Příklady k přednášce 8

Exercises for Lecture 8

1. Given:

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & -4 & -6 & -4
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right], \quad C=\left[\begin{array}{llll}
c_{1} & c_{2} & 1 & 0
\end{array}\right] .
$$

(a) Show that the set of values of $\left(c_{1}, c_{2}\right)$ such that the realization is not minimal, is a line on the $\left(c_{1}, c_{2}\right)$ plane.
(b) Is $\left(c_{1}, c_{2}\right)=(2,3)$ on that line? If so, use Kalman decomposition to find a minimal realization.
(c) A friend from VUT Brno told you that there exists a second order realization of this system for some $\left(c_{1}, c_{2}\right)$. Is it possible? If yes, find those values for c_{1} and c_{2}.
2. Consider a system described by

$$
H(s)=\left[\begin{array}{cc}
\frac{1}{s+1} & \frac{2}{s+1} \\
\frac{1}{(s+1)(s+2)} & \frac{1}{s+2}
\end{array}\right] .
$$

(a) What is the order of a controllable and observable realization of this system?
(b) If we consider such a realization, is the resulting system controllable from the $1^{s t}$ input only? Is it controllable from the $2^{\text {nd }}$ input only?
(c) And still with the same realization. Is it observable from the $1^{\text {st }}$ output only? Is it observable from the $2^{\text {nd }}$ output only?
3. Consider a system giving rise to the transfer function matrix

$$
H(s)=\left[\begin{array}{cc}
\frac{1}{(s-1)^{2}} & \frac{1}{(s-1)(s+3)} \\
\frac{-6}{(s-1)(s+3)^{2}} & \frac{s-2}{(s+3)^{2}}
\end{array}\right] .
$$

(a) Determine a realization of $H(s)$ in controller form.
(b) What is the order of minimal realization of $H(s)$?
4. Consider the system

$$
H(s)=\left[\begin{array}{cc}
\frac{4 s^{2}-s-1}{s^{3}-s} & \frac{s+3}{s^{2}-1} \\
\frac{-s^{2}+s-2}{s^{3}-s} & \frac{1}{s+1}
\end{array}\right]
$$

(a) Find a realization with A diagonal
(b) Show whether the realization is minimal. If it is not, find a minimal realization.

5. Determine

(a) an observable realization,
(b) a balanced minimal realization
of the transfer function

$$
H(s)=\frac{s^{3}+s^{2}}{s^{3}+s^{2}+s+1}
$$

