right], \quad C=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

4. Consider the system (A, B, C, D) given by

$$
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -2 & 1 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right], \quad C=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right], \quad D=\left[\begin{array}{ll}
1 & 0
\end{array}\right] .
$$

Reduce the system to Kalman's canonical form.
5. Consider a spring mass system, which consists of two point masses that are acted upon by viscous damping forces, spring forces and external forces f_{1} and f_{2}. The displacements of the masses are denoted by y_{1} and y_{2}.

Letting $x_{1}=y_{1}, x_{2}=\dot{y}_{1}$ and $x_{3}=y_{2}, x_{4}=\dot{y}_{2}$, we can describe the motions of the masses (assuming particular values of the masses, the spring constants, and the viscous damping coefficients) by

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-0.1910 & -0.0536 & 0.0910 & 0.0036 \\
0 & 0 & 0 & 1 \\
0.0910 & 0.0036 & -0.1910 & -0.0536
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right] .
$$

Suppose that the displacement and the velocity of the first mass are measured,

$$
y=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] .
$$

(a) Is the system controllable?
(b) Is the system controllable from input f_{1} only? Is it reachable from f_{2} only?
(c) Is the system observable?
(d) Is the system observable from output y_{1} only? Is it observable from y_{2} only? observability.

