Subversion Repositories svnkaklik

Rev

Rev 510 | Rev 512 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download

//----- Include Files ---------------------------------------------------------
#include <avr/io.h>             // include I/O definitions (port names, pin names, etc)
#include <avr/interrupt.h>      // include interrupt support
#include <math.h>

#include "global.h"             // include our global settings
#include "uart2.h"              // include uart function library
#include "rprintf.h"    // include printf function library
#include "timer.h"              // include timer function library (timing, PWM, etc)
#include "a2d.h"                // include A/D converter function library

//----- Begin Code ------------------------------------------------------------
#define BUFLEN 64

void radtodeg(double fi, u16 *deg, u08 *min, u08 *sec)  //convert radians to degrees mins and seconds
{
  double pom;

        fi=fi*180/PI;
        *deg=(u16)trunc(fi);
        pom=(fi-(*deg))*60;
        *min=(u08)trunc(pom);
        *sec=(u08)round((pom-(*min))*60);
}

inline double quadraticerror(double average, double buf[], u16 size) // compute average quadratic error
{
  u16 i;
  double err=0;

        for(i=0; i<size; i++) err += square(buf[i]-average);            // sum quadratic errors 
        err = sqrt((1/(double)size)*err);
        return err;
}

int main(void)
{
        u16 i,x,y;
        double fi, err, fibuf[BUFLEN];          // buffer for recorded and computed values
        u08 fi_min, fi_sec, err_min, err_sec;   // computed angles
        u16 fi_deg, err_deg;            // computed angles in whole degrees

        // initialize some libraries
        // initialize the UART (serial port)
        uartInit();
        uartSetBaudRate(0,9600);
        // make all rprintf statements use uart for output
        rprintfInit(uart0SendByte);
        // initialize the timer system
        timerInit();
        // turn on and initialize A/D converter
        a2dInit();      
        // configure a2d port (PORTA) as input
        // so we can receive analog signals
        DDRF = 0x00;
        // make sure pull-up resistors are turned off
        PORTF = 0x00;

        // set the a2d prescaler (clock division ratio)
        // - a lower prescale setting will make the a2d converter go faster
        // - a higher setting will make it go slower but the measurements
        //   will be more accurate
        // - other allowed prescale values can be found in a2d.h
        a2dSetPrescaler(ADC_PRESCALE_DIV128);

        // set the a2d reference
        // - the reference is the voltage against which a2d measurements are made
        // - other allowed reference values can be found in a2d.h
        a2dSetReference(ADC_REFERENCE_AREF);

        // use a2dConvert8bit(channel#) to get an 8bit a2d reading
        // use a2dConvert10bit(channel#) to get a 10bit a2d reading

        rprintf("inklinometr 2009\r\n");

        while(1)
        {
                fi=0;
                err=0;
                for(i=0; i<BUFLEN; i++)
                { 
                        x = a2dConvert10bit(ADC_CH_ADC0);
                        y = a2dConvert10bit(ADC_CH_ADC1);
                        fibuf[i] = atan2((double)x-511,(double)y-511);          // record computed angles to buffer for post processing
                }
                for(i=0; i<BUFLEN; i++) fi += fibuf[i];         // sum recorded angles
                fi = (fi/BUFLEN)+PI;            // average recorded angles and expand product to whole circle
                
                err=quadraticerror((fi-PI),fibuf,BUFLEN);
                radtodeg(fi,&fi_deg,&fi_min,&fi_sec);           //translate radians to degrees
                radtodeg(err,&err_deg,&err_min,&err_sec);
                
                rprintf("fi:%d.%d.%d  +- %d.%d.%d \r\n", fi_deg, fi_min, fi_sec, err_deg, err_min, err_sec);
                delay_ms(20);
        }
        return 0;
}