Příklady k přednášce 7

Exercises for Lecture 7

1. Consider the circuit

where the voltage $v(t)$ and current $i(t)$ are the input and output variables of the system. Determine state equations, the impulse response and the transfer function of the system. Then assume that $R C=L / R$ is satisfied, reduce the state equations to Kalman's canonical form, and identify the uncontrollable and/or unobservable eigenvalues of the system. What are the impulse response and the transfer function of the system in this case?
2. Given is the transfer function matrix

$$
H(s)=\left[\begin{array}{ccc}
\frac{s-1}{s} & 0 & \frac{s-2}{s+2} \\
0 & \frac{s+1}{s} & 0
\end{array}\right]
$$

Determine the Smith-McMillan form of $H(s)$. What are the poles of $H(s)$? What are the zeros of $H(s)$?
3. Consider the system

$$
\dot{x}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] x+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u, \quad y=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] x+u
$$

Determine the zeros (invariant, input-decoupling, output-decoupling, and input-outputdecoupling) of the system as well as the zeros of its transfer function.
4. Given is the transfer function matrix

$$
H(s)=\left[\begin{array}{cc}
\frac{s-1}{s+1} & 1 \\
\frac{2}{s^{2}-1} & 0
\end{array}\right]
$$

Determine a polynomial matrix fractional representation of $H(s)$, namely $H(s)=\tilde{D}^{-1}(s) \tilde{N}(s)$, in which the matrices \tilde{D}, \tilde{N} are left coprime and \tilde{D} is row reduced.
5. Given is the system $\dot{x}=A x+B u, y=C x+D u$ with

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right], \quad C=\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right], \quad D=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] .
$$

Determine the transfer function of the system in a polynomial matrix fractional form, namely $H(s)=N(s) D^{-1}(s)$, in which the matrices N, D are right coprime and D is column reduced.

